共同研究報告書

整理番号第432号

コンクリート舗装の構造設計 の高度化に関する研究 共同研究報告書

平成 24 年 2 月

独立行政法人土木研究所 社団法人セメント協会 東京農業大学 石川工業高等専門学校

Copyright © (2012) by P.W.R.I.

All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I.

この報告書は、独立行政法人土木研究所理事長の承認を得て刊行したもので ある。したがって、本報告書の全部又は一部の転載、複製は、独立行政法人土 木研究所理事長の文書による承認を得ずしてこれを行ってはならない。

コンクリート舗装の構造設計 の高度化に関する研究

音	i装チーム	上席研究員	久	保	和	幸
		主任研究員	寺	田岡]1]
		研究員	井	谷	雅	Π
			井	上	重	1 *1
			綾	部	孝	之 ※2
			堀	内	智	司
		交流研究員	谷		ŧ	専 ^{※3}
			清	水	泰	成 ^{※3}
			自	Щ	慶	吾※3
石川工業高等専門学校		教授	西	澤	辰	男
東京農業大学		教授	小药	2011年	牙	隹
		教授	竹	内	厚	表
社団法人セメント協会	普及部門約	売括リーダー	春	日	<u> </u>	成
	普及普	部門リーダー	吉	本	徫	訤
		研究員	泉	尾	英	文

要 旨:

コンクリート舗装は実道でのデータ蓄積がアスファルト舗装に比べて不十分 であるため、その供用性予測手法の確立や耐久性の検証などが遅れている。 そこで、コンクリート舗装の供用性能や耐久性を明らかにし、現在設計で使用 されている設計方法について検証及び見直しをすることを目的として、平成 19 ~22 年度の4年間にわたって共同研究を行った。 本報告書は、検証した成果を報告するとともに、計測したデータをとりまとめ たものである。

キーワード:コンクリート舗装、理論設計、温度応力、荷重応力、構造細目、信頼性 ※1 現国土交通省北海道開発局北見事務所、※2 現土木研究所研究企画課 ※3 現前田道路株式会社

目次
1. まえがき・・・・・・1
2. 研究目的と研究概要
2.1 コンクリート舗装の構造設計の推移
2.2 研究目的と研究概要····································
3. 研究方法
3.1 試験舗装の各種実験······5
3.1.1 試験舗装の構築······5
3.1.2 材料試験・・・・・8
3.1.3 各種実験・・・・・・16
3.2 全国のコンクリート舗装の温度調査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.3 国道の現地調査······45
3.4 路盤の強度試験······53
3.5 舗装管理支援システムデータの解析61
4. コンクリート版の構造設計の検討
4.1 輪荷重応力式の検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.1.1 静的荷重の応力式の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.1.2 動的荷重の応力式の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.2 走行位置の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.3 温度応力式の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.3.1 コンクリート版の温度差の推計方法の検討
4.3.2 温度応力式の検証及び見直し・・・・・86
4.4 疲労度の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.4.1 ひび割れと走行回数の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.4.2 疲労曲線の見直し·······93
5. 路盤の構造設計の検討
5.1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・94
5.2 実大コンクリート舗装・路盤を用いた支持力調査
5.3 路盤厚設計曲線の信頼性の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.4 信頼性を考慮した路盤厚設計曲線の提案・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・105
5.5 おわりに・・・・・・108
6. コンクリート舗装の構造細目の検討
6.1 鉄網の効果の検討······109
6.2 As 中間層の効果の検討 · · · · · · · · · · · · · · · · · · ·
7. 構造設計における信頼性の検証・・・・・125

8.	結論······	130
9.	今後の課題等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	131

参考資料

付録1. 舗装走行実験場における計測データ

1	連続デー	- 4
T		

		1)	ダミー版 F	1
		2)	誘発ひび割れ部および目地部 C	5
		3)	Co版表面と底面の温度差発生頻度	2
		4)	縦自由縁部 E	5
		5)	鉄網 S	9
		6)	亀裂変位 K	1
	2	段差量	測定および計算結果	
		1)	段差量測定 2	2
		2)	段差量計算	3
	3	静的載	荷試驗結果	
		1)	ひび割れ部および目地部 C	6
		2)	自由縁部 E	8
		3)	亀裂変位 K	0
		4)	土庄 P	0
	4	FWD 測気	を結果	2
	5	動的載	荷試驗結果 3	6
	6	表面性	状測定結果	2
付録2.		試験施	工に使用した材料成績表	
付録3.		全国で	の温度計測データ	

付録4. 路盤の構造設計の検討に使用した材料成績表

1. まえがき

現在、わが国の道路舗装の多くはアスファルト舗装であり、最近の国道におけるコンクリート舗装の占 める割合は約5%しかない。コンクリート舗装の適用が減少した理由として、沿道住民や道路利用者から騒 音や振動及び乗り心地が悪いという苦情が寄せられることや、補修工事においてアスファルト舗装よりも長 期間の交通規制が必要なこと、上下水道、ガス等における公共占有施設の埋設工事が困難といった課題が挙 げられる。しかし、このままではわが国からコンクリート舗装に関する知見や技術が消え去ってしまうこと が危惧される。また、長期にわたるライフサイクルコストを考慮するとアスファルト舗装よりも安く、また 材料が国内で調達できるため物価(建設費)は安定している。さらに、これまで課題とされていた初期コス トを低減させたスリップフォーム工法や、交通開放までの時間を短縮させたプレキャストコンクリート版等 が開発され、コンクリート舗装の良さが見直されてきている。

このような中で、コンクリート舗装は実道でのデータ蓄積がアスファルト舗装に比べて不十分であり、 その供用性や耐久性の検証などが遅れている。そこで、2007年から2011年にかけて、独立行政法人土木研 究所と石川工業高等専門学校、東京農業大学、社団法人セメント協会との共同研究により、現在使用されて いるコンクリート舗装の構造設計の検証及び見直しを行った。

本報告書は、検証した成果を報告するとともに、計測したデータをとりまとめたものである。

2. 研究目的と研究概要

2.1 コンクリート舗装の構造設計の推移

コンクリート舗装は、路床、路盤、の上に目地で連結されたコンクリート版が載っている構造であり、 作用する外的要因も交通荷重の他に気象作用など複雑であって、その荷重支持機構は必ずしも単純ではない。 コンクリート版は路面を形成し、その剛性は路盤、路床に比較して高いので、交通輪荷重などの外的要因の 作用を、主にコンクリート版の曲げ抵抗によって支持している。したがって、コンクリート版が舗装の最も 重要な部材であり、その曲げ疲労破壊がコンクリート舗装の限界状態であるという概念が、コンクリート舗 装の力学的設計手法の基本となっている。

一般の構造物の設計においては、設計寿命期間に構造物が受ける外的荷重の最大値を推定し、これに対す る設計耐力を照査する検討が行われる。もちろん繰り返し荷重を受ける橋梁などでは疲労破壊に対する検討 も行われるが、コンクリート舗装では、外的荷重の繰り返しに対して設計寿命を保証することが設計の目的 となっている。すなわちコンクリート舗装の設計手法は、疲労解析に基づいた設計寿命の推定法であると言 える。

現在用られているコンクリート舗装の設計法は、PCA 設計法に代表される力学的設計法と、AASHTO 設計法に代表される経験的設計法の2種類に大別されるが、いずれの設計法においても外的荷重の繰り返しに対する検討が行われる。

PCA 設計法に代表される力学的設計法では、コンクリート版の応力式に、作用する外的荷重を代入して 発生応力を算定し、これによって設計を行う。わが国の道路舗装では、舗装設計指針に示される方法によっ て設計が行われているが、この設計法は PCA 設計法と同様の力学的設計法であり、セメントコンクリート 舗装要綱に示されていた設計法をほぼ踏襲している。セメントコンクリート舗装要綱では、実物大のコンク リート舗装における温度測定、載荷試験結果に基づいて荷重応力と温度応力式を開発し、それらを用いて温 度応力と荷重応力の合成応力に行って曲げ疲労解析を行う、洗練されたな設計法を採用していた。一方、 AASHTO 設計法に代表される経験的設計法は、実物大のコンクリート試験舗装における試験結果から、コ ンクリート版の破損程度を示す指標を与える関係式を構築し、これによってコンクリート版を評価しようと するものである。したがってこの方法の場合には、コンクリート版の応力解析は行われず、コンクリート版 の破損は、破損程度を表す指標がある基準値を示すことによって決定される。しかし AASHTO 設計法は現 在では力学的方法と経験的方法を組み合わせた経験的力学的設計法へと進化している。

2.2 研究目的と研究概要

本報告書では、現在のコンクリート舗装の構造設計方法について検証及び見直しを行うことを目的とす る。また、今後、より精度の高い構造設計手法を確立するためのデータを取りまとめるものとする。以下に 報告書の構成を示す。

第4章では、コンクリート版の構造設計の検証及び見直しを行う。現状の輪荷重応力式では、横断勾配の 影響や、車両を静止させた場合と走行させた場合とでコンクリート版に発生する応力が異なるか不明である。 また温度応力式では、実測は時間と費用がかかるために実測値の代わりに設計便覧に掲載された例を使用す ることになっているが、地域分類が2通りしかなく、その分類もわかりにくいため、気象データからの予測 式の確立が求められている。疲労度を算出する疲労曲線については、検証が不十分である。そこで、コンク リート舗装の試験舗装を敷設し、促進載荷実験や静的載荷試験、動的載荷試験を実施し、コンクリート版に 発生する応力を計測する。実際の輪荷重応力と温度応力による疲労度と理論値と一致するかについも確認す る。また、全国にコンクリート版の供試体を設置して温度測定を行い、便覧の温度差の頻度分布を確認する。

第5章では、路盤厚の設計曲線の検証を行う。現在の構造設計では、コンクリート版の構造設計と路盤 の構造設計は分かれており、コンクリート舗装の信頼性ではコンクリート版の信頼性を指し、路盤の信頼性 を考慮していない。今後、構造設計の精度を高めるためには、路盤とコンクリート版との関係性の確認が必 要になり、路盤の信頼性を検討していく必要がある。そこで、実大路盤を構築して強度に関するデータを増 やして、設計曲線の精度を確認する。

第6章では、アスファルト中間層や鉄網といった構造細目の検討を行った。現在の構造設計は、アスフ アルト中間層と鉄網の力学的な有効性が不明確である。そこで、コンクリート舗装の試験舗装で、促進載荷 試験を行い、アスファルト中間層や鉄網の有無の影響を確認した。また、国道でコア抜きをして鉄網の引っ 張り抵抗性を確認し、有効性の確認を行った。

第7章の信頼性の検討では、コンクリート舗装の信頼性を検討した。舗装の構造に関する技術基準の別 表には、コンクリート舗装の信頼性が70%と示されているが、調査時点で版厚が厚い重交通路線のデータ は少ない。そこで、国土交通省の舗装管理支援システムデータを使用して、重交通路線のデータ数を増加さ せて信頼性の確認を行った。

次の頁に研究目的とそれに対応する研究内容を整理する。

図-2.1 報告書の構成(研究項目と研究内容について)

3. 研究方法

土木研究所舗装走行実験場でコンクリート舗装を施工し、促進載荷試験と静的載荷試験、動的載荷試験を 実施して構造設計の見直し及び供用性の確認を行った。また、全国9箇所にコンクリート舗装版の供試体を 設置して温度計測を行った。また、国道4号黒磯バイパス、国道4号平泉バイパス、国道13号、国道113 号の4箇所について現地調査を行った。また、路盤を施工し、強度に関する試験業務を行った。そして、国 土交通省の各地方整備局が所有する舗装管理支援システムデータを使用して国道の供用年数や供用性能の確 認を行った。以下にその詳細について記述する。

3.1 試験舗装の各種実験

3.1.1 試験舗装の構築

(1)試験舗装の目的

コンクリート舗装においてアスファルト中間層と鉄網のような構造細目の有効性を検討する。また、車両 走行時と静止時のコンクリート版に発生する応力の確認、疲労によるコンクリート版の供用性の推移の確認 を行う。

(2)試験舗装の構造と計器埋設位置

土木研究所舗装走行実験場中ループにおいてコンクリート舗装の試験舗装を構築した(図-3.2)。コンク リート舗装は、版幅 5m、目地間隔 10m、版厚 25cm のコンクリート 版と粒状路盤層から構成され、構造細 目の有効性を比較のため、鉄網およびアスファルト中間層(4cm)について有工区と無工区を設けている。ま た、ひび割れ発生箇所の鉄網の引張り抵抗性を検討するため、コンクリート工区の2箇所で、コンクリート 版中央部に三角材と目地きりによりひび割れを誘発する箇所を設けている。標準的な舗装断面は3工区であ る。なお、中ループは直径 200m の円であり、走行しやすいように横断方向に約 7%の横断勾配がついてい る。さらに、拘束のないコンクリートの温度膨張係数を計測するため、コンクリート舗装と同材料で同時期 に施工したダミー版(縦 50cm×横 50cm、厚さ 25cm)を設置している。

構造細目の有効性の確認と疲労による変化を確認するため、コンクリート版に発生するひずみを計測する ひずみ計を車両走行位置の目地部及び縦自由縁部に設置し、路盤上面の圧力を計測する土圧計を目地部の下 に、目地部と誘発ひび割れ部の間隔を計測する亀裂変位計を隣り合う版同士に設置している。コンクリート 舗装の全体の平面図及び断面図、計器埋設位置について図-3.2に示す。さらに、コンクリート舗装のダミー版 に発生するひずみを計測するひずみ計を設置している。

図-3.1 独立行政法人土木研究所舗装走行実験場

図-3.2 試験舗装の平面図および断面図とダミー版

(3)使用材料

試験舗装の使用材料を表-3.1に示す。

表-3.1 使用材料

	種類	備考
表層	舗装用普通コンクリート	早強セメント ダウエルバー Ø=25mm 400mmピッチ 鉄網(D6、格子間隔150mm、JIS G 5331準拠)
中間層	密粒度アスファルト	ストレートアスファルト60/80
路盤層	クラッシャラン	C-40
路床	山砂	設計CBR 3

※ ダミー版では同じコンクリートを使用した。

コンクリートの配合設計の結果を表-3.2に示す。

粗骨	スランプの目	空気量の目標	水セ	単位	単位量 kg/m ³					
材の	標値(cm)	値(%)	メン	粗骨	水₩	セメ	細骨	粗骨	混 和 剤	
最大			ト比	材容		ントC	材S	材G	(AE 材)	
寸法			W/C%	積						
(mm)										
20	2.5 ± 1.5	4.5 ± 1.5	40.5	-	149	368	682	1151	3.94	
備考	(1) 設計基準的	曲げ強度=4.5MPa								
	(2) 配合強度	=5.5N								
	(3) セメントの	の種類 =早強ポ	ルトラン	ドセメン	F					
	(4) 粗骨材の種類 =砕石									
	(5) 混和剤の積	重類 三減水剤	及び AE 斉	り(商品名	3)					
	(6) 施工時期	=12月								

表-3.2 示方配合

(4)試験舗装の施工状況

舗装の施工期間は、2007年12月3日から12月14日に行った。施工は、既設舗装撤去、現地盤の路床の 掘削、路床材の置き換えによる路床工、路盤材とアスファルト中間層の構築の路盤工、コンクリート版の打 設のコンクリート工からなる。コンクリート版の各工区の打設時間を表-3.3に示す。コンクリート版の打設 では、コンクリートフィニッシャがうまく機能せず時間がかかった。写真-3.1から写真-3.21に施工状況を 示す。また、写真-3.22から写真-3.30に計測装置の設置状況を示す。

	下層	上層
E6	9:37	10:25
C1	10:22	12:05
E1	11:04	12:28
C2	11:37	12:14
C3	12:20	12:28
E2	13:30	14:00
E3	14:11	16:10
E4	16:33	18:35
C4	17:24	18:35
E5	17:30	18:35
C5	17:55	18:35
C6	18:50	19:43

表-3.3 コンクリート版の各工区の打設時間(12月14日)

3.1.2 材料試験

(1) コンクリート版

コンクリート版の材料試験の結果として、曲げ強度を表-3.4 に、圧縮強度を表-3.5 に弾性係数を表-3.6 に示す。

十十 弗公	카빠 ㅁ	養生		破断面の	厚さ(mm)			破断面の	の幅(mm)		スパン	荷重	曲げ強度	€(N/mm²)						
作生用中	武 駅 口	方法	1	2	3	平均	1	2	3	平均	(mm)	(kN)		平均						
			100.7	100.1	99.4	100.1	100.4	100.6	100.3	100.4	300.0	21.6	6.44							
		標準	99.9	99.8	99.6	99.8	100.4	100.6	100.3	100.4	300.0	21.5	6.45	6.71						
7 11	平成19年		100.5	101.0	101.4	101.0	100.0	100.2	100.1	100.1	300.0	24.6	7.23							
(□	12月21日		100.0	100.0	99.6	99.9	100.1	99.7	99.5	99.8	300.0	19.8	5.97							
		現場	100.0	99.9	99.7	99.9	100.1	99.7	99.3	99.7	300.0	19.5	5.88	5.99						
			98.7	98.9	98.8	98.8	100.0	100.7	100.8	100.5	300.0	20.0	6.12							
									100.1	100.6	101.2	100.6	100.1	100.1	100.1	100.1	300.0	22.7	6.72	
相	標準	99.9	99.9	99.8	99.9	99.9	100.3	100.4	100.2	300.0	23.9	7.17	6.79							
	平成20年	E	101.4	100.7	100.6	100.9	100.5	100.9	100.9	100.8	300.0	22.1	6.46							
20 H	1月11日		101.3	100.9	100.2	100.8	101.9	101.9	101.6	101.8	300.0	19.3	5.60							
		現場	99.7	100.0	100.4	100.0	101.0	100.8	100.6	100.8	300.0	20.9	6.22	5.85						
			99.5	99.7	99.8	99.7	100.8	100.5	99.6	100.3	300.0	19.1	5.75							
			100.0	100.2	100.2	100.1	100.7	100.8	100.7	100.7	300.0	27.5	8.17							
91日	半成20年 3月14日	現場	99.6	99.6	99.6	99.6	100.4	100.2	100.5	100.4	300.0	19.4	5.85	7.03						
0)1111			100.3	100.7	101.2	100.7	101.4	100.7	100.3	100.8	300.0	24.1	7.07							
			101.1	101.3	101.5	101.3	99.4	99.8	100.4	99.9	300.0	20.0	5.85	35						
1年	平成20年 12月18日	現場	99.8	99.9	99.7	99.8	100.6	100.4	101.0	100.7	300.0	18.8	5.63	5.87						
			101.4	100.9	100.4	100.9	101.2	101.4	101.1	101.2	300.0	21.1	6.14							

表-3.4 コンクリート版の曲げ強度試験結果

材齢	No1 No2		No3	平均
7日	38.8	38.0	37.2	38.0
28日	54.8	54.5	52.0	53.8
91日	59.8	58.3	59.2	59.1
365日	61.7	63.2	65.0	63.6

表-3.5 コンクリート版の圧縮強度試験結果 (N/mm²)

表-3.6 コンクリート版の弾性係数試験結果 (N/mm²)

材齡	No1	No2	No3	平均
7日	21700	26100	25200	24300
28日	30300	29700	29900	30000
91日	31300	34100	31100	32200
365日	37300	34600	36700	36200

(2) 路盤材

小型 FWD で計測して K30 換算値にした値を図-3.3 に示す。

(MN/m³)

<u>11 工区 1</u>	10 工区	9 エ区	8 工区	7 工区	6 工区	5 エ区	4 工区	3 工区	2 エ区	1 工区
8 →荷重車走行方向 6	32 79 72 62 56	67 57 63 57 63	61 67 63 62 65	64 72 70 71 50		45 47 47 45 42	70 57 48 38 49	39 42 38 41 40	54 39 35 36 32	
	70	61	64	65		45	52	40	39	
工区平均:	65					44				
博 选 信 关	11	4	2	9		2	12	2	9	
惊华偏左:		8					9			
	59	57	61	56		43	40	38	31	
設計文持力係数:		57	,				35	5		

図-3.3 路盤における小型 FWD 測定結果(K₃₀換算値)

(3) 路床

小型 FWD で計測して K30 換算値にした値を図-3.4 に示す。

(MN/m³)

11 工区		10 工区	9 エ区	8 工区	7 エ区	6 工区	5 工区	4 エ区	3 工区	2 エ区	1 工区
·· →亡 →荷重車走行方向		26 24 25 20 22	22 23 19 23 21	19 28 22 25 30	22 30 27 27 29		33 25 18 22 23	31 33 25 21 19	20 22 15 17 22	2 25 17 23 22 22 22	
1		23	22	25	27		24	26	10	22	
	工区平均:	20	2.	4	21			20 2	3		
			2	4	3		6	6	3	3	
	惊竿 備左		3	3				Ę	5		
	設計支持力 么数·	21	20	20	24		19	20	16	19	
	成时又行力床致.		2	1				1	8		

図-3.4 路床における小型 FWD 測定結果(K₃₀換算値)

・掘削

写真-3.1 現地盤掘削状況

写真-3.2 仕上がり状況

・路床工

写真-3.3 路床敷ならし状況

写真-3.4 路床転圧状況

・路盤工

写真-3.5 路盤敷ならし状況

写真-3.6 路盤転圧状況

・中間層工

写真-3.7 乳剤散布状況

写真-3.8 中間層敷きならし状況

写真-3.9 中間層転圧状況

・コンクリート工

写真-3.10 打設前状況

写真-3.11 コンクリート敷ならし状況

写真-3.12 鉄網

写真-3.13 ダウエルバー

写真-3.14 締め固め状況

写真-3.15 シリンダフィニッシャによる仕上げ

写真-3.16 表面仕上げ状況

写真-3.17 養生剤散布状況

写真-3.18 養生状況

写真-3.19 施工終了時

写真-3.20 ダミー版打設

写真-3.21 ダミー版

· 計測装置設置状況写真

写真-3.22 土圧計埋設状況(路床)

写真-3.23 土圧計埋設状況(路盤)

写真-3.24 ひずみ計(全景)

写真-3.26 ひずみ計(縦自由縁部)

写真-3.25 ひずみ計(ひび割れ部、目地部)

写真-3.27 ひずみ計付近の締固め状況

写真-3.28 ひずみ計埋設状況

写真-3.29 ひずみ計 (ダミー版)

写真-3.30 龟裂変位計設置状況

3.1.3 各種実験

試験舗装において行った以下の実験の実施日程を表-3.7に示す。

- ・促進載荷試験
 - ・支持力調査(たわみ量)
 - ・路面性状調査(段差量、すべり、きめ深さ)
- ・散水実験
- ・静的載荷試験
- ·動的載荷試験

表-3.7 各種実験の実施日程	
-----------------	--

年	月	日	~	月	日	項目	備考
	12	14				試験舗装のコンクリート版打設	
2007	12	15				連続計測データ採取開始	<u> </u>
2007	12	21				全部市例 アネタの名	
	1	7				支持力調査(たわみ量)	初期值
	1	, Q	~	1	21	Q 准載荷試験(荷重重ま行)	直面重量204kN 速度40km/br 思慧40kN场質論数10万論
	6	20		-	51	<u>此连载何武歌(何主年定门)</u> 基的载荷試驗	<u>中间主重234kiN、还没40kill/111、未得43kiN决并抽致10力抽</u>
	0	20		0	10	的戰鬥武殿	
2008	8	20	~	9	12	化進載何訊號(何里里正行)	<u> 単岡里里294KN、述度40Km/nr、糸楨49KN換昇輛数20万輛</u>
	10	9	~	10	30	促進戰何試駛(何里早定行)	<u> </u>
	10	30		10			
	12	2	~	12	26	促進載何試驗(何里里定行)	<u> 単両里重294kN、速度40km/hr、案積49kN換算輛数40万輛</u>
L	12	18				動的載何試験	
	1	13	~	2	4	促進載荷試験(荷重車走行)	車両重量294kN、速度40km/hr、累積49kN換算輪数50万輪
	4	7				支持力調査(たわみ量)	
	6	4				静的載荷試験	
	-	17			15	促進載荷試験(荷重車走行)	車両重量323kN、速度30km/hr、累積49kN換算輪数60万輪
		17	~	ð	15	散水実験	累積散水量150L/箇所
	8	27				静的載荷試験	
	9	2				支持力調査(たわみ量)	
	_					促進載荷試驗(荷重重走行)	
	9	14	~	10	6	世纪 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
2009	10	0				取小天歌	未值取小里300C/ 固剂
	10	9					
	10	9				路面性次調査(すべり)	
	10	20				路面性状測定(さの深さ)	
	11	4				静的載荷試験	70万輪後(H21散水走行20万輪後)
	11	۹	~	12	2	促進載荷試験(荷重車走行)	車両重量323kN、速度30km/hr、累積49kN換算輪数80万輪
		3		12	2	散水実験	累積散水量450L/箇所
	12	7				路面性状調査(すべり)	
	12	14				静的載荷試験	
	12	15				支持力調査(たわみ量)	
						促進載荷試驗(荷重重走行)	車両重量323kN 速度30km/br 累積49kN換質輪数90万輪
	1	8	~	2	24	世纪 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	- 1	20				私のまな計除	来很欣尔里000C/ 固州 在专事主任期間占
		29					19里半走11朔间中
	2	25				始祖性状調査(9 へり) 古井 古 囲 本(t ね $\tau = $)	
	3					又行刀調査(たわみ重)	
	3	1				静的載何試験 	
	3	4				路面性状測定(きめ深さ)	
	4	26				支持力調査(たわみ量)	累積49kN換算輛数90万輛(2010/3/1と同条件)
	5	7				動的載荷試験	
	7	12	~	•	5	促進載荷試験(荷重車走行)	車両重量323kN、速度30km/hr、累積49kN換算輪数96万輪
0010		12		0	J	散水実験	累積散水量900L/箇所
2010	8	27				静的載荷試験	
	-					促進載荷試験(荷重重走行)	車両重量323kN、速度30km/hr、累積49kN換算輪数110万輪
	9	1	~	10	26	散水宝驗	累積散水量12001/箇所
	٥	20		-	-	支持力調査(たわみ景)	100万齡後(日22散水走行10万齡後)
	10	23	-	-	-	<u>ステノ明旦(に1207里)</u> 敗西性指測定(オズリ キム深さ)	
	11	15				$ \mu$ 面 μ (力) μ () () () () () () () () () (110 下於後(1100 批 水 土 仁 20 下於後)
	11	15					110万辆後(122敗小足1)20万辆後)
	_ 1 1	15				前的軟何訊駛	
	11	16	~	12	15	促進載何試験(何里里走行)	甲回里重323kN、速度30km/hr、案積49kN換算輛数120万輛
						散水実験	累積散水重1500L/箇所
	12			<u> </u>		路面性状測定(すべり、きめ深さ)	
	12	22				支持力調査(たわみ量)	120万輪後(H22散水走行30万輪後)
	1	5				静的載荷試験	120万輪後(H22散水走行30万輪後)
	1					路面性状測定(すべり、きめ深さ)	
	4	e		<u>^</u>	20	促進載荷試験(荷重車走行)	車両重量323kN、速度30km/hr、累積49kN換算輪数130万輪
0011	11	0	~	^	22	散水実験	累積散水量1800L/箇所
2011	2	22				動的載荷試験	
	2	25				支持力調査(たわみ量)	
	3	10				静的載荷試驗	
	2					<u>路商性状測定(すべけ きめ深き)</u>	
	0						

- (1) 促進載荷試験
- 1) 試験の目的

試験舗装の耐久性や、コンクリート版に発生する応力、誘発ひび割れ部の段差量、すべり抵抗やキメ深さ 等の路面性状の変化を確認して構造細目の効果を検証するため、3.1 で記述した試験舗装において促進載荷 試験を行った。

2) 試験内容

促進載荷試験の実施期間と載荷条件を表・3.8 に示す。試験は、日本の四季を再現するため1ヶ月ずつ年4 回(49kN換算輪数で40万輪=10万輪×4回)実施し、これを約3年間行った。促進載荷試験は、錘を載 せた車両(図-3.5や写真-3.32参照。以下、荷重車と呼ぶ)を無人で走行させ、実際の車両走行位置を再現 するため走行位置が正規分布となるように設定して実施した。促進載荷試験の実施期間中の路面表面状況の 例として写真・3.33から写真・3.35に示す。促進載荷1ヶ月ごとに、表・3.10に示すようなコンクリート舗装 の支持力調査や路面性状調査を実施した。舗装体に発生するひずみや温度は、3年間、試験の実施に関わら ず表・3.11に示したサンプリング周期で連続的に計測した。

図-3.5 荷重車の寸法

図-3.6 走行パターン(単輪の設定値)

※タイヤ跡を読み取ると走行位置は外側から 105cm~210cm と 290cm~395cm である。
タイヤの横幅が 58cm なので、設定通り約±25cm の範囲で分布していることがわかる。
写真-3.31 走行パターン(実測値)

走行回数	走行期間			条	件	
0~10万輪	2008年 1月 8日~ 1月31日		荷重条件(kN)	車両重量		294
10~20万輪	2008年 8月20日~ 9月12日	条		輪荷重	前輪(シングル)	33.5
20~30万輪	2008年10月 9日~10月30日	件			後前輪(ダブル)	46.3
30~40万輪	2008年12月 2日~12月26日				後後輪(ダブル)	49.8
40~50万輪	2009年 1月13日~ 2月 4日		走行速度			40km/hr
50~60万輪	2009年 7月17日~ 8月15日		荷重条件(kN)	車両重量		336
60~70万輪	2009年 9月14日~10月 6日			輪荷重	前輪(シングル)	36.3
70~80万輪	2009年11月 9日~12月 2日				後前輪(ダブル)	57.8
80~90万輪	2010年 1月 8日~ 2月24日	条			後後輪(ダブル)	58.8
90~96万輪	2010年 7月12日~ 8月5日	14	走行速度			30km/hr
96~110万輪	2010年 9月 1日~ 10月26日					
110~120万輪	2010年11月16日~12月15日					
120~130万輪	2011年 1月 6日~ 2月22日					

表-3.8 荷重車の走行期間と荷重条件

注)走行回数は49kN換算輪数。輪荷重は静止時の実測値。

走行時に荷重車の左右で同じ載荷条件となるように錘と走行速度を途中で変更。

表−3.9 調査一覧

目的	調査内容	方 法	規 格*	
支持力調査	たわみ量	FWD (KUAB 社製)	S043-3T	
舗装表面性状調査	表面観察	目視	-	
	誘発ひび割れ部の	スケール	S031	
	段差量			
	すべり抵抗性	DF テスタ	S021-3	
	キメ深さ	CT メータ	S022-3T	

※ 舗装調查·試験法便覧

表-3.10 連続測定における測定箇所

ひずみ	目地部、誘発ひび割れ部、自由縁部
亀裂変位	目地部、誘発ひび割れ部
鉄網の変位	誘発ひび割れ部

表-3.11 連続測定のサンプリング周期

2007年12月15日~2008年1月7日	144回/日(1回/10min)
2008年1月8日~2008年6月20日	48回/日(1回/30min)
2008年6月21日~	24回/日(1回/1hr)

注)コンクリート版の施工日は2007年12月14日。亀裂変位の測定開始は12月21日。

3) 計測結果

連続計測データの結果を以下に示す。

ひずみの計測結果の一例を図-3.8 に示す。夏に大きく冬に小さいという季節的な変動が見られ、中間層の ある場合が無い場合より値が小さい。

図-3.8 誘発ひび割れ部および目地部のひずみ(下部のひずみ)

亀裂変位量の計測結果を図-3.9に示す。K1やK6のような鉄網の無いひび割れ部で値が大きくなっている。

図-3.9 下部ゲージ部の亀裂変位

土圧計の計測結果を図-3.10に示す。

1回目の静的載荷試験を行った後あたりで増加がみられる。土圧計の計測結果から計測困難だと考えられたのでデータを使用していない。なお、P2では計器不良により異常値が観測された。

写真-3.32 促進載荷試験の実施状況

写真-3.33 全体路面状況(90万輪走行後)

写真-3.34 車輪走行部の路面状況(90 万輪走行後) 写真-3.35 車輪非走行部の路面状況(90 万輪走行後)

以下に表-3.10に示した各調査について説明する。

①支持力調査

舗装全体の健全性を確認するため、支持力の調査を行った。測定位置を図-3.11 に、測定条件をを表-3.12 に示 す。測定は、版央11 箇所、目地・誘発ひび割れ部10 箇所で実施した。また、調査状況を写真-3.36 に示す。なお、 調査は FWD を使用し、測定方法は舗装調査・試験法便覧に従った。

計測結果の例として、ひび割れ部のたわみ量と荷重伝達率をそれぞれ図-3.13と図-3.14示す。促進載荷試験によりたわみ量が増加し、荷重伝達率が低下することがわかる。

荷重車走行(FWD測定)方向

表-3・12 FWD の測定条件

項目	内容
試験時期	荷重車10万輪走行毎に実施(H22年度:4回実施)
載荷位置	目地部および誘発ひび割れ部:10箇所 版央:11箇所
載荷荷重	98kN(10t)

写真-3.36 FWD の調査状況

図-3.12 FWD の計測位置

図-3.13 ひび割れ部のたわみ量

図-3.14 ひび割れ部の荷重伝達率

②路面性状調查(段差量)

走行性を確認するため、段差量の測定を行った。測定箇所は誘発ひび割れ部の2箇所とし、図-3.15 に示 すように横断方向に50cm ピッチで9点計測した。段差量の測定状況を写真-3.36 に示す。なお、試験は舗 装試験調査・試験法便覧のスケールによる方法に従った。

計測結果を表-3.36 に示す。

図-3.15 誘発ひび割れ部における測定位置

写真-3.37 段差測定状況(テーパーゲージ使用)

		印美			
通過輪数(万輪) (散水開始以降)	0	20	30	40	·段左 増加量
測定日	'09/7/14	'09/10/22	'09/12/24	'10/2/25	
①ひび割れ部 (中間層無, 鉄網無)	0.2	0.9	1.3	1.3	1.1
②ひび割れ部 (中間層有,鉄網無)	0.1	0.1	0.2	0.4	0.3

表-3.13 段差量

③路面性状調査(すべり抵抗、キメ深さ)

荷重車走行に伴うコンクリート舗装表面の性状変化を確認するため、すべり抵抗およびきめ深さの測定を 行った。測定は、図-3.2の5工区と7工区の中央部の横断方向の2箇所とし、1箇所あたり外側非走行部・ OWP・BWP・IWP・内側非走行部の5つを計測した。なお、すべり抵抗はDFテスタ、きめ深さはCTメータを 使用し、舗装試験調査・試験法便覧に従った。初期値はH21年度の車輪非走行部のデータを平均した値とし、 70~130万輪走行時の測定値は車輪走行部2測点の平均値とした。

計測結果を図-3.16 に示す。きめ深さ、およびすべり抵抗は徐々に低下しているものの、路面性状は良好であると考えられる。

(2) 散水実験

1) 実験の目的

コンクリート版の誘発ひび割れ部における段差の発生を進行させてアスファルト中間層の有無による影響を確認するため、車両が走行する促進載荷試験時に誘発ひび割れ部から水を浸入させる。これにより、路盤の支持力が低下して、リーブ版(退出側の版)下の細粒分が洗掘して空洞が生じ、段差を生じやすくする効果がある。

2) 実験の内容

実験装置は図-3.17 に示すように水タンクとホースから構成され、水タンクに水を入れてホースに開けた 3箇所の穴から誘発ひび割れ部に散水した。表-3.14に水タンクとホースの詳細を示す。ホースは車両走行に 支障が無いよう、写真-3.38から写真-3.41に示すようにコンクリート版表面にカッターで溝を切って表面か ら出ないように設置した。なお、ホースの穴の直径は、写真-3.45 に示すように確認実験を行い、表-3.16 のように3箇所から等量の水を散水できるように決定した。さらに、路盤まで水が浸入するように、図-3.18 のようにホースの穴の位置に合うようコンクリート版に直径 10mm の穴をあけている。散水は促進載荷試験時 に実施し、散水条件を表-3.15 に示す。ここで、誘発ひび割れ部の面積に1年間降る降水量は約150L であり、 2009年4月~2010年3月は合計で4年分の降水量、2010年4月~2011年3月は8年分の降水量を模擬した ことになる。

29

図-3.18 散水実験用のコンクリート版の溝と穴の加工方法及びホースの設置方法

項目	仕様
水タンク	ポリタンク(容量 20以2), コック付き
ホース	材質 シリコン(内径13mm,外径16mm) 全長 5m、末端止水 穴 3カ所(端部から1.25,2.50,3.75m) 穴の径mm(位置m) φ1.5(1.25),φ1.0(2.50),φ1.0(3.75) 7.5¦況散水に要する時間 約100分

表-3.14 散水装置の詳細

表-3・15 促進載荷試験時の散水条件

項目	内容
散水箇所	誘発ひび割れ部:2ヶ所 ①As中間層無,鉄網無の箇所(C1) ②As中間層有,鉄網無の箇所(C6)
散水量	荷重車走行期間中に散水を実施 年間降雨量 : 1,500mm (H21年度), 3,000mm (H22年度)を想定 荷重車10万輪走行期間中に1年間降雨量相当を散水
散水間隔	5,000輪走行毎に散水 (散水回数:10万輪÷5,000輪/回=20回)

写真-3.38 加工前の誘発ひび割れ部

写真-3.39 加工状況

写真-3.40 加工後の誘発ひび割れ部

写真-3.41 加工した溝の形状

写真-3.42 散水装置の全体図

写真-3.43 散水装置

写真-3.44 散水実験の様子

写真-3.45 散水装置の確認実験の状況

表3.16	散水装置の確認実験の結果	(タンクに 7.5L	」の水を入れて散水した場合)
-------	--------------	------------	----------------

位置	穴の径	流量測定結果 (兆)				所要時間
(m)	(mm)	1回目	1回目 2回目 3回目 平均			
1.25	1.5	2.64	2.67	2.72	2.68	
2.50	1.0	2.21	2.10	2.09	2.13	110
3.75	1.0	2.63	2.69	2.61	2.64	

(3) 静的載荷試験

1) 試験の目的

タイヤ接地面積と輪荷重応力の関係の確認と、アスファルト中間層及び鉄網の構造細目によるコンクリート版の荷重支持性能への影響の確認を目的とする。

2) 試験の内容

①タイヤ接地面積と輪荷重応力の関係の確認

表-3.17 に示す荷重条件で、写真-3.46 及び写真-3.47 のように荷重車の輪荷重及び接地面積の測定を行った。なお、測定は平坦なコンクリート舗装及び横断勾配が 7%ある試験舗装で実施し、載荷タイヤは荷重車の右後輪とした。タイヤ接地半径は接地面を円に置き換え算出した。また、荷重車のタイヤの空気圧はすべて 900kPa で統一して実施した。

毎のお粉	測定	荷重条件			
亜リ水安	場所	位 置 輪荷重(Ē(kN)	
		前輪	27	/.4	
	平坦	後前輪	18.6	25.0	
0##		後後輪	17.2	30.0	
UNX	=+ ⋿全 4ま 北士	前輪	26	6.0	
	111次	後前輪	15.2	20.0	
	(四四7%)	後後輪	15.7	30.9	
		前輪	32.3		
	平坦	後前輪	50.0	075	
7##		後後輪	47.5	97.0	
/ 12	試験舗装	前輪	28.9		
		後前輪	42.6	04.2	
	(马巴/%)	後後輪	41.7	04.3	
		前輪	44	.6	
	平坦	後前輪	77.9	152.0	
11\$		後後輪	75.0	132.8	
I 4 作入	計除盆壮	前輪	39).7	
	111次 部衣	後前輪	68.6	120.2	
	(均旧[/%)	後後輪	61.7	130.3	

表-3.17 荷重条件

写真-3.46 輪荷重の測定状況

写真-3.47 タイヤ接地面積の測定状況

②縦自由縁部におけるひずみの確認

表-3.18 に示す荷重条件で、写真-3.48 のようにして荷重車を静止時の輪荷重とコンクリート版底面のひず みの関係を求めた。測定は横断勾配が 7%ある試験舗装で実施し、載荷タイヤである右後輪を図-3.19 に示す 位置となるように静止させて計測した。荷重車のタイヤの空気圧はすべて 900kPa で統一して実施した。

表-3.18 右後輪の荷重条件

図-3・19 静的載荷試験の載荷位置

写真-3・48 静的載荷試験の試験状況

③目地部、ひび割れ部におけるひずみの確認(タイヤによる載荷)

表-3.19 に示す荷重条件で、写真-3.48 に示すように荷重車を使用して、誘発ひび割れ部及び横目地部の ひずみ、亀裂変位の測定を行った。載荷タイヤは右後輪とし、荷重車のタイヤの空気圧はすべて 900kPa で統 一して実施した。測定は横断勾配が 7%ある試験舗装で実施した。

老女位要	載荷荷重		
戦101⊻ 直	車両質量(t)	輪荷重(kN)	
	12	30.9	
計器直上	26	84.3	
	40	130.3	

表-3.19 右後輪の荷重条件

④縦自由縁部、目地部、ひび割れ部におけるひずみの確認(点載荷)

0tから2t刻みで10tまで任意に荷重条件を設定するため写真-3.49から写真-3.50に示すように、荷重 車を3個の支持部材で持ち上げて反力とし、残りの赤丸で示した位置でジャッキにより点載荷を実施した。 2009年4月~2010年3月では載荷位置は、図-3.20に示すように自由縁部については5測点、目地・ひび 割れ部についてはゲージ直上および目地・ひび割れを挟んだ反対側の12測点について実施した。2010年4 月~2011年3月では、目地部と誘発ひび割れ部の荷重伝達はFWD試験で確認することになり、目地やひび 割れ部を挟んで反対側にある載荷位置は、図-3.21に示すように自由縁部については5測点、目地・ひび 割れ部についてはゲージ直上および目地・ひび割れを挟んだ反対側の12測点について実施した。載荷条件 を表-3.20に示す。

写真-3.49 静的載荷試験の全体図

写真-3.50 支持部材と載荷点

写真-3.51 支持部材の設置状況

写真-3.52 載荷状況

写真-3.53 目地.ひび割れ部の載荷点

写真-3.54 自由縁部の載荷点

写真-3.55 データの計測状況

図-3.20 静的載荷試験の載荷位置(2009年4月~2010年3月)

図-3.21 静的載荷試験の載荷位置(2010年4月~2011年3月)

項目	内容
試験時期	荷重車10万輪走行毎に実施 (H22年度:4回実施)
載荷方法	荷重車を反力とし, ジャッキにて載荷 (荷重車を40tに調整し, 反力として使用)
載荷位置	目地部,誘発ひび割れ部:6箇所(H21年までは12箇所) 自由縁部:5箇所 (目地部,誘発ひび割れ部については、H21年度までは、 目地部,誘発ひび割れ部を挟んで反対側にも載荷を実施)
載荷荷重	0, 2, 4, 6, 8, 10t (同一測点において3回測定)

表-3・20 静的載荷試験の載荷条件

3) 計測結果

載荷直下のひずみの推移を図-3.22及び図-3.23に示す。顕著な値の変化は見られていない。

図-3.22 目地部とひび割れ部のひずみの推移

図-3.23 自由縁部のひずみの推移

(4) 動的載荷試験

試験の目的

アスファルト中間層及び鉄網の構造細目によって、車両走行により発生する応力が異なるか確認すること を目的とする。また、車両走行中と静止時において荷重応力と温度応力が同じかを確認することを目的とす る。

2) 試験の内容

促進載荷試験実施期間で荷重車がコンクリート舗装上を走行中に、試験舗装の計測装置のデータを計測した。計測には動ひずみ計を使用し、荷重車の走行位置が周回毎に変化していくため、ゲージ直上を通過した際の測定値が得られるよう、測定は15回繰り返して実施した。荷重条件を表-3.21に示す。

項目	条件
荷重車走行条件	表-3・8に示した2通り
測定箇所	ひび割れ部および目地部のひずみ(C1〜C6) 土圧(P1〜P8)
走行位置	計器直上(荷重車左タイヤ) (測定回数:15回)
サンプリング周期	1000Hz

表-3・21 動的載荷試験の試験条件

3) 計測結果

計測結果の例を図-3.24 に示す。

図-3.24 アスファルト中間層の有るコンクリート版のひずみの経時変化

写真-3.56 動的載荷試験の計測状況(中間層有工区)写真-3.57 動的載荷試験の計測状況(中間層無工区)

写真-3.58 収集装置との接続部(中間層有工区)

写真-3.59 収集装置(中間層無工区)

3.2 全国のコンクリート舗装の温度調査

(1) 調査の目的

地域に応じたコンクリート舗装版の設計を行うため、全国の様々な地域においてコンクリート舗装版の温 度計測を行った。

(2) 調査の内容

温度測定にはコンクリート舗装の供試体を作製して計測を行った。供試体の大きさは、3.1の試験舗装の 上下面の温度差とダミー版(縦 50cm×横 50cm×厚さ 25cm)の温度差との相関が高かったため、運搬性を考 慮して縦 30cm×横 30cmとし、版厚は舗装設計便覧に掲載されている6種類(15cm、20cm、23cm、25cm、28cm、 30cm)と空港舗装で見られる 45cmの計7種類とした。例として、図-3.25 に版厚が 30cmの供試体を示す。 供試体は同一のコンクリート舗装用の材料を使用して同時期に作製した。温度計測の高さはコンクリート版 表面から 5mm 下と、版の中央、コンクリート版底面から 5mm 上の位置とし、温度センサーの測定部がこの位 置に来るように固定用金具に設置してある。コンクリート版供試体の作製状況を写真-3.60から写真-3.62 に示す。供試体ごとに水分量が異なることでコンクリートの熱伝導性に与える影響を小さくするため、コン クリート版の側面はアルミテープを巻き、コンクリート版の底面には路盤上面の水分の影響を受けないよう にビニルシートを敷いている。さらに側面からの熱の影響を受けないように断熱材をコンクリートボンドで 接着している。設置箇所は、文献調査より気候が異なると考えられる9箇所(北海道苫小牧市、宮城県多賀 城市、茨城県つくば市、石川県河北郡津幡町、愛知県名古屋市、広島県広島市、福岡県久留米市、鹿児島県 鹿児島市、沖縄県豊見城市)とし、場所の選定にあたっては、水はけのよい、日中に日陰にならない場所を ・選んだ(図−3.27)。コンクリート版供試体の設置にあたっては、図−3.26のように再生路盤材を地面から高 さ20cmほど盛り、締め固めた上で供試体を設置した。表-3.22に示す条件で、供試体の温度と、地面から1.5m の位置に設置した百葉箱の気温について1年間の連続測定を実施した。計測したデータからコンクリート版 表面と底面の温度を推定して上下面の温度差を算出した。

(3) 計測結果

計測結果の例を図-3.28に示す。

図-3.25 コンクリート版供試体(版厚が 30cm の場合)

表-3.22 温度データ収集条件

/#=±/★++ ノブ	版厚:15,20,23,25,28,30,45cm
快武体リイス	面積:30×30cm
温度センサー設置位置	上方(表面から0.5cm),中央,下方(底面から0.5cm)
サンプリング間隔	1回/時間

図-3.28 茨城県の版厚 30cm のコンクリート版供試体の温度計測結果

写真-3.60 型枠の作製

写真-3.61 温度センサー取り付け金具

写真-3.62 コンクリートの打設状況

写真-3.63 コンクリート版供試体設置状況

写真-3.64 路盤整正状況

写真-3.65 コンクリート版供試体設置

写真-3.66 断熱材設置状況

写真-3.67 温度計測装置

写真-3.68 百葉箱に設置した温度計測装置

3.3 国道の現地調査

調査の目的

実際の国道において走行位置分布の確認及び鉄網の引っ張り抵抗性の確認を目的とする。

(2) 調査の内容

以下の4箇所で調査を行った。

きめ深さ測定

環境騒音測定 路面温度測定

路面明度測定

交通量調査

路盤層以下の支持力測定

1) 国道4号黒磯バイパス1)

調査は、平成19年3月7日、8日に栃木県那須塩原市市原町にある国道4号黒磯バイパスにおいて実施 した。調査区間の概要を表-3.23に示す。調査項目を表-3.24に示す。調査現場状況を写真-3.69に示す。

表-3.23 調査区間の概要

構成	層厚(cm)
コンクリート版	30
アスファルト中間層	4
粒度調整砕石層	15
*路床の設計CBRは12である。	

調査項目 測定位置 路面性状調査 調査箇所全区間およびAs舗装箇所 上り走行および追越車線 たわみ量測定 段差量測定 上り走行および追越車線 上り走行および追越車線 すべり抵抗性測定

表−3.24 調査項目

上り走行および追越車線 As区間内含む4箇所

閉鎖区間内1箇所

閉鎖区間内5箇所

近隣歩道橋より上下線

上り追越車線

写真-3.69 黒磯バイパスの現場状況

2) 国道4号平泉バイパス²⁾

調査は、平成20年10月22日、23日と11月26日に岩手県西磐井郡平泉町平泉にある国道4号平泉バイ パスにおいて実施した。調査区間の概要を図-3.29に示す。調査項目を表-3.25に示す。

図-3.29 調査区間の概要

調査項目	使用機材
たわみ量	FWD
段差	スケール
すべり抵抗	DFテスタ
きめ深さ	CT メータ
わだち掘れ、ひび割れ度、平たん性	路面性状測定車
ひび割れ (スケッチ)	
ひび割れ幅	スケール
騒音	騒音計
交通量	ビデオカメラ、センサス
路面温度	熱電対、データレコーダ

表-3.25 調査項目

3) 国道 113 号

調査は、平成22年11月11日に山形県西置賜郡飯豊町にある国道113号のKP108.1付近の上下線約700m (片側1車線)で実施した。調査区間の概要を表-3.26に示す。コンクリート番号を図-3.30に示す。調査項 目を表-3.27に示す。調査現場状況を写真-3.70に示す。

たわみ量の測定結果を図-3.31 に示す。横ひび割れのある No.5 でたわみ量が相対的に大きくなっており、 舗装の耐荷力が相対的に低下していると考えられる。たわみ量の荷重伝達率を図-3.32 に示す。おおよそ 80% 以上あり荷重伝達が有効であると判断できる。路面性状調査結果を表-3.28 に示す。わだち掘れ量、目地部 の段差量、動摩擦係数のいずれも維持管理目標値と比較して問題ない値となっている。環境騒音ではコンク リート舗装がアスファルト舗装よりも約 2dB 高いことを確認した。

表−3.26 調査区間の概要

	調査Co版	施工時期	調査時点の 供用年数	設計交通量 区分	舗装構成		
国道113号					セメントコンクリート版	25	cm
上り	66枚	1982年4月	28年	N ₆	アスファルト中間層	4	cm
下り	66枚	1982年4月	28年	N ₆	クラッシャラン	-	cm
					(上下線とも同一)		

図-3.30 コンクリート版の番号

表-3.27 調査項目

目 的	調査項目	測定数
構造評価	FWDによるたわみ量調査	82
	コンクリートの強度試験	-
路面性状調査	すべり抵抗	20
	きめ深さ	20
	わだち掘れ	20
	段差	132
	環境騒音	2
鉄網効果検討	鉄網の引っ張り試験	6

写真-3.70 国道 113 号の現場状況

図-3.31 たわみ量(国道113号)

図-3.32 荷重伝達率の評価区分の割合(国道113号)

	国道	113号
	上り	下り
動摩擦係数 μ (60km/h)	0.45	0.45
わだち掘れ量の平均値(mm)	5	5
段差の最大値(mm)	15	7.7
環境騒音(L _{Aeq})の平均値(dB)	76.5 75.4(アス	ファ ルト)
きめ深さ MPD (mm)	0.9	1.03

表−3.28 路面性状結果

4) 国道13号

調査は、平成22年11月12日に、山形県上山市金生にある国道13号のKP79.3の上下線走行車線約200m (片側2車線)において実施した。調査区間の概要を表-3.29に示す。コンクリート版の番号は図-3.33に示 す。調査項目を表-3.30に示す。調査現場状況を写真-3.71に示す。

たわみ量の測定結果を図-3.34 に示す。横ひび割れのある No.16 でたわみ量が相対的に大きく、舗装の耐 荷力が相対的に低下していることがわかる。下り線のたわみ量の荷重伝達率を図-3.35 に示す。おおよそ 80% 以上あり荷重伝達が有効であると判断できる。路面性状調査結果を表-3.31 に示す。わだち掘れ量、目地部 の段差量、動摩擦係数のいずれも維持管理目標値と比較して問題ない値となっている。環境騒音ではコンク リート舗装がアスファルト舗装よりも約 2dB 高いことを確認した。

表-3.29 調査区間の概要

		調査Co版	施工時期	調査時点の 供用年数	設計交通量 区分	舗装構成		
国	道13号					セメントコンクリート版	30	cm
上	.6	17枚	1986年10月	24年	N ₅	アスファルト中間層	4	cm
下	Ъ.	18枚	1998年3月	13年	N ₅	クラッシャラン	15	cm
						(上下線とも同一)		

図-3.33 コンクリート版の番号

表-3.30 調査項目

目 的	調査項目	測定数
構造評価	FWDによるたわみ量調査	70
	コンクリートの強度試験	6
路面性状調査	すべり抵抗	5
	きめ深さ	5
	わだち掘れ	5
	段差	35
	環境騒音	2
鉄網効果検討	鉄網の引っ張り試験	2
目地部ひび割れ原因調査	凍結融解	4
	アルカリ骨材反応	4

写真-3.71 国道 113 号の現場状況(左:上り線、右:下り線)

図-3.34 たわみ量(国道13号)

図-3.35 荷重伝達率の評価区分の割合(国道13号、下り線)

	国道	13号
	上り	下り
動摩擦係数 μ (60km/h)	0.4	0.41
わだち掘れ量の平均値(mm)	8	5
段差の最大値(mm)	0	0
	77.9	
環境廠自(L _{Aeq})の十均恒(dB)	75.9(アス	ファ ルト)
きめ深さ MPD (mm)	0.98	0.66

表-3.31 路面性状結果

3.4 路盤の強度試験

(1) 試験の目的

コンクリート舗装の路盤の設計曲線の信頼性を検証することを目的として、実大の路盤を構築した。 (2) 試験の内容

土木研究所舗装走行実験場内に、幅4m、長さ30mの路盤の試験ヤードを構築した。試験ヤードの平面図 と断面図をそれぞれ図・3.36、図・3.37 に示す。路盤の試験ヤードは12種類の試験工区を設けた。路盤材には、 偶数番号の試験工区は再生材(コンクリート塊100%)、奇数番号の試験工区は新材を用いた。使用材料に ついて室内試験を行い、各試験工区において図-3.38 に示す9箇所で、路床上面と路盤上面で平板載荷試験 及び小型 FWD 試験を実施した。施工状況について写真-3.72 から写真-3.81 に示す。

図-3.36 試験ヤードの平面図

図-3.38 計測箇所

(3) 計測結果

室内試験結果を表-3.32 に示す。路盤を構築し、図-3.38 に示した位置で、路盤厚の測定、平板載荷試験、 小型 FWD 試験を行った結果を、それぞれ表-3.33、図-3.38、図-3.39 に示す。

試験項目			路床材	M30	RM40	セメント安定 処理M30	セメント安定 処理RM40	C40	RC40
空田が試験	最大乾燥密度	g/cm ³	1.030	2.212	1.807	—	_	2.225	2.060
天回的武鞅	最適含水比	%	49.6	3.8	11.5	—	—	4.1	7.0
安定処理混合物の空因め試験	最大乾燥密度	g/cm ³	-	-	_	2.264	1.700	-	_
女 定她理准日初00天回60武殿	最適含水比	%	-	—	—	5.4	16.2	—	_
安定処理混合物の一軸圧縮試験	セメント添加量	%	—	—	-	4.0	6.5	-	-
	測点 5m 上層	%	3.1	—	-	-	—	-	-
	下層	%	1.2	—	-	—	—	_	
	測点15m 上層	%	0.8	-	-	—	—	-	
CBR 武海 (GLU/ニエー こよる)	下層	%	1.0	—	-	—	—	-	
	測点25m 上層	%	1.6	—	-	—	—	-	
	下層	%	1.0	—	-	—	—	-	-
	測点5m	%	5.5	—	—	-	—	—	—
CBR試験(乱さない土による)	測点15m	%	3.3	—	—	-	—	—	—
	測点25m	%	6.8	—	—	-	—	-	—
	突固回数 17	%	-	42.8	32.4	-	_	31.0	33.7
修正CBB試驗	突固回数 42	%	_	106.8	156.9	—	_	93.6	128.1
	突固回数 92	%	—	182.9	252.0	-	—	154.1	236.2
	修正CBR	%	-	92.5	109.2	-	—	54.7	104.6
塑性·液性限界試験	塑性指数		-	N•P	N•P	N•P	N•P	N•P	N•P
	53	%	-	_	100.0	-	100.0	100.0	100.0
	37.5	%	_	100.0	99.7	100.0	99.7	99.4	98.7
	31.5	%	—	100.0	—	100.0	—	-	-
紫白寺	19	%	—	93.7	78.6	93.7	78.6	74.9	69.2
<u> </u>	4.75	%	-	45.3	38.5	45.3	38.5	38.1	36.0
粒度試験	2.36	%	-	31.2	30.6	31.2	30.6	27.8	27.2
	0.425	%	-	14.2	10.1	14.2	10.1	-	_
	0.075	%	_	5.0	2.1	5.0	2.1	_	_
路床土のレジリエントモデュラス試験	σd=40kPa	MPa	48	_	_	_	_	_	_
228世のレジリエントエデュラス試験	<i>θ</i> =130kPa	MPa	_	_	_	-	_	306	156
「「「「」」のレンリエントモノエノス試験	<i>θ</i> =400kPa	MPa	—	317	328	819	666	—	_
簡易試験による変形係数試験		MPa	5	223	230	261	275	198	238

表-3.32 室内試験結果

ΣΣ	番号	上層 路盤厚(m)	路盤 総厚(m)	I	N	番号	路盤 総厚(m)		ТΣ	番号	路盤 総厚(m)		ΣΣ	番号	路盤 総厚(m)
	1	0.187	0.385			1	0.339			1	0.21			1	0.181
	2	0.186	0.387			2	0.319			2	0.208			2	0.198
	3	0.188	0.399			3	0.339			3	0.209			3	0.177
	4	0.195	0.396			4	0.364			4	0.212			4	0.186
2	5	0.205	0.422		,	5	0.359		7	5	0.206		10	5	0.196
3	6	0.2	0.399	4	2	6	0.315		/	6	0.21		10	6	0.194
	7	0.204	0.396			7	0.328			7	0.216			7	0.204
	8	0.214	0.397			8	0.371			8	0.211			8	0.187
	9	0.2	0.385			9	0.394			9	0.212			9	0.208
	平均	0.198	0.396			平均	0.348			平均	0.21			平均	0.192
	1	0.181	0.368			1	0.377			1	0.218			1	0.222
	2	0.184	0.381			2	0.362			2	0.212			2	0.203
4	3	0.194	0.376		5	3	0.368		Q	3	0.208			3	0.219
	4	0.193	0.388			4	0.334	1		4	0.199		11	4	0.201
	5	0.197	0.383			5	0.391			5	0.225			5	0.19
4	6	0.198	0.386	:	5	6	0.382		8	6	0.215		11	6	0.214
	7	0.202	0.385			7	0.36	1		7	0.22			7	0.209
	8	0.207	0.383			8	0.35			8	0.212			8	0.227
	9	0.197	0.376			9	0.354			9	0.206			9	0.193
	平均	0.195	0.381			平均	0.364			平均	0.213			平均	0.209
	1		0.331			1	0.368			1	0.204			1	0.235
	2		0.354			2	0.36			2	0.201			2	0.232
	3		0.331			3	0.369			3	0.194			3	0.231
	4		0.351			4	0.374			4	0.186			4	0.213
1	5		0.338	6	2	5	0.376		0	5	0.19		10	5	0.217
'	6		0.331		5	6	0.377		9	6	0.197		12	6	0.243
	7		0.325			7	0.356			7	0.206			7	0.238
	8		0.358			8	0.376			8	0.194			8	0.215
	9		0.403			9	0.38			9	0.204			9	0.188
	平均		0.347			平均	0.371			平均	0.197			平均	0.224

表-3.35 路盤厚の測定結果

6 工区平均 199 工区No.4 工区平均 42 工区平均 100 描述価率 46 描述価率 11 描述価本 45	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 工区平均 148 工区No.3 工区平均 52 工区No.1 工区平均 82 繊維偏差 26 繊維偏差 7 繊維偏差 20	6 工区平均 244 工区No. 4 工区No. 2 工区平均 136 線準偏差 55 機準偏差 21 機準偏差 61	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 工区中均 183 工区No.3 工区平均 72 工区No.1 工区平均 90 標準編巻 30 標準編巻 標準編巻 8 標準編巻 30
MPe/m) 正区No.10 エ区平均 <u>48</u> 繊維価素 R	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E図No.9 工区平均 40 繊維編巻 9 繊維編巻 26 繊維編巻 26	/m) <u> こ区No.10</u> 工区平均 61 <u> 工区No.8</u> 工区平均 244 <u> 工区N</u> 標準編巻 55	(a) (b) (b) (c) (c) <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td> こ区No. 9 工区平均 59 <u> 工区No. 7</u> 工区平均 183 <u> 工区N</u> 標準偏差 15 標準偏差 30</td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	 こ区No. 9 工区平均 59 <u> 工区No. 7</u> 工区平均 183 <u> 工区N</u> 標準偏差 15 標準偏差 30
◎平衡線着威廉(路床) K值一覧 (K ₃₀): 工区No.12 工区平均 43 □ □ □	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(a) (b) (c) (c) <td>工区No.11 工区平均 <u>36</u> 標準編差 7</td> <td>・ 〇HFWD(路床) K嶺一覧 (K_{P.FWD}:MPa. 正区No.12 工区平均 42 標準編巻 13</td> <td>(b) (c) (c)<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td><u>工区No.11</u> 工区平均 48 標準編巻 15</td></td>	工区No.11 工区平均 <u>36</u> 標準編差 7	・ 〇HFWD(路床) K嶺一覧 (K _{P.FWD} :MPa. 正区No.12 工区平均 42 標準編巻 13	(b) (c) (c) <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td><u>工区No.11</u> 工区平均 48 標準編巻 15</td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>工区No.11</u> 工区平均 48 標準編巻 15

図-3.39 路床上面の計測結果

板載荷試験 K値一覧 (K ₃₀ :MPa/m) <u>No. 12</u> 工区平均 207 標準備差 75 内平均 276	工区No.10 工区平均 133 標準偏差 14 內平均 137	<u> 工区No.</u> 8 工区平均 <u>95</u> 標準編巻 14 内平均 92	<u>工区No. 6</u> 工区平均 1 <u>38</u> 標準編差 10 内平均 142	<u>工区No.4</u> 工区平均 <u>168</u> 標準編差 23 内平均179	工区No.2 工区平均 <u>165</u> 標準編差 31 内平均 178
3 0 0 332 277 229 392 284 204 169	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 103 86 2 10	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ø 3 2 0 3 2 0 3 3 1
ⓐ ⑦ ⑥ ⑤ ⑤ ⑤ ⑤ ⑧ 3.19 281 194 145 8 220 189 266	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
, 11 工区平均 240 内平均 238 標準偏差 57	<u>工区No 9</u> 工区平均 <u>110</u> 内平均 114 標準偏差 20	・ <u> 工区No</u> 2 工区平均 94 内平均 92 標準編巻 10	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	・ 工区No 3 工区平均 133 内平均 140 構準偏差 27	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
K個一點 (Kas,MPa/m) 12 日冈中站 553 義筆庫鄉 197 內中站 564	工区No.10 工区平均 114 標準編巻 21 内平均 123	<u>工区No.8</u> 工区平均 72 標準編巻 7 内平均 70	<u>工区No.6</u> 工区平均 146 機準編巻 15 内平均 148	<u>工区No.</u> 4 工区平均 171 模準編差 27 内平均 184	工区No.2 工区平均 185 標準編巻 31 内平均 178
$\begin{array}{c c} & & & \\ \hline 1 & & & \\ \hline 2 & & & \\ \hline 1 & & & \\ 1 & & \\ \hline 1 & & & \\ 1$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Image: Constraint of the state of	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c} & & & & \\ \hline \\ \hline$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \textcircled{(3)}{90} & \textcircled{(3)}{61} & \textcircled{(3)}{92} & \textcircled{(3)}{92} \\ \hline & \textcircled{(3)}{905} & \textcircled{(3)}{845} & \overbrace{(3)}{825} & \overbrace{(3)}{755} \\ \hline \end{array} $	$ \begin{array}{c c} & & & \\ \hline \\ & & & \\ \hline \\ \hline$	$ \begin{array}{c c} \textcircled{(0,0)}{0} \\ \hline (14,0) \\ \hline (14,5) \\ \hline (14,5) \\ \hline (14,5) \\ \hline (14,5) \\ \hline (13,5) \\ \hline (12,5) \\ \hline (12,5) \\ \hline (12,6) $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
11 工区平均 440 内平均 420 標準偏差 95	<u>工区No.9</u> 工区平均 82 内平均 81 標準偏差 11	<u>工区No.</u> Z 工区平均 79 内平均 80 標準偏差 9	工区No.5 工区平均 132 内平均 138 標準偏差 17	<u>工区No.3</u> 工区平均 149 内平均 159 標準偏差 18	工区No.1 工区平均 139 内平均 146 樣準偏差 13
		奚−3.40 路盤]	:面の計測結果		

写真-3.72 現地盤の掘削状況

写真-3.73 路床転圧

写真-3.74 路床上面での平板載荷試験

写真-3.75 路床上面での小型 FWD 試験

写真-3.76 下層路盤の転圧状況

写真-3.77 セメント安定処理層の施工

写真-3.78 上層路盤の転圧状況

写真-3.79 路盤上面での平板載荷試験

写真-3.80 路盤上面での小型 FWD 試験

写真-3.81 構築した路盤

3.5 舗装管理支援システムデータの解析

(1) 目的

重交通路線におけるコンクリート舗装の信頼度を確認するため、舗装管理支援システムのデータを使用し 信頼度の算出を行った。

(2) 内容

舗装管理支援システムは、国土交通省が合理的に維持修繕を実施するために構築したもので、簡易版は平 成9年度から運用されている。支援システムのデータには、施工年月日や舗装構成、舗装工事、路面性状等 が掲載されており、データは3年に1度更新されている。舗装の舗設年から打ち換えに至るまでの年数を算 出して信頼度を算出した。

項目	内容
使用データ	舗装管理支援システム
解析年度	H11,H14,H17,H20年度データ
繊壮の破壊の空美	①舗装が打換えられた時
긂衣 の 吸 域 の た 我	②ひび割れ度が10(cm/m ²)以上となった時

表-3.34 信頼度の算出条件

(3) 結果

算出結果を表-3.37 に示す。データは 100m 程度の区間にわかれているため同じ箇所のものはデータを統合 している。例えば以下の場合は6個のデータとして扱っている。

都道府県	区間長(m)	舗設年	供用年数
鹿児島県	100	S41/03	34.0
鹿児島県	30	S42/03	37.0
鹿児島県	65	S42/03	37.0
岩手県	100	S42/04	41.7
岩手県	45	S42/04	41.7
岩手県	55	S42/04	41.7
熊本県	100	S45/03	31.9
熊本県	5	S45/03	31.9
熊本県	10	S45/03	31.9
熊本県	85	S45/03	31.9
熊本県	100	S45/03	31.9
北海道	84	S56/03	22.0
山形県	5	S61/10	12.2
山形県	75	S61/10	12.2
山形県	40	S61/10	12.2
山形県	100	S61/10	12.2
山形県	100	S61/10	12.2
山形県	100	S61/10	12.2
山形県	100	S61/10	12.2
山形県	100	S61/10	12.2
山形県	25	S61/10	12.2
山形県	30	S61/10	12.2
山形県	60	S61/10	12.2

表-3.35 N₅交通の供用年数の算出結果

参考文献

- 1)関東地方整備局、(独)土木研究所、舗装診断研究会:コンクリート舗装構造調査業務測定試験結果報告 書、平成19年3月
- 2)(独)土木研究所、舗装診断研究会:長期供用されたコンクリート舗装に関する調査業務結果報告書、平 成21年3月

4. コンクリート版の構造設計の検討

4.1 輪荷重応力式の検討

4.1.1 静的荷重の応力式の検討

コンクリート版の設計は、コンクリート版に作用する曲げ応力およびその繰り返しに よって、コンクリート版にひび割れが生じないように版厚を設定することが目的である。 この際考慮するひび割れは、縦自由縁部からおよび縦目地縁部からの横ひび割れである。 現行の設計法では、コンクリート版に作用する曲げ応力の内、輪荷重応力は舗装設計便 覧に示される次の式によって算定されている。

 $\sigma = (1 + 0.54\nu) \cdot C_L \cdot C_T \cdot 1000P \cdot (\log(100L) - 0.75\log(100r) - 0.18) / (h^2 \cdot 10^6)$ (4.1)

- ここで、 σe: 輪荷重応力(MPa)
 - *μ*:コンクリートのポアソン比
 - CL: 横ひび割れを対象としたときの係数。縦自由縁部 2.12、適当量のタイバーを用いた縦目地縁部 1.59(縦ひび割れを対象とするときは 1.0)
 - C_T:縦ひび割れを対象としたときの係数。ダウエルバーを用いた普通コンク リート舗装および連続鉄筋コンクリート舗装では 0.8、転圧コンクリー ト舗装では 0.9(横ひび割れを対象とするときは 1.0)
 - P:輪荷重(kN)
 - L: 剛比半径; L= {Eh³/12(1- μ^2)K₇₅}⁰²⁵
 - E:コンクリートの弾性係数(MPa)
 - K₇₅:路盤支持力係数(MPa/m)
 - a:タイヤ接地半径

 $a = 0.12 + P \swarrow 980 (m)$

h: コンクリート版厚(m)

この輪荷重応力式の原型は昭和 39 年のコンクリート舗装要綱から用いられており、そ の背景には岩間による一連の研究があった。元々この式は縦自由縁部もしくは縦目地部 に車輪が載った場合の応力を計算するもので、その後、単位系の変更および縦ひび割れ に対する検討を加えて現在の形となっているが、大きな変更は加えられていない。

現在の普通コンクリート舗装では、コンクリート版内に鉄網を設置することとなって いる。また交通量区分によるが、路盤上にアスファルト中間層が設けられる場合がある。 鉄網の効果は、コンクリート版にひび割れが生じた場合にひび割れが開かないようにす るもので、応力の算定にあたっては無視されている。一方アスファルト中間層は主に、 路盤の耐水性を向上させるために用いられており、やはり応力算定にあたっては考慮さ れていない。

本研究では、土木研究所に舗設された実物大コンクリート舗装上で静的載荷試験を実施し、応力算定式の検証、鉄網およびアスファルト中間層の輪荷重応力に対する影響の 検討を行った。 (1)試験舗装

図-4.1 試験舗装の概略

本研究で舗設した試験舗装の概略を図-4.1に示す。

走行試験場に舗設したコンクリート版は、図-4.1に示すように版幅 5m、版厚 25cm、 横目地間隔 10m であり、30cm の粒状路盤上に舗設されている。コンクリート版中央に は横ひび割れを誘発させた。また鉄網およびアスファルト中間層の影響を評価するため に、それぞれを設けた版と設けない版を舗設した。

コンクリート版には載荷に伴うひずみを測定するために、温度計測機能付きひずみ計 を版深さ方向に3本埋設した。ひずみ計設置箇所は、縦自由縁部(E1~E6)と目地および ひび割れ部(C1~C6)とした。また、目地およびひび割れの開きを測定するために各目地 部および各ひび割れ部には、亀裂変位計(K1~K6)をそれぞれの箇所で上下2段に配置し た。

載荷は土木研究所所有の荷重車によって行い、輪荷重を数種類換えて実施したが、最大の輪荷重は130.3kNであった。載荷位置は縦自由縁部、目地およびひび割れ部である。

(2)試験結果

(a)縦自由縁部ひずみに対する中間層の影響

現在のコンクリート版の応力解析では、As中間層 の影 響は考慮されていない。そこで本試験では中 間層の有無による縁部応力の変化を測定した。表 -4.1 に最大荷重時のコンクリート版下面のひずみ を示す。若干ではあるが、中間層がある場合にひず

表-4.1 縦自由縁ひずみ

計器	中間層	ひずみ
番号		(×10-6)
E1	無	34
E2	無	38
E4	有	41
E5	有	46

みが大きくなっている。これは版下面の摩 擦の相違が影響していると考えられる。

(b)荷重伝達に対する鉄網および中間層の 影響

目地部およびひび割れ部における荷重伝 達に対する鉄網および中間層の影響を調べ るため、C1~C6 ひずみ計の直上と隣接す る版に載荷を行い、ひずみを測定した。表 -2 に測定結果を示す。ここではひずみ計が 載荷側になった場合と非載荷側になった場 合のひずみの比を荷重伝達率としている。 ひび割れ部では、その開きによって伝達率 が異なる傾向が見られた。しかし鉄網およ び中間層の影響は、明確には見られなかっ た。

(c)自由縁部応力に対する載荷位置の影響

コンクリート版の版厚設計において示方 書に示される応力式を用いる場合、応力計 算の対象位置は縦自由縁部となる。そして 車輪が自由縁から離れた位置を走行した場 合の自由縁応力は、走行位置に応じた低減 係数を用いて求めている。本試験ではこの 係数を評価することを目的に、E1、E2、E4、 E5 ひずみ計の位置において、自由縁から内 側に載荷位置

を移動させた場合の自由縁ひずみを測定した。

図-4.2 に自由縁に載荷した場合のひず

表-4.2 何重伝通	至平	6
-------------------	----	---

図-4.2 自由縁応力に対する載荷位置の影響

表-4.3 載荷位置による応力低減係数

自由縁からの	距離(cm)	15	45	75	105
	中間層無し	1.00	0.77	0.48	0.30
ひずみ低減率	中間層有り	1.00	0.76	0.50	0.35
	設計便覧	1.00	0.70	0.50	0.35

みを100とした割合として載荷位置の影響を示す。また、図-4.2に示される近似曲線か ら得られた応力低減係数をまとめると、表-4.3のようになる。これによると自由縁ひず みに対する載荷位置の影響は、中間層の有無によって若干影響されることが判った。中 間層がある場合には、載荷位置が自由縁から離れる程、中間層がない場合に比較して自 由縁応力が低減されないことが示された。

また、本試験で得られた低減率を舗装設計便覧に示される低減率と比較すると、設計 便覧に示される応力低減係数は、特に載荷位置が自由縁に近い場合に、低減率を大きく 見積もっている可能性があることが判った。

4.1.2 動的荷重の応力式の検討

車両荷重は本来動的に作用する。このような動的な荷重作用がコンクリート舗装の挙動 に及ぼす影響について実測ならびに解析によって検討した。

(1) 走行試験

本研究で建設した走行試験路の概要を図-4.3 に示す。幅 5m、長さ 10m、厚さ 250mm のコンクリート版を 350mm の粒状路盤あるいは 40mm のアスファルト中間層の上に施工 した。コンクリート版中間にひび割れを人工的に誘発している。鉄網の効果を見るために、 中間層の有無のそれぞれの区間に鉄網のある区間とない区間を設けた。荷重車を時速 40km で走行させ、図-4.3 の C1 から C6 に示す位置の上中下にひずみゲージを埋設し、横 目地および横ひび割れ縁部でのひずみを 1000Hz で動的に計測した。

図-4.3 走行試験路の構造とひずみ測定位置

C1~C6のひび割れおよび目地の特徴を表-4.4にまとめた。この表より、C1とC2および C6とC5を比較すれば、目地とひび割れ部の荷重伝達の差がわかる。C1とC3および C4とC6を比較すれば鉄網の有無の影響がわかる。C1とC6、C2とC5およびC3とC4を 比較すれば中間層の有無の影響がわかることになる。

計測点	目地/ひび割	鉄網	中間層	伝達	鉄網	中間層	
	れ						
C1	ひび割れ	無し	無し	0	0	0	
C2	目地		無し	0		\bigtriangleup	
C3	ひび割れ	有り	無し		0	\diamond	
C4	ひび割れ	有り	有り		\bigtriangleup	\diamond	
C5	目地		有り	\bigtriangleup		\bigtriangleup	
C6	ひび割れ	無し	有り	\bigtriangleup	\bigtriangleup	0	

表-4.4 ひずみ計測点の特徴

このような走行試験を、表-4.5 に示すような載荷試験後に実施し、供用によって動的 な影響が変化するかについても検討した。

測定 ID	試験実施日	累積走行輪数
1	2008/12/18	40万輪
2	2010/1/29	90万輪
3	2011/2/22	120 万輪

表-4.5 動的ひずみ測定実施日

(2) 計測結果

(a) 測定におけるばらつき

1回の走行で C1 から C6 の動的なひずみを計測し、それを原則的に 15 回実施した。走行位置や速度は厳密に同じでないため、計測ごとにばらつく恐れがある。そこでそれらのばらつきについて検討した。

図-4.4 は、第1回目の C4 における測定結果で、コンクリート版上下面のひずみ波形を 表している。第1回目の測定では 15回走行を行ったが、それぞれのひずみ波形はほぼ同 じであった。図にはそのうちのひずみ波形の最小(走行 14)、中央(走行 3)および最小(走行 12)の波形を重ねてある。波形の位相はほぼ同一であることからそれぞれの走行時におけ る速度はほぼ同じであることがわかる。また、コンクリート版の上下面のひずみ波形はほ ぼ同一であるが、値は上面の方がやや大きい。また、後前軸のひずみの方が後後軸のより も大きくなっている。荷重が作用していない時間でもわずかなひずみの振動(ノイズ)がみ られるがこれは±5µ程度であった。本測定にはこの程度のノイズ(誤差)が含まれているこ とを念頭に置く必要がある。

図-4.4 第1回目測定のC4におけるひずみ波形

(b) 測定位置ごとの比較

図-4.5 から図-4.7 に、それぞれ第1回測定から第3回測定までのひずみ波形を示す。3 回とも計測に大きな問題がなく、コンクリート版上下面でのひずみも連動しており、基本 的なひずみ波形の形状に変化はないことが確認された。全体として、目地部のひずみは、 ひび割れ部のひずみに比べて小さい傾向がある。

図-4.5 第1回目測定

図-4.6 第2回目測定

図-4.7 第3回目測定

(c) 経年的な変化

図-4.5 から図-4.7 において、コンクリート版下面の引張ひずみのピーク値をまとめた ものが、図-4.8 である。後前軸と後後軸のピーク値を平均したものを示している。中間層 が無い区間では、ひずみはひび割れ部より目地部の方が小さい。鉄網ありのひび割れ部以 外は、3回目の測定時のひずみが大きくなっている。中間層の有る区間でも目地部のひず みが小さい。ひずみの大きさは測定回数が進むほど小さくなり、ひび割れ部でも目地部で もほぼ同じ値となっている。3回目の測定時では、目地部のひずみは中間層の有りなしで 同じ値であるが、ひび割れ部では中間層の無い場合の方が大きい。鉄網の有無によるひび 割れ部のひずみについては一定の傾向はみられない。

図-4.8 コンクリート版下面の引張ひずみのピーク値

以上より、経年的な動的ひずみ測定結果をまとめると、以下のようになる。

- ひび割れ部に比べ目地部の動的なひずみは小さい。
- 荷重履歴を受けると中間層の効果があらわれて、動的ひずみは小さくなる。
- ひび割れ部の鉄網による動的ひずみへの効果は見られない。

(3) FEM 解析

(a) 解析方法

図-4.9 に解析に用いた 3DFEM モデルを示す。コンクリート版の中央を走行すると仮定 し、中央から半分のみを要素分割した。用いた材料定数は、それぞれの材料についての一 般的な値を用いた。また、横目地では 400mm 間隔で直径 28mm のダウエルバーを用いて いる。横目地および横ひび割れ部でのコンクリート断面の強いかみ合わせがある場合とな い場合の 2 ケースを考えた。コンクリート版と路盤の境界面は滑とし、そり上がりによる はがれを考慮した。荷重は走行車両の半分を時速 40km で x 軸方向に移動させた。タイム ステップ 0.01 秒で単純なオイラー陰解法を用いて動的解析を行った。

図-4.9 解析に用いた 3FEM モデル

(b) 解析結果

図-4.10 および図-4.11 は、それぞれの測定位置(C1~C6)までのひずみの経時変化を示し ている。荷重車が試験舗装区間を走行したときの一連の計測値を時系列で示しているの で、C1 から C3 および C4 から C6 のひずみ波形が、荷重車の走行による時間遅れを伴っ て現れている。実測値はドットで、計算値は実線で示されている。C4 の表面の実測ひず みは他に比べてやや大きな値を示す。引張側と圧縮側はほとんど値が同じで正負が逆にな っており、完全な曲げ変形が生じていることがわかる。解析においては、横ひび割れ部の かみ合わせがある場合には、横ひび割れ部である C1 と C3 や C4 と C6 に比べ、横目地部 である C2 と C5 のひずみは大きくなっている。かみ合わせをなくすると、逆に小さくなる。 実測値は、かみ合わせが無い場合の計算値に一致する。このことから、横ひび割れ部では 荷重伝達機能が低く、横目地部は高いといえる。C1 と C3、C4 と C6 の間の差はほとんど なく、鉄網の有無による荷重伝達機能に大きな差はないといえる。同様に、図の(a)と(b) を比べてもピーク値に大きな差はなく、アスファルト中間層の有無の影響は小さい。

(c) まとめ

走行荷重によるコンクリート舗装における横ひび割れ部や横目地の動的な挙動が、走行 試験ならびに 3DFEM 解析によって明らかになった。鉄網を入れてもひび割れ部における 荷重伝達は確保されないこと、また中間層の影響は少ないことが判明した。また、これらの挙動を 3DFEM で正確にシュミレーションできることが確認された。

図-4.10 コンクリート版のひずみ経時変化(FEM でかみ合わせ有り)

図-4.11 コンクリート版のひずみ経時変化(FEM でかみ合わせ無し)

参考文献

1) 西澤辰男、他:交通荷重に対する薄層ホワイトトッピング構造の動的挙動、土木学会 論文集 No.725、2003.

4.2 走行位置の検討

コンクリート舗装版の設計においては、縦自由縁部からの横ひび割れを対象に設計を 行うことが一般的である。コンクリート版に作用する応力としては輪荷重応力を考慮す るが、この場合輪荷重がコンクリート版のどの位置に作用するのかが問題となる。

輪荷重によりコンクリート版に発生する応力は、輪荷重が自由縁部に載荷された場合 が最も大きくなる。しかし実際の舗装では、コンクリート版の自由縁部をタイヤが走行 することはほとんどなく、自由縁部からかなり内側を走行することが多い。自由縁部に 発生する輪荷重応力は、縁部からの輪荷重の作用位置によって異なる。したがってコン クリート版に発生する応力を推定するためには、タイヤの走行位置分布が重要となる。 また疲労ひび割れの検討を行うためには、走行位置毎の通過頻度が必要となる。現行の 設計法では、表-4.7に示すような走行頻度が用いられている。

本研究では、実道での車輪走行位置を測定し、現行で用いられている頻度の評価を試みた。

(1)調査箇所

調査は次の2箇所で行った。

(a) 国道 4 号 平泉バイパス

片側1車線のバイパスであり、下り車線において測定した。

(b) 国道 4 号 黒磯バイパス

片側2車線のバイパスであり、上下線合わせて計4車線で測定した。

(2) 測定方法

車輪通過位置の測定はビデオ撮影により行った。ビデオ撮影は、黒磯バイパスにおい ては歩道橋上より、また平泉バイパスにおいては路肩より行い、測定対象車線を通行す る車両の後輪を撮影した。

	車線数	¢	走行頻度					
		古伯后	2	2	2	4		
	路肩	単瘀幅 m 走行位置 cm	3.25	3.75	4.50	3.00以上		
自	舗装した十分な	縦縁から 15	0.10	0.05	0.05	0.05		
	幅の路肩がある	// 45	0.15	0.10	0.10	0.10		
由	場合	<i>II</i> 75	0.30	0.25	0.15	0.25		
縁		// 105	0.20	0.25	0.25	0.20		
	路肩幅が 0.5m	// 15	0.05	0.03	0.02	0.02		
部	程度で未処理の	// 45	0.10	0.05	0.05	0.05		
	場合	<i>II</i> 75	0.15	0.10	0.10	0.10		
		// 105	0.30	0.25	0.15	0.25		
		" 15	0.65	0.55	0.45	0.35		
1	縦目地惑	// 45	0.30	0.35	0.25	0.25		
	чн шх н жи	<i>II</i> 75	0.20	0.20	0.20	0.15		
		// 105	0.15	0.20	0.15	0.10		

表-4.7 車輪の走行位置と走行頻度の関係

(3) 測定結果

(a) 平泉バイパス

図-4.12 車両走行位置

宇都宮方面 走行車線

宇都宮方面 追越車線

福島方面 走行車線

図-4.13 車両走行位置

4.3 温度応力式の検討

4.3.1 コンクリート版の温度差の推計方法の検討

コンクリート舗装版の設計では、版に作用する応力として輪荷重応力と並んで、温度 応力を考慮している。ここでいう温度応力とは、コンクリート版上限面の温度差によっ て生じる曲げ応力のことであり、次式によって算出される。

$$\sigma t = 0.35 \cdot Cw \cdot \alpha \cdot E \cdot \Theta \tag{4.2}$$

ここで、 σt:温度応力(MPa)

- Cw:そり拘束係数。横ひび割れを対象とする場合は表-4.8 に示す値を用いる。 縦ひび割れを対象とする場合は、温度差が正の場合には 0.85、負の場合 には 0.40 を用いる。
 - α :コンクリートの温度膨張係数(/℃)
 - Θ:コンクリート版上下面の温度差(版上面温度-版下面温度、℃)

収縮目均	也間隔(m)	5.0	6.0	7.5	8.0	10.0	12.5	15.0
拘束係数	温度差が正の場合	0.85	0.91	0.95	0.95	0.96	0.97	0.98
C_{w}	温度差が負の場合	0.40	0.55	0.73	0.78	0.90	0.93	0.95

表-4.8 そり拘束係数

コンクリート版の設計では、上記で算出された温度応力と輪荷重応力の合成応力がコ ンクリート版に作用するものと考え、合成応力の大きさとその作用回数から疲労度を算 出する。従ってコンクリート版に発生する温度差とその頻度は、コンクリート版の設計 で重要な要因となる。

現行の設計法では、温度差とその発生頻度は実測によることが望ましいが表-2 に示される温度差と発生頻度を用いても良いこととなっている。この表は岩間による研究結果が反映されたものであり、昭和 39 年版のコンクリート舗装要綱に示されたものである。

合成応力に占める温度応力の大きさは最大で 50% 程度となることから、設計結果に与 える影響が大きい。そこで本研究では、全国 9 箇所でそれぞれ 7 種類の版厚の供試体に よりコンクリート版上下面の温度差の測定を行い、 表-4.9 に示される値の検討を行っ た。

表-4.9 コンクリート版の温度差と発生頻度

区分		温度	差の小	さいと	ころ			温度	差の大	きいと	ころ		
温度差℃ ^{版厚cm}	15	20	23	25	28	- 30	15	20	23	25	28	30	
19(18-19.9)	0	0	0	0	0	0	0	0	0.002	0.005	0.010	0.012	
17 (16-17.9)	0	0	0	0	0	0	0	0.005	0.015	0.018	0.018	0.020	
15(14-15.9)	0	0	0.001	0.002	0.004	0.007	0.002	0.020	0.028	0.032	0.037	0.038	
13(12-13.9)	0.004	0.007	0.012	0.016	0.021	0.025	0.015	0.040	0.040	0.040	0.040	0.040	
11 (10-11.9)	0.020	0.028	0.032	0.037	0.045	0.053	0.040	0.060	0.050	0.050	0.045	0.045	
9 (8-9.9)	0.050	0.060	0.075	0.085	0.080	0.080	0.070	0.070	0.075	0.080	0.080	0.080	正対
7 (6-7.9)	0.100	0.110	0.110	0.110	0.110	0.115	0.100	0.100	0.100	0.100	0.100	0.105	のす
5(4-5.9)	0.135	0.140	0.150	0.155	0.150	0.140	0.120	0.120	0.125	0.125	0.125	0.125	時る
3 (2-3.9)	0.190	0.195	0.200	0.205	0.210	0.210	0.200	0.195	0.190	0.190	0.190	0.185	間割
1 (0-1.9)	0.500	0.460	0.420	0.390	0.380	0.370	0.450	0.390	0.375	0.360	0.355	0.350	に合
-1(0.1-2.0)	0.650	0.615	0.610	0.600	0.530	0.480	0.500	0.450	0.420	0.410	0.400	0.390	負対
-3(2.1-4.0)	0.350	0.360	0.345	0.335	0.360	0.380	0.340	0.330	0.330	0.320	0.320	0.320	のす
-5(4.1-6.0)	0	0.025	0.044	0.063	0.100	0.120	0.150	0.200	0.220	0.220	0.225	0.230	時る
-7 (0. 6-8. 0)	0	0	0.001	0.002	0.010	0.020	0	0.020	0.030	0.048	0.052	0.055	間割
-9 (8. 1-10. 0)	0	0	0	0	0	0	0	0	0	0.002	0.003	0.005	に合

〔注〕 温度差の小さいところとは、気温の日振幅(全振幅)が14℃をほとんど越えない 地方をいう。

(1) 温度測定

供試体を設置した箇所および版厚は以下の通りである。

測定箇所:北海道苫小牧市(以下、北海道という) 宮城県多賀城市(以下、東北という) 茨城県つくば市(以下、つくばという) 石川県河北郡(以下、石川という) 愛知県名古屋市(以下、中部という) 広島県広島市(以下、中国という) 福岡県久留米市(以下、福岡という) 鹿児島県鹿児島市(以下、鹿児島という) 沖縄県豊見城市(以下、沖縄という)

版厚: 15、20、23、25、28、30、45cm

コンクリート版内の温度は、供試体内の深さ方向に3箇所埋設された熱電対により行い、1時間毎に行いデータロガーに記録した。測定は2010年2月27日~2011年2月26日までの1年間にわたって行った。

(2) 測定結果

測定された版内温度から版上面および下面の温度を推定し、この差より版上下面温度 差を得た。得られた温度差を表-4.9と同様の階級区分に分類し、1年間の発生頻度とし てまとめた。以下に版厚毎の版上下面温度差発生頻度を示す。 (i)15cm

表-4.10 コンクリート版の温度差と発生頻度(15cm)

				便覧							
	北海道	東北	つくば	石川	中部	中国	福岡	鹿児島	沖縄	温度差小	温度差大
20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
15	0.000	0.000	0.000	0.012	0.002	0.000	0.000	0.001	0.000	0.000	0.005
13	0.009	0.023	0.016	0.061	0.045	0.031	0.010	0.039	0.021	0.005	0.015
11	0.036	0.069	0.061	0.062	0.075	0.063	0.054	0.082	0.070	0.020	0.040
9	0.068	0.086	0.103	0.083	0.101	0.116	0.097	0.112	0.110	0.050	0.070
7	0.110	0.102	0.131	0.100	0.146	0.148	0.131	0.120	0.137	0.100	0.100
5	0.122	0.139	0.190	0.108	0.162	0.172	0.185	0.141	0.171	0.135	0.120
3	0.218	0.217	0.196	0.224	0.194	0.207	0.206	0.194	0.213	0.190	0.200
1	0.436	0.365	0.303	0.351	0.275	0.263	0.316	0.311	0.277	0.500	0.450
-1	0.536	0.361	0.462	0.616	0.413	0.299	0.281	0.413	0.439	0.650	0.510
-3	0.359	0.448	0.515	0.364	0.539	0.538	0.509	0.504	0.526	0.350	0.340
-5	0.103	0.177	0.022	0.020	0.048	0.163	0.208	0.082	0.035	0.000	0.150
-7	0.002	0.013	0.001	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000
-9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

(ii) 20cm

表-4.11 コンクリート版の温度差と発生頻度(20cm)

	地域									便覧		
	北海道	東北	つくば	石川	中部	中国	福岡	鹿児島	沖縄	温度差小	温度差大	
20		0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	
19		0.000	0.000		0.000	0.000	0.000	0.002	0.000	0.000	0.000	
17		0.001	0.000		0.000	0.008	0.001	0.018	0.000	0.000	0.005	
15		0.025	0.009		0.025	0.039	0.021	0.052	0.020	0.000	0.020	
13		0.050	0.036		0.055	0.055	0.057	0.067	0.058	0.007	0.040	
11		0.068	0.078		0.083	0.091	0.081	0.085	0.084	0.028	0.060	
9		0.085	0.101		0.102	0.103	0.113	0.093	0.094	0.060	0.070	
7		0.112	0.130		0.142	0.132	0.133	0.107	0.135	0.110	0.100	
5	解析不能	0.163	0.180		0.158	0.148	0.152	0.127	0.147	0.140	0.120	
3		0.197	0.195		0.173	0.176	0.166	0.177	0.181	0.195	0.195	
1		0.299	0.270		0.263	0.248	0.276	0.273	0.281	0.460	0.390	
-1		0.388	0.245		0.382	0.280	0.264	0.336	0.561	0.615	0.450	
-3		0.507	0.450		0.484	0.437	0.431	0.437	0.411	0.360	0.330	
-5		0.105	0.281		0.133	0.266	0.268	0.215	0.028	0.025	0.200	
-7		0.001	0.023		0.001	0.017	0.037	0.012	0.000	0.000	0.020	
-9		0.000	0.000		0.000	0.000	0.001	0.001	0.000	0.000	0.000	
-11		0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	

(iii) 23cm

|--|

					地域					便	覧
	北海道	東北	つくば	石川	中部	日国	福岡	鹿児島	沖縄	温度差小	温度差大
20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
19	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.002	0.002	0.000	0.002
17	0.001	0.000	0.001	0.022	0.012	0.007	0.013	0.029	0.018	0.000	0.015
15	0.007	0.010	0.021	0.033	0.046	0.038	0.041	0.057	0.059	0.001	0.028
13	0.030	0.031	0.043	0.036	0.063	0.060	0.059	0.067	0.070	0.012	0.040
11	0.060	0.057	0.085	0.043	0.088	0.090	0.085	0.087	0.084	0.032	0.050
9	0.081	0.074	0.092	0.119	0.103	0.098	0.103	0.088	0.107	0.075	0.075
7	0.109	0.121	0.132	0.131	0.136	0.131	0.123	0.107	0.122	0.110	0.100
5	0.138	0.161	0.173	0.111	0.150	0.149	0.144	0.124	0.136	0.150	0.125
3	0.206	0.206	0.193	0.226	0.164	0.171	0.160	0.164	0.164	0.200	0.190
1	0.368	0.340	0.261	0.276	0.239	0.255	0.271	0.274	0.238	0.420	0.375
-1	0.447	0.514	0.261	0.500	0.313	0.269	0.269	0.322	0.377	0.610	0.420
-3	0.344	0.420	0.450	0.389	0.472	0.393	0.407	0.429	0.499	0.345	0.330
-5	0.170	0.066	0.259	0.075	0.205	0.289	0.263	0.228	0.119	0.044	0.230
-7	0.037	0.000	0.028	0.019	0.009	0.050	0.061	0.021	0.004	0.001	0.030
-9	0.001	0.000	0.002	0.015	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-11	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000

(iv)25cm

表-4.13 コンクリート版の温度差と発生頻度(25cm)

			便覧								
	北海道	東北	つくば	石川	中部	中国	福岡	鹿児島	沖縄	温度差小	温度差大
20	0.000	0.000	0.000	0.005	0.000	0.000	0.003	0.000	0.000	0.000	0.000
19	0.000	0.000	0.000	0.029	0.000	0.000	0.016	0.001	0.000	0.000	0.005
17	0.001	0.010	0.000	0.051	0.014	0.005	0.033	0.021	0.005	0.000	0.018
15	0.013	0.030	0.016	0.046	0.042	0.033	0.050	0.048	0.032	0.002	0.032
13	0.040	0.044	0.038	0.053	0.054	0.056	0.063	0.065	0.071	0.016	0.040
11	0.065	0.060	0.082	0.061	0.085	0.089	0.082	0.073	0.079	0.037	0.050
9	0.084	0.089	0.101	0.071	0.093	0.098	0.098	0.101	0.098	0.085	0.080
7	0.103	0.124	0.127	0.093	0.135	0.125	0.116	0.106	0.118	0.110	0.100
5	0.129	0.160	0.164	0.128	0.147	0.149	0.127	0.128	0.136	0.155	0.125
3	0.208	0.198	0.194	0.168	0.177	0.179	0.155	0.167	0.186	0.205	0.190
1	0.357	0.286	0.279	0.294	0.251	0.265	0.255	0.291	0.273	0.390	0.360
-1	0.462	0.330	0.344	0.518	0.321	0.276	0.270	0.333	0.470	0.600	0.410
-3	0.334	0.448	0.444	0.364	0.446	0.405	0.386	0.420	0.458	0.335	0.320
-5	0.162	0.214	0.206	0.110	0.217	0.276	0.257	0.220	0.071	0.063	0.220
-7	0.039	0.007	0.005	0.008	0.015	0.044	0.086	0.028	0.000	0.002	0.048
-9	0.002	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.002
-11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

(v)28cm

表-4.14 コンクリート版の温度差と発生頻度(28cm)

					地域					便覧	
	北海道	東北	つくば	石川	中部	中国	福岡	鹿児島	沖縄	温度差小	温度差大
20	0.000	0.000	0.002		0.000	0.000	0.001	0.002	0.000	0.000	0.000
19	0.001	0.010	0.017		0.001	0.001	0.012	0.019	0.000	0.000	0.010
17	0.005	0.029	0.034		0.023	0.017	0.028	0.038	0.007	0.000	0.018
15	0.025	0.043	0.055	i	0.044	0.042	0.056	0.063	0.042	0.004	0.037
13	0.045	0.056	0.058		0.052	0.066	0.066	0.062	0.073	0.021	0.040
11	0.067	0.064	0.075		0.082	0.085	0.083	0.084	0.080	0.045	0.045
9	0.083	0.086	0.087	,	0.085	0.104	0.101	0.083	0.110	0.080	0.080
7	0.106	0.114	0.139	U	0.131	0.128	0.116	0.117	0.126	0.110	0.100
5	0.122	0.154	0.144	解析不能	0.155	0.145	0.135	0.121	0.137	0.150	0.125
3	0.201	0.177	0.157	'	0.171	0.166	0.160	0.149	0.177	0.210	0.190
1	0.343	0.268	0.232		0.256	0.246	0.243	0.263	0.249	0.380	0.355
-1	0.410	0.317	0.253		0.267	0.239	0.214	0.270	0.355	0.530	0.400
-3	0.345	0.459	0.411		0.420	0.340	0.327	0.350	0.476	0.380	0.320
-5	0.174	0.211	0.268	į	0.249	0.300	0.289	0.292	0.156	0.100	0.225
-7	0.066	0.012	0.068	į	0.064	0.117	0.149	0.088	0.013	0.010	0.052
-9	0.005	0.000	0.000	l	0.001	0.003	0.021	0.000	0.000	0.000	0.003
-11	0.000	0.000	0.000	,	0.000	0.000	0.000	0.000	0.000	0.000	0.000

(vi) 30cm

表-4.15 コンクリート版の温度差と発生頻度 (30cm)

				便覧							
	北海道	東北	つくば	石川	中部	中国	福岡	鹿児島	沖縄	温度差小	温度差大
20	0.000	0.000	0.001	0.009	0.000	0.000	0.000	0.001	0.000	0.000	0.000
19	0.002	0.000	0.015	0.035	0.008	0.007	0.012	0.018	0.000	0.000	0.012
17	0.011	0.008	0.030	0.039	0.033	0.031	0.026	0.039	0.007	0.000	0.020
15	0.031	0.030	0.056	0.046	0.048	0.043	0.051	0.058	0.039	0.007	0.038
13	0.049	0.049	0.065	0.047	0.068	0.072	0.068	0.062	0.079	0.025	0.040
11	0.067	0.074	0.075	0.060	0.080	0.085	0.081	0.085	0.080	0.053	0.045
9	0.076	0.085	0.094	0.067	0.096	0.099	0.096	0.083	0.104	0.080	0.080
7	0.104	0.116	0.136	0.086	0.130	0.122	0.115	0.105	0.123	0.115	0.105
5	0.124	0.160	0.143	0.129	0.145	0.145	0.134	0.125	0.132	0.140	0.125
3	0.197	0.191	0.152	0.177	0.154	0.155	0.160	0.161	0.188	0.210	0.185
1	0.338	0.287	0.233	0.305	0.238	0.242	0.257	0.264	0.247	0.370	0.350
-1	0.392	0.329	0.222	0.468	0.255	0.231	0.243	0.296	0.356	0.480	0.390
-3	0.338	0.439	0.404	0.401	0.407	0.328	0.354	0.371	0.478	0.380	0.320
-5	0.179	0.216	0.286	0.122	0.258	0.319	0.278	0.267	0.155	0.120	0.120
-7	0.078	0.016	0.086	0.010	0.077	0.118	0.115	0.066	0.011	0.020	0.055
-9	0.014	0.000	0.002	0.000	0.002	0.004	0.009	0.000	0.000	0.000	0.005
-11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

(vii)45cm

表-4.15 コンクリート版の温度差と発生頻度(45cm)

					地域					
	北海道	東北	つくば	石川	中部	中国	福岡	鹿児島	沖縄	
20	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	
19	0.000	0.000	0.000	0.014	0.000	0.002	0.001	0.000	0.000	
17	0.002	0.004	0.003	0.044	0.004	0.009	0.008	0.004	0.001	
15	0.006	0.028	0.025	0.046	0.031	0.028	0.031	0.027	0.022	
13	0.026	0.047	0.046	0.047	0.048	0.051	0.049	0.053	0.062	
11	0.058	0.069	0.077	0.059	0.080	0.075	0.081	0.074	0.089	
9	0.083	0.082	0.096	0.069	0.090	0.100	0.088	0.083	0.096	
7	0.099	0.110	0.137	0.095	0.125	0.121	0.120	0.124	0.123	
5	0.143	0.152	0.154	0.129	0.156	0.151	0.148	0.139	0.141	
3	0.220	0.203	0.202	0.173	0.200	0.193	0.187	0.189	0.185	
1	0.362	0.305	0.262	0.325	0.267	0.270	0.287	0.307	0.281	
-1	0.397	0.292	0.242	0.406	0.303	0.234	0.258	0.308	0.335	
-3	0.339	0.408	0.379	0.428	0.393	0.313	0.333	0.329	0.445	
-5	0.166	0.229	0.261	0.142	0.215	0.260	0.246	0.252	0.192	
-7	0.075	0.067	0.107	0.025	0.082	0.149	0.126	0.097	0.029	
-9	0.022	0.004	0.011	0.000	0.006	0.042	0.034	0.014	0.000	
-11	0.001	0.000	0.000	0.000	0.000	0.002	0.003	0.000	0.000	

(i)15cm

図-4.14 コンクリート上下面の温度差とその発生頻度(15cm)

(ii)20cm

図-4.15 コンクリート上下面の温度差とその発生頻度(20cm)

(iii)23cm

(iv)25cm

図-4.17 コンクリート上下面の温度差とその発生頻度(25cm)

(v)28cm

図-4.18 コンクリート上下面の温度差とその発生頻度(28cm)

(vi)30cm

図-4.19 コンクリート上下面の温度差とその発生頻度(30cm)

(vi)45cm

図-4.19 コンクリート上下面の温度差とその発生頻度(45cm)

4.3.2 温度応力式の検証及び見直し

(1) はじめに

コンクリート舗装の破壊は、荷重や温度によってコンクリート版に繰返し作用する曲げ 応力による疲労によってもたらされる。コンクリート版上下の温度差によって発生する温 度応力は Westergaard の式や Bradbury の式で算出できる。わが国では Westergaard の式を 修正した岩間の方法を用いて算出している。しかし、岩間の方法では空港コンクリート舗 装のような厚いコンクリート版の場合、深さ方向の温度分布が非線形のために生ずる応力 を考慮できないことから、適用できない恐れがある。以上の背景から、厚いコンクリート 版にも適用可能な温度応力解析を目的とした研究を実施した。

(2)温度応力の考え方

温度応力には端部拘束応力とそり拘束応力および内部応力がある。端部拘束応力はコン クリート版が温度変化に伴って水平方向に伸縮するのを、路盤や端部の拘束によって妨げ られることによって生ずる応力である。そり拘束応力はコンクリート版内の深さ方向の温 度勾配によってそりを生じようとするのを路盤や自重によって拘束されるために生ずる 応力である。内部応力は深さ方向の温度分布が直線でないことによる応力である。通常、 端部拘束応力は目地を設けることによってかなり軽減することが可能であるため、本研究 では、そり拘束応力と内部応力による温度応力を扱う。

(3) 温度応力計算法

岩間は、実物大の舗装による観測および実験に基づいて、Westergaardのそり応力から、 内部応力の影響として 30%減じた次式のような温度応力式を提案した。

版中央部
$$\sigma = 0.7' \frac{C\alpha E\theta}{1-\nu}$$
(4.3)

 $\sigma = 0.35C_{w}\alpha E\theta'$

版縁部

$\sigma = 0.7' \frac{C\alpha E\theta}{2}$	(4,3)
0 = 0.7 $1 - v$	(1.5)

(4.4)

ここに、 σ :温度応力 (N/mm²)、 α :コンクリートの熱膨張率 (1/ \mathbb{C})、E:コンクリート の弾性係数(N/mm²)、 θ : コンクリート版上下面の温度差(\mathbb{C})、 ν : コンクリートのポ

アソン比、**C**w:そり拘束係数で、コンクリート版の長さによって値が定まる。

3DFEM(三次元有限要素法)に基づいたコンクリート舗装の構造的特質を考慮した構造 解析プログラムを用いる。基本となる構造モデルは、コンクリート版、路盤、路床を8節 点直方体ソリッド要素に分割し、目地や路盤とコンクリート版の境界面は新たに開発した 汎用境界面要素にモデル化する。このモデルは路盤内の応力も同時に解析できる。今回は このプログラムを使ってコンクリート版の温度応力を算出する。

(4) コンクリート版の温度分布

実際のコンクリート版ではどのような深さ方向の温度分布になるかを調べるためにモ デル供試体によって、温度分布を観測した。石川県にある厚さの異なる 15cm、20cm、23cm、 25cm、28cm、30cm、45cmのコンクリート版を設置し、それぞれのコンクリート版の深さ 方向に表面から 2.5cm 下、中心、底面から 2.5cm 上の位置に温度計を取り付け、1 時間毎 に温度を測定した。その結果の一例を図-4.20 に示す。この図は版厚 15cm および 45cm の上下面の温度差の推移である。表面温度はほとんど同じであるが、中心および底面の温 度は厚いコンクリート版では振幅が小さい傾向にある。

この計測結果のうち、一番気温の高かった日(2010 年 7 月 18 日)のコンクリート版の温 度データを使って、3 DFEM による方法で温度応力を算出し、岩間の方法と比較検討する こととした。図-4.21 はその時のコンクリート版の深さ方向の温度分布である。この図よ り、15cm から 30cm では温度分布がほぼ線形的であるのに対し、45cm の分布だけ非線形 であるということがわかる。

図-4.21 コンクリート版の厚さ方向の温度分布

(5) 温度応力解析

3DFEM によって温度応力を計算し、岩間の式と比較した。3DFEM では、図-4.22 に示 すように、幅 4m、長さ 10m のコンクリート版とし、その下にアスファルト中間層 5cm、 粒状路盤 35cm、路床 200cm とした。温度については深さ方向に 3 点の温度を入力し、そ の温度を 2 次曲線で近似して、版厚方向の温度分布とした。

図-4.23 はすべての版厚の中央部および縁部における一日の温度応力の変化を見たものである。岩間の方法では(1)式を用い、コンクリート版底面の応力を計算した。3DFEMでは、コンクリート版すべての点の応力が求まるので、表面および底面の応力を計算した。

図より日中はコンクリート版底面に大きな引張応力が生じていることがわかる。コンク リート版は引張応力に弱いので、設計ではこの応力が問題となる。中央部に関しては 15cm の厚さでは岩間式の方が 3DEFM よりも小さな温度応力となる。25 から 30cm ではそれほ ど差がない。45cm では岩間式よりも 3DFEM の方が小さくなる。これは非線形性による内 部応力が大きくなるためである。それぞれの最大応力の発生時間は異なり、岩間に比べ 3DFEM は 2 時間から 3 時間程度遅れる。縁部については、45cm の版厚を除いて岩間式よ り 3DFEM の応力がやや大きい傾向がある。

層構成	厚さ	弾性係数	ポアソン
	(cm)	(MPa)	比
コンクリート版	15-45	30000	0.2
アスファルト中間層	5	5000	0.35
上層路盤	15	500	0.35
下層路盤	15	300	0.35
路床	200	80	0.35

表-4.16 3DFEM で仮定したコンクリート舗装断面

図-4.23 コンクリート版の温度応力の日変化(その1)

図-4.24 コンクリート版の温度応力の日変化(その2)

図-4.25 コンクリート版の温度応力の日変化(その3)

図-4.26 は 24 時間の中での最大引張応力と版厚の関係をまとめたものである。すべて の版厚において縁部より中央部の方が応力は大きい。岩間式の応力は温度差のみに依存す るので、温度差が同じであればほとんど版厚に関係しない。実際には温度差が版厚ごとに 異なるため、応力も版厚によってやや異なる。しかし一定の傾向は認められない。3DFEM による応力は版厚が 30cm までは岩間式より 3DFEM の方が大きいが、版厚が 45cm の場合 には 3DFEM の方が小さい。

図-4.26 最大応力と版厚の関係

(6) まとめ

コンクリート版の温度および温度応力について以下ことが言える。

- 版厚が 30cm までは、厚さ方向の温度分布はほぼ線形であるが、45cm では 強い非線形が現れる。
- 縁部よりも中央部の方が温度応力は大きい。
- 版厚 30cm までは岩間式よりも 3DFEM の方が大きいが、45cm では 3DFEM の方が小さい。
- 岩間式は版厚によって大きな差はないが、3DFEMは版厚の影響が大きい。

なお、ここでの解析結果は石川県における1日だけの実測温度を用いたものである。 ここから一般的な結論を出すのは早計であり、今後、同様の解析を年間を通して行い、 また、今回その他の地域の実測温度についても解析を行っていく必要がある。

4.4 疲労度の検討

4.4.1 ひび割れと走行回数の関係

本研究で舗設されたコンクリート舗装には、2008年1月より荷重車の走行を開始した。 2011年2月現在で、本舗装に載荷された5t換算輪数の累計値は、123,4553.803輪となっている。しかしながら現在までのところ、コンクリート舗装版にひび割れは発生していない。

そこで、これまでの荷重車走行により、コンクリート版に累積された疲労値の推定を 行うこととした。

(1)計算条件

コンクリート版厚:25cm

橫収縮目地間隔:5m

路盤支持力係数: 30MPa/m

コンクリート

曲げ強度: 5.6kN/mm2

弹性係数: 32200N/mm2

ポアソン比:0.2

温度膨張係数:10×10-6/℃

荷重条件

輪荷重群と通過輪数:表-1

- 荷重走行位置:コンクリート版自由縁部より105cm
- コンクリート版の温度差とその発生頻度:表-2

疲労曲線の破壊確率:50%

輪荷重群とその通過輪数は実測の値であり、各輪とも2種類 の荷重があるのは、2009年4月より荷重車の重量を変更したた めである。

荷重車の走行は昼間に限定されているので、コンクリート版の温度差とその発生頻度 は、実測された版内温度差とその頻度を用いている。

(3)計算結果

計算の結果得られた疲労値は、

 $FD = 1.25 \times 10-5$

となった。

4.4.2 疲労曲線の見直し

本研究期間内に破壊しなかったため、疲労曲線についての検討はできなかった。

表-4.17 輪荷重群と通過輪数

	荷重(t)	荷重(kN)	通過輪数
前輪	3.175	31.115	120975
	3.525	34.545	122503
後前輪	5.96	58.408	120975
	6.535	64.043	122503
後後輪	5.91	57.918	120975
	6.485	63.553	122503

表-4.18 コンクリート版の温度差と発生頻度

温度差	頻度
19	0.000729623
17	0.004548686
15	0.014473119
13	0.040867282
11	0.070030157
g	0.103400855
7	0.14374286
5	0.170494227
3	0.190524767
1	0.261188425

5. 路盤の構造設計の検討

本章では、舗装走行実験場に施工した実大コンクリート舗装での路床、路盤上での支持力調査結果、路盤厚の異 なる実大路盤試験区での支持力調査結果および既往の研究事例をもとに、路盤の構造設計法について検討を行 った。

5.1 はじめに

昭和30年に道路工法叢書第9集としてセメントコンクリート舗装要綱が発刊されて以来、昭和47年、昭和59年に 改訂作業が行われ、平成13年の大改訂によってセメントコンクリート舗装要綱は廃刊となり、コンクリート舗装の設計 法は舗装設計施工指針(平成13年)、舗装設計便覧(平成18年)へと受け継がれている。このような設計法変遷の 中で、路盤厚設計という概念がコンクリート舗装設計に取り入れられたのは昭和39年の改訂以降である。

昭和39年の改訂において採用された路盤厚設計法¹⁾は、竹下らの研究成果^{2),3)}に基づいたものである。竹下らは、 試験舗装での実験結果および現場での平板載荷試験結果(K_{30})から、弾性論を参考に式(5.1)に示す路盤厚設計 曲線を提案した。この路盤厚設計曲線には幾つかの種類があり、本検討に関連する曲線はA~Dの4つで、A線は クラッシャラン等の粒度の整った路盤材料、B線は砂、C線は切込み砂利での路盤効果 K_1/K_2 と路盤厚の関係を表 しており、D線は粒度の整った路盤材料をローラ転圧したときに期待できる限界を表している。

$$\frac{h}{a} = \alpha \left(\frac{K_1}{K_2}\right)^{\beta} \tag{5.1}$$

ここに、h:路盤厚、a:載荷半径(=15cm)、K1、K2:路盤、路床上でのK30 値、

a:路盤材料の性質を表す係数(A線:0.415、B線0.832、C線:0.500、D線:0.265)、

β:ローラの転圧の性質を表す定数(=1.65)

昭和47年の改訂では、飯島の提案⁴⁾により路盤厚設計曲線は直線へと修正され、セメント安定処理と粒状材料の2本の設計曲線⁵⁾が示された。セメント安定処理の設計曲線は、路盤厚が30cmでの測定結果の90%が設計曲線よりも高くなり、かつ路盤厚が15cmでの測定結果の70%が設計曲線よりも高くなる点を結んだものとなっている。このときのデータ群には、セメント安定処理路盤の他にソイルセメントのデータも含まれていた。また、粒状材料の設計曲線もセメント安定処理と同様に路盤厚が40cmと20cmの解析結果を直線で結んだもので、データ群には、切り込み砕石、クラッシャラン、粒度調整砕石のものであった。

この後、昭和59年の改訂⁶では、粒状材料は粒度調整砕石に名称変更され、新たにクラッシャランの設計曲線が 追加され、計3本の設計曲線が示された。これは飯島ら⁷⁾が昭和56年までに行った開削調査等の結果に基づくも のである。この文献では、粒状材料の設計曲線が粒度調整砕石の設計曲線に置きかわった理由、ラッシャラン路盤 の設計曲線が求まった理由が、昭和47年改訂の研究成果ほどに明確に記されておらず、原文では平均線と表現さ れている程度である。しかし、クラッシャランと粒度調整砕石の設計曲線と開削調査結果の関係を見る限りは、安全 側(設計曲線よりも K_1/K_2 が上回るデータが多い)に設計曲線が引かれている印象を受ける。このようにして提案さ れた昭和59年改訂版の路盤厚設計曲線は、平成13年の大改訂を経た後もそのまま受け継がれ、舗装設計便覧⁸⁾ に掲載されるに至っている。

現行の路盤厚設計曲線と昭和 39 年版セメントコンクリート舗装要綱の路盤厚設計曲線を比較すると図-5.1 のよう になる。図-5.1 において、図中の細実線 A~D は昭和 39 年版の設計曲線を示しており、太実線 CrB、MSB、CTB はクラッシャラン、粒度調整砕石、セメント安定処理の設計曲線を示している。これらの結果より、現行のクラッシャラ ンの設計曲線は、B線(砂)とC線(切込み砂利)の間でB線寄りに、MSBの設計曲線はA線(クラッシャラン等)と D線(ローラ転圧限界)の間でA線寄りに位置していることがわかる。また、クラッシャランに着目し、新旧設計曲線と 飯島ら⁷⁰の開削調査データを比較したものが図-5.2 である。図-5.2 より、現行の設計曲線よりも K₁/ K₂が上回る調 査データが多いことがわかる。これらのことより、クラッシャランおよび粒度調整砕石の設計曲線は、平均線とは言い ながらも十分に安全側に設定されているものと考えられる。

図-5.2 クラッシャランの新旧設計曲線と開削調査結果の関係

舗装要綱が廃刊された平成13年の大改訂によって、コンクリート舗装の設計法に信頼性の概念が導入された。具

体的には、コンクリート版厚設計時に設定した信頼度に応じて 1〜4 倍の交通量を与え、設計期間内に疲労破壊が 生じない(疲労度<1)ように版厚を決定するものである。疲労解析では、路盤 K 値で表されるバネ支承上の弾性平 板モデル、所謂 Westergaard モデルが一般的に用いられている。このときの路盤 K 値は、交通量区分によって値が 異なっており、N₁〜N₄ 交通では K_{30} =150MPa/m、N₅〜N₇ 交通では K_{30} =200MPa/m から換算される K_{75} 値が用いら れる。

各交通量区分で目標とする K_{30} 値は、路盤上の K_{30} 値とひび割れ度の関係⁷から求められたもので、供用後20年 でひび割れ度が10cm/m²以下となる値であるが、路盤厚設計では設計曲線の K_1/K_2 と路盤厚の関係からこれらの 目標値(K_1)を満足するよう路盤厚を決定する。しかし、前述したように、クラッシャランおよび粒度調整砕石の設計曲 線は十分に安全側に設定されているものの、どの程度の信頼度で K_1/K_2 が確保されているのかは不明である。

これらのことより、本章では、舗装走行実験場に施工した実大コンクリート舗装の他に、走行実験場内に路盤厚の 異なる実大路盤試験区を別途施工し、路床、路盤上での支持力調査を行った。そこで本章では、これらの支持力調 査結果および飯島らによる既往の研究事例^{4,7}をもとに、路盤の構造設計法検証の一環として、路盤厚設計曲線の 信頼性に関する検討を行った。

5.2 実大コンクリート舗装・路盤を用いた支持力調査

5.2.1 実大コンクリート舗装試験区での支持力調査の概要

2007年に舗装走行実験場に施工した実大コンクリート舗装試験区の概要と支持力調査実施箇所は図-5.3に示す 通りである。幅5m、長さ5m、厚さ25cmのコンクリート版(6工区)を中心に、左右に長さ10mのコンクリート版が3枚 ずつ施工されており、各コンクリート版の目地にはダウエルバーが挿入されている。そして、1工区、6工区と11工区 を除く4枚のコンクリート版の長さ方向中央部には、疲労ひび割れを模した誘導ひび割れが入っている。

また、1 工区から6 工区の中央部までは4cmのアスファルト中間層が施工されており、それ以降の工区は、クラッシャラン(C-40)路盤上にコンクリート版が施工されている。そのため、図-5.3 に示すように、1~6 工区の路盤厚は26cm、6~11 工区は30cmとなっており、支持力調査は、小型 FWD (図-5.4) を用いて各工区の路床面、路盤面の隅角部4 箇所、中央部1 箇所の計5 箇所で測定を実施し、支持力係数(K30値)を測定した。

図-5.3 実大コンクリート舗装試験区の概要と支持力調査位置

図-5.4 小型 FWD 試験による支持力調査状況

図-5.5 実大路盤試験区の概要と支持力調査位置

小型 FWD 試験により求めた K₃₀ 値と平板載荷試験によって求めた K₃₀ 値は、地盤材料の種類によって異なるため、 補正を行う必要がある。そのため関根ら⁹は、各種地盤材料に対して小型 FWD 試験と平板載荷試験を実施し、各試 験によって求めた K 値には式(5.2)の線形関係が成り立つことを示した。

$$K_{p \ fwd} = \gamma \cdot K_{30} \tag{5.2}$$

ここに、 K_{p_ofwl} は小型 FWD 試験による K_{30} 値、 K_{30} は平板載荷試験による K_{30} 値である。また、 γ は材料によって異なる定数であり、粘性土については $\gamma=1$ 、クラッシャランを含む礫質材料では $\gamma=2$ である ¹⁰ことが知られている。本調査では、路床土では $\gamma=1$ 、路盤では $\gamma=2$ とし、式(5.2)にしたがって K_{30} 値を求め、各路盤厚での K_1/K_2 を算出した。

5.2.2 実大路盤試験区での支持力調査の概要

実大路盤試験区は図-5.5 に示すとおり全12 工区から成り、同じ路盤構造を有する再生材と新材を用いた試験区 を施工した。これは、再生材の路盤効果が現行の路盤厚設計曲線で示し得るか否かが確認されていないためであ る。実大路盤の施工は2009年に行い、路床面、路盤面の支持力係数を平板載荷試験(図-5.6)および小型FWD 試験により測定した。また、2010年には実大路盤試験区の撤去にともなって平板載荷試験および小型FWD 試験を 実施し、あわせて路盤厚の確認を行った。なお、支持力調査は各工区の路床面、路盤面の 7 箇所で実施し、小型 FWD 試験から K₃₀ 値を求めるにあたっては、実大コンクリート舗装の場合と同様に式(5.2)を用いた。

使用した路盤材は、クラッシャランは C-40、RC-40、粒度調整砕石は M-30、RM-40 で、セメント安定処理は粒度調整砕石を用いたものである。表-5.1~5.3 および図-5.7 に路床、路盤材料の室内実験試験結果を示す。表-5.1 より CBR の平均値は 5.20%、標準偏差は 1.77% であるので、区間の CBR は 3.43% となり、設計 CBR は 3 となることがわかる。また、表-5.2、5.3 および図-5.7 より、今回の実験に用いた路盤材料は規格を十分に満足しており、再生材、新材ともに問題は無いことがわかった。

図-5.6 平板載荷試験による支持力調査状況

表-5.1	路床材料の室内試験結果
-------	-------------

最大乾燥密度	最適含水比	CBR(乱さない試料)%				
g/cm ³	%	CBR (5m)	CBR (15m)	CBR (25m)		
1.030	49.6	5.5	3.3	6.8		

表-5.2 路盤材料の室内試験結果

		M-30	RM-40	СТВ М-30	CTB RM-40	C-40	RC-40
最大乾燥密度	g/cm ³	2.212	1.807	2.264	1.700	2.225	2.060
最適含水比	%	3.8	11.5	5.4	16.2	4.1	7.0
セメント量	%	—	—	4.0	6.5	—	—
修正 CBR	%	92.5	109.2	—	—	54.7	104.6
一軸圧縮強度	MPa	_	—	3.0	3.0	—	—
塑性指数		N•P	N•P	N•P	N•P	N•P	N•P

材料	扮類	C-40	RC-40	粒度	M-30	RC-40	粒度
採	取地	土浦市 土浦市 範囲		土浦市	八潮市	範囲	
粒	53.0	100.0	100.0	100		100	100
17	37.5	99.4	98.7	95~100	100.0	99.7	95~100
住	31.5				100.0		
mm	19.0	74.9	69.2	50~80	93.7	78.6	60~90
	4.75	38.1	36.0	15~40	45.3	38.5	30~65
	2.36	27.8	27.2	5~25	31.2	30.6	20~30
	0.425				14.2	10.1	10~30
	0.075				5.0	2.1	2~10

表-5.3 路盤材料の粒度試験結果

5.3 路盤厚設計曲線の信頼性の検討

5.3.1 解析方法

路盤厚設計曲線は、図-5.1に示したように、横軸に路盤効果(K_1/K_2 =路盤上での K_{30} 値/路床上での K_{30} 値)、 縦軸に路盤厚をとった平面座標上に直線で描かれている。この設計曲線によって路盤厚を求めた場合、図-5.8 に 示すように目標値を満足する K_1/K_2 に応じた路盤厚が求まることとなる。この場合、設計曲線の信頼性とは、「路盤効 果が、設計値を下回らない確からしさ」であり、所定の路盤厚に対して得られた路盤効果が設計曲線の値を上回る のはどの程度かを検討することで設計曲線の信頼性が把握できるものと考えられる。

そこで本章では、路盤厚設計曲線に対して飯島らによる既往の調査結果および実大コンクリート舗装試験結果、 実大路盤試験結果がどの程度の範囲で分布しているかを把握するとともに、路盤厚毎の K_1/K_2 は正規分布にした がっている(図-5.8)ものとして、舗装標準示方書¹¹⁾に記載されている材料強度などの特性値 f_k を求めるための式 (5.3)を用い、設計曲線の信頼度を求めた。

$$f_k = f_m - k \cdot \sigma \tag{5.3}$$

ここに、 f_k :信頼度に応じた K_1/K_2 の値、 f_m :路盤厚毎の K_1/K_2 の平均値

図-5.8 路盤厚設計曲線の信頼性の概念

表-5.4 信頼度に応じた係数の値

信頼度	95%	90%	85%	80%	75%	70%	65%	60%
k	1.64	1.28	1.04	0.84	0.67	0.52	0.39	0.25

5.3.2 設計曲線への再生材の適用性に関する検討

既に述べたように、現在の路盤厚設計曲線は、昭和47年および昭和59年のセメントコンクリート舗装要綱の改訂 時に提案されたものであり、このときに再生路盤材という概念は無かった。しかし、平成5年に施行された環境基本 法の下、建設工事に係る資材の再資源化等に関する法律、いわゆる建設リサイクル法が平成12年に制定されて以 来、特定建設資材であるコンクリートやアスファルトコンクリートなどの舗装材料の再資源化が義務付けられた。その 後、舗装工事においても再生材が積極的に用いられるようになってきていることは周知のことである。

これらのことから、本項では、実大路盤試験によって得られた再生材の路盤効果 K₁/ K₂と新材の K₁/ K₂を比較し、 再生材でのデータが路盤厚設計曲線の信頼性の検討に利用できるか否かを確認することとした。

図-5.9 ~ 図-5.11 に実大路盤試験で得られた各路盤材料の K₁/ K₂ 測定結果を示す。図-5.10 からわかるように、 粒度調整砕石では新材よりも再生材の K₁/ K₂が大きく、この傾向は路盤厚が厚くなるほど顕著になる結果となってい た。これは、路盤厚が厚いほど締固めにくくなることもあるが、表-5.3 および図-5.7 に示した粒度試験結果からわか るように、新材の粒度曲線は再生材よりも上に位置している、つまり細かい粒子が多いため、再生材よりもローラによ る締固め効果が小さかったことが原因と考えられる。これに対し、クラッシャランおよびセメント安定処理での K₁/ K₂ は、再生材の方が多少大きな値を示したが、新材と比べて大きな違いは認められなかった。

これらのことから、再生材の路盤効果は新材に劣らないことがわかる。また、路盤厚設計曲線の信頼性の検討において、再生材と新材の両データを用いることができるものと考えられる。

図-5.9 新材と再生材の路盤効果の比較(クラッシャラン)

図-5.10 新材と再生材の路盤効果の比較(粒度調整砕石)

図-5.11 新材と再生材の路盤効果の比較(セメント安定処理)

5.3.3 解析結果

式(5.3)を用いて設計曲線の信頼性解析を行うにあたり、各路盤材料での既往の研究成果および 2007 年~2010 年の実験結果が路盤厚設計曲線に対してどの程度の範囲に分布するかを調べた。これを図-5.12~5.14 に示す。

図-5.12~5.14 において、凡例"Iijima"は、飯島ら^{4, 7}の開削調査等による昭和 56 年までのデータ、PWRI2007 ~PWRI2010 は 2007 年~2010 年の実験データを示している。さらに、Design(C)、(M)、(CTB) はクラッシャラン、粒 度調整砕石、セメント安定処理の路盤厚設計曲線を示している。また、粒度調整砕石での飯島らのデータには粒度 調整砕石以外でのデータも含まれている。これは、前述したように、昭和 59 年の要綱改訂において昭和 47 年改訂 版の粒状材料の設計曲線がそのまま粒度調整砕石に置き換えられていたためである。これらの結果より、路盤効果 K_1/K_2 の測定結果の多くは、路盤厚設計曲線よりも大きな値を示していることがわかる。このことは、設計曲線にした がって路盤厚を決定した場合、多くの場合は設計曲線よりも大きな K_1/K_2 が得られることを示しており、設計曲線は 安全側に設定されていることがわかる。

図-5.12 設計曲線と実測データの関係(クラッシャラン)

図-5.13 設計曲線と実測データの関係(粒度調整砕石)

図-5.14 設計曲線と実測データの関係(セメント安定処理)

また、何れの路盤材料においても路盤が厚くなるにしたがって、K₁/ K₂のバラツキが大きくなっていることがわかる。 このバラツキの程度を調べるため、図-5.12~5.14 に破線で囲んだように路盤厚毎に K₁/ K₂の測定結果をグルーピ ングし、各グループの標準偏差を求めた。なお、グルーピングにあたっては 5~40cm まで 5cm おきの路盤厚を代表 値とし、代表値-2.5cm~代表値+2.4cm を 1 グループとした。その結果を図-5.15 に示す。図-5.15 に示した凡例 σ (M&C) は、粒度調整砕石路盤とクラッシャラン路盤の K₁/ K₂の標準偏差を示しており、 σ (CTB) はセメント安定処 理路盤での結果を示している。また、図中には σ (M&C) と σ (CTB) の近似線および決定係数を示した。ただし、 σ (CTB)の近似線は、路盤厚 20cm での結果 σ (CTB20cm) が非常に大きい値を示したことから、これを除外して求め た。その結果、2 つの近似線には高い相関性が認められることから、路盤厚と標準偏差には線形関係があり路盤が 厚くなるほどバラツキが大きくなることがわかった。また、セメント安定処理路盤での標準偏差は、粒度調整砕石路 盤・クラッシャラン路盤に比べて2 倍程度大きくなることがわかった。つまり、セメント安定処理路盤は、他の路盤材に 比べて支持力のバラツキが大きいことがわかった。

次に各路盤厚での K₁/K₂の平均値と標準偏差を用いて、設計曲線の信頼性について検討した。これを図-5.16~ 5.18 に示す。図中の実線は設計曲線を示しており、破線は凡例の()内に記した信頼度での近似線を示している。 なお、近似線は他のデータ群とは乖離していた破線で囲んだデータを除外して求めたものである。ただし、セメント 安定処理路盤の破線のデータは、図-5.14 に示したように実大路盤試験結果の影響が大きかったため、飯島らの データのみを用いて近似線を求めた。

103

図-5.17 路盤厚設計曲線の信頼性(粒度調整砕石)

図-5.18 路盤厚設計曲線の信頼性(セメント安定処理)

図-5.17~5.18の結果より、クラッシャランの設計曲線は信頼度80%の近似線、粒度調整砕石の設計曲線は信頼度70%の近似線と概ね重なっていることがわかった。このことより、クラッシャランと粒度調整砕石の路盤厚設計曲線の信頼度は、80%、70%程度であることがわかった。このことより、クラッシャランと粒度調整砕石の路盤厚設計曲線の信頼度は、80%、70%程度であることがわかった。これに対して、セメント安定処理路盤の設計曲線は、路盤厚 15cmで信頼度60%、30cmで信頼度90%の近似線と交差していた。このことは、飯島の報告⁴⁾にあるように、昭和47年の要綱改訂においてセメント安定処理路盤の設計曲線は、路盤厚が30cmでの測定結果の90%が設計曲線よりも高くなる点を結んだもの、という結果と概ね一致しており、設計曲線によってセメント安定処理路盤厚を求めた場合、路盤が厚くなるにしたがってK₁/K₂が設計曲線を下回る確率が低くなることを示していると言える。同一の信頼度で路盤厚を設計するには、設計曲線の勾配を近似線と同程度になるよう修正する必要があり、これによって経済的にセメント安定処理路盤厚を設計できるものと考えられる。しかし、セメント安定処理に関する設計曲線の検討結果は、昭和56年以前のデータのみを用いて求めたものであることから、今後の追加調査が必要であると考えられる。

5.4 信頼性を考慮した路盤厚設計曲線の提案

平成 13 年以降、コンクリート舗装の版厚設計法に信頼性の概念が導入された。これによって、コンクリート舗装設計の自由度は増したが、路盤厚設計は旧態依然としたままである。しかし、信頼度に応じた路盤厚設計曲線を求めることができれば、版厚設計のみに留まっていたコンクリート舗装設計の自由度は更に増すものと言える。そのため、ここでは前項で得られた結果に基づいて、信頼度に応じた路盤厚設計曲線を求めることとする。具体的には、以下の手順にしたがって路盤厚設計曲線を求めるものである。

(1) クラッシャランの現行設計曲線の信頼度を80%、粒度調整砕石の現行設計曲線の信頼度を70%とする。また、 セメント安定処理に関しては、信頼度90%の近似式である式(5.4)を基準として、信頼度に応じたラインを求め ることとする。

$$h = 5.01 \times \frac{K_1}{K_2} + 11.07 \tag{5.4}$$

ここに、hはセメント安定処理路盤の路盤厚(cm)である。

(2) 式(5.3)の- $k \cdot \sigma$ を移項した式(5.5)によって路盤厚毎の K_1/K_2 の平均値 f_m (平均値を用いた設計曲線)を算出する。

$$f_m = f_k + k \cdot \sigma \tag{5.5}$$

(3) 式(5.3)によって信頼度に応じた K₁/ K₂の値 f_kを求め、これを直線で結び設計曲線を求める。このとき、K₁/ K₂の標準偏差は、式(5.6)に示す図-5.15の近似式より求める。また、信頼度に応じた係数 k は表-5.4 に示した値を用いる。

$$\sigma_{\rm M&C} = 0.0422 \times h \tag{5.6 a}$$

$$\sigma_{\rm CTB} = 0.0978 \times h \tag{5.6 b}$$

ここに, σ_{M&C}: 粒度調整砕石路盤およびクラッシャラン路盤での K₁/K₂の標準偏差, σ_{M&C}: セメント安定処理路 盤での K₁/K₂の標準偏差

このようにして求めた信頼度に応じた路盤厚設計曲線を図-5.19~5.21 に示す。これらの結果より、クラッシャラン の信頼度 80% (現行設計曲線)の線と粒度調整砕石の信頼度 90%の線、粒度調整砕石の信頼度 70% (現行設計 曲線)の線とクラッシャランの信頼度 60%の線はほぼ重なっていることが読み取れる。例えば、図-5.20 に破線で示 したように、粒度調整砕石路盤においてクラッシャラン路盤と同程度の信頼度(80%)を有する路盤厚を設定するた めには、目標とする K₁/K₂ で縦線を引き、信頼度 80%の設計曲線と交わる点が求めるべき路盤厚となる。しかし、信 頼度を 90%に設定すると、路盤厚が過剰になってしまう可能性がある。そのため、路盤支持力の変化がどの程度コ ンクリート版の疲労度に影響を及ぼすかを検討した上で、総合的に路盤厚設計曲線の信頼度を決定する必要があ るものと考えられる。

また、図-5.21に示したように、セメント安定処理の現行設計曲線は信頼度90%~60%の間に位置することがわかる。しかし、前述したようにセメント安定処理路盤の検討結果は、昭和56年以前のデータのみを用いて求めたものであり、現行の路盤厚設計曲線を設定した際の飯島の報告⁴⁾を確認したに過ぎないことから、今後の追加調査が必要であると考えられる。また、図-5.14に示したように、実大路盤での結果は設計曲線よりも大きな値を示していたことから、現在用いられているセメント安定処理路盤の荷重分散性能は昭和56年以前のものよりも高い可能性がある。さらに、信頼度に応じた設計曲線の有用性を確認するためには、粒度調整砕石路盤、クラッシャラン路盤の場合と同様に、路盤支持力の変化がコンクリート版の疲労度に及ぼす影響についてもあわせて検討していく必要があるものと考えられる。

図-5.19 信頼度に応じた路盤厚設計曲線(クラッシャラン)

図-5.20 信頼度に応じた路盤厚設計曲線(粒度調整砕石)

図-5.21 信頼度に応じた路盤厚設計曲線(セメント安定処理)

5.5 おわりに

本章では、舗装走行実験場に施工した実大コンクリート舗装試験区、実大路盤試験区での路床、路盤の支持力調 査結果および既往の研究事例に基づき、路盤厚設計曲線の信頼性に関する検討を行った。主な結果をまとめると 以下の通りである。

- (1) 既往の研究結果を調査したところ、現行の路盤厚設計曲線は安全側に設定されてはいるものの、その信頼度 については不明であることがわかった。
- (2) 現行の路盤厚設計曲線の信頼度について解析を行った結果、クラッシャラン、粒度調整砕石の設計曲線はそれぞれ80%、70%の信頼度であることがわかった。また、セメント安定処理路盤の設計曲線は、路盤厚15cmで 信頼度60%、30cmで信頼度90%と、路盤厚によって信頼度が異なっていることがわかった。
- (3) 信頼度を 60~90%に設定し、各路盤材料の設計曲線を求めたところ、クラッシャランの信頼度 80%(現行設計 曲線)の線と粒度調整砕石の信頼度 90%の線、粒度調整砕石の信頼度 70%(現行設計曲線)の線とクラッシャ ランの信頼度 60%の線はほぼ重なっていたこと、セメント安定処理の現行設計曲線は信頼度 90%~60%の間 に位置していたことがわかった。
- (4) セメント安定処理に関する設計曲線の検討結果は、昭和 56 年以前のデータのみを用いて求めたもので、現在 用いられているセメント安定処理路盤の荷重分散性能は昭和 56 年以前のものよりも高い可能性があることから、 今後の追加検討が必要である。

コンクリート舗装の設計は、K 値を用いた従来の平板理論(Westergaard モデル)から弾性理論を用いたものへと移 行しつつある。弾性理論を用いた場合には、路盤厚設計の設計用値としてレジリエントモジュラス等の地盤材料の 変形係数を用いることとなる。そのため、今後は室内実験等で求めた各種路盤材料の変形係数を用いた場合に算 定される路盤効果と路盤厚設計曲線との整合性について検討する必要があるであろう。また、前述したように、路盤 厚設計曲線の信頼度とコンクリート版の疲労度の関係についても検討する必要があると考えられる。

参考文献

- 1) (社)日本道路協会:セメントコンクリート舗装要綱、昭和 39 年版、1964.
- 2) 竹下春見: 路盤の荷重分散効果、土木研究所報告、第 106 号、pp.170-177、1960.
- 3) 竹下春見、岩下義治:路盤の荷重分散効果(2)、土木研究所報告、第107号、pp.204-224、1963.
- 4) 飯島尚:重交通道路におけるコンクリート舗装の構造設計法に関する研究、北海道大学学位論文、1986.
- 5) (社)日本道路協会:セメントコンクリート舗装要綱、昭和47年版、1972.
- 6) (社)日本道路協会:セメントコンクリート舗装要綱、昭和 59 年版、1984.
- 7) 飯島尚、岡村真:コンクリート舗装の路盤厚さに関する2、3の検討、土木技術資料、26-4、pp.37-42、1984.
- 8) (社)日本道路協会: 舗装設計便覧、平成18年版、2006.
- 関根悦夫、鴨智彦、阿部長門、丸山暉彦:重錘落下による鉄道盛土の締固め管理方法、土と基礎、48-4、 pp.13-16、2000.
- 10) 地盤工学会: 地盤工学者のための舗装入門-基礎から応用まで-、講演会講演資料、2010.
- 11) 土木学会:舗装標準示方書、土木学会、2007.

6. コンクリート舗装の構造細目の検討

6.1 鉄網の効果の検討

6.1.1 鉄筋計の準備

試験舗装に用いた鉄網は、JIS G 5331「溶接金網及び鉄筋格子」に準じた、格子間が 150mm の D6 鉄筋を溶接接合したものである。鉄網に取付ける鉄筋計は、溶接接合する前の D6 鉄筋 1m を用 いた。誘発ひび割れを確実にゲージ上に誘導するため、ゲージ長 5mm の箔ゲージ(東京測器研究 所社製 QFLA-5、ゲージ率 2.14、120Ω)を鉄筋の左右にゲージが 5mm 間隔となるように千鳥で 3 枚、防水処置を施し貼り付けた。ゲージの取り付け状況を図-6.1 に示す。鉄筋計の設置位置は、 図-3.2 に示すとおり、アスファルト中間層のない区間 1 箇所(S 1、S2、S3)およびアスファルト 中間層のある区間 1 箇所(S4、S5、S6)の計 2 箇所で測定を実施した。

また、測定データの温度補正を実施するために、ゲージを貼付した鉄筋を可変恒温室に無応力状態で静置し、可変恒温室内温度を 5~45℃に変化させて、鉄筋の温度変化ひずみを測定し、温度変化と鉄筋ひずみの関係の近似式を得た。測定結果を図-6.2~図-6.3に示す。

図-6.1 鉄筋計の取り付け状況

図-6.2 鉄筋計の温度補正(S1、S2)

図-6.3 鉄筋計の温度補正(S3、S4、S5、S6)

6.1.2 鉄筋計の設置

鉄網は通常の工事と同様に、下層コンクリートを敷き均した後に、下層コンクリートの上面に静 置し、コンクリート打設が行われた。鉄筋計は、鉄筋計の位置にある鉄網の一部を現場で切り取り、 ひずみゲージがすべて水平に並ぶように向きを決め、結束線を用いて鉄網に接合した。

6.1.3 測定方法

鉄筋計のひずみ測定は、コンクリート打設前から開始し 10 分間隔(材齢 14 日まで、それ以降 30 分間隔)で測定した。鉄筋の応力ひずみは、実測ひずみから上述した温度補正データを用いて温 度変化による鉄筋の伸縮ひずみを式(6.1)のとおり差し引き、鉄筋の応力ひずみを求めた。

$$\varepsilon_t(t) = \varepsilon_m(t) - \left(aT(t)^2 + bT(t) + c\right) \tag{6.1}$$

ここで、

 $\varepsilon_t(t)$:時刻 tにおける鉄筋の応力ひずみ

ɛm(*t*):時刻*t*における鉄筋の測定ひずみ

a、b、c:図-6.2 および図-6.3 から求めた校正係数

T(t):時刻 tにおける鉄筋の温度(近傍のコンクリートの温度で代用)

6.1.3 試験結果および考察

鉄筋計の測定結果を図-6.4 および図-6.5 に示す。

図-6.4 では、材齢 15 日にすべての鉄筋ひずみが著しく大きくなった。これは材齢 15 日にひび割 れが発生したことを意味するものである。鉄筋ひずみ S1~S3 を比較すると、いずれも 14,000×10⁶ と著しく大きいが、その中でも S1 が最も大きかったことより、S1 がひび割れ断面のひずみである

図-6.4 鉄筋計の測定結果 (アスファルト中間層なしの箇所、S1~S3)

図-6.5 鉄筋計の測定結果(アスファルト中間層ありの箇所、S4~S6)

とした。また、図-6.5 では、材齢35日から鉄筋のひずみが100×10⁶以上になり、材齢42日の時 点において、S6ひずみが10,000×10⁶以上となった。これより、S6がひび割れ断面であり、材齢 42日の時点でひび割れが貫通したと思われる。これらの図には、材齢100日程度までのデータの み記載しているが、これ以降もほとんど変化なくひずみ値は推移していた。

今回使用した鉄網に使用された鉄筋の弾性係数を実測していないが、一般的に鉄筋の弾性係数は 190~210kN/mm²である¹⁾。JIS G 5331「溶接金網及び鉄筋格子」によれば、使用した鉄筋は JIS D 3112「鉄筋コンクリート用棒鋼」による種類のうち、SD295A、SD295B、SD345 のいずれかで ある。これらの降伏点は、295~440MPa であり、鉄筋の弾性係数を 200GPa とすれば、降伏時の 鉄筋ひずみは、最大 2,200×10⁶ であり、図-6.4 および図-6.5 の結果と照らし合わせれば、降伏を はるかに超えた状態であることが明らかである。

6.1.4 鉄網の使用量算定の根拠³⁾

鉄網は構造細目による規定であり、その使用量は約 3kg/m²である 2)。本試験舗装は、D6 鉄筋を 用いた 150mm ピッチの格子鉄網を採用していることより、版厚 250mm である本試験舗装におい ては、鉄筋比は 0.084%となる。その使用目的は、土木学会舗装標準示方書によれば、「鉄網はコン クリート版にひび割れが発生した後、ひび割れが開くのを制御するために使用するものである。」と ある。ひび割れが何らかの原因で発生し、そのひび割れ幅がそれ以上に開かないようにするために 用いるものと理解できる。つまりコンクリート版の横目時間の中央に 1 本ひび割れが発生した後、 鉄網の効果により、ひび割れで 2 分されたコンクリートを緊結してひび割れの拡大を防止する効果 を期待したものである。この効果を実現するための必要鉄筋量を求めた。必要鉄筋量 *As* は、コン クリート版の自重を外力として受けた時に、鉄筋の許容応力を超えない鉄筋量とすればよい。

$$A_{s} = \frac{\frac{1}{2} \cdot \mu \cdot L \cdot B \cdot h \cdot w \cdot g}{\sigma_{sy} / 1000}$$
(6.2)

ここに、As: 必要鉄筋量 (mm²)

μ:路盤との摩擦係数、ここでは 1.5
 L:コンクリート版の長さ(目地間隔)(m)
 B:コンクリート版の幅(m)
 h:コンクリート版の厚さ(m)
 w:単位体積質量(kg/m³)
 g:重力加速度(m/s²)
 σ_{sy}:鉄筋の許容応力(MPa)

ここで、*L*=10m、*B*=1m、*h*=0.25m、*w*=2400 kg/m³、*a*=9.8 m/sec²、σ_{sy}=150 MPa とすると、 必要鉄筋量 *As*は 196mm²となる。一方、コンクリートの断面積は、0.250m²であることより、必 要鉄筋比は 0.078%となる。

必要鉄筋比よりも今回の試験舗装の鉄筋比の方がやや大きいにもかかわらず、図-6.4 および図-6.5 から明らかなように、鉄網を構成する鉄網は完全に降伏状態であった。これは、鉄網の必要鉄筋量を算定する際に、式(6.2)はコンクリートの引張強度あるいは曲げ強度を考慮していないことが 原因である。設計ではコンクリート版のひび割れの発生は、初期の温度ひび割れを除いて、荷重応 力および温度応力による繰返し曲げ疲労破壊であって、繰返し回数がひび割れ発生の最大のパラメ ータとなる。

一方、本試験舗装では、鉄筋ひずみを測定するため、鉄筋計を設置した箇所に確実にひび割れを 発生させるようにコンクリート表面に切り欠きを入れた。そのため、散水養生終了後、温度降下お よび乾燥収縮による引張応力が引張強度を超えてひび割れが発生したものと考えられる。このよう に試験舗装では実際のコンクリート舗装から発生する疲労ひび割れとは発生の仕方が違うため、鉄 網の効果の検証をするうえで問題があることが分かった。

6.1.4 ひび割れ幅の実測値

図-1.1 に示したように、亀裂変位計を用いて、誘発ひび割れ部のひび割れ幅および目地部の目地 幅を連続的に測定した。図-6.6~図-6.7 はひび割れ幅の経時変化として材齢 450 日までの測定結果 を示す。図-6.6 と図-6.7 の比較および図-6.8 と図 6-9 の比較は、アスファルト中間層の有無が同一 条件下での鉄網の効果を確認できる。これらの図から、鉄網が設置されないとひび割れ幅が 5~7 mm程度まで拡大するものが、鉄網が設置されることでひび割れ幅が 2mm 程度以下に制御され、 鉄網効果が表れているように見える。しかし、図-6.10 および図-6.11 に示されているように、鉄網 がない目地部であっても誘発されたひび割れの挙動は、1mm 程度の変動しかないことから、上述

図-6.6 亀裂変位計によるひび割れ幅の測定結果(ひび割れ部、中間層なし、鉄網なし)

図-6.7 亀裂変位計によるひび割れ幅の測定結果(ひび割れ部、中間層なし、鉄網あり)

図-6.8 亀裂変位計によるひび割れ幅の測定結果(ひび割れ部、中間層あり、鉄網なし)

図-6.9 亀裂変位計によるひび割れ幅の測定結果(ひび割れ部、中間層あり、鉄網あり)

のひび割れ幅の経時変化は鉄網の効果であるとは言い切れない。また、すでに降伏状態の鉄網がひ び割れ幅を制御するとは考えられないといえる。 図-6.6~図-6.7 はひび割れ幅の経時変化として材齢 450 日までの測定結果を示す。図-6.6 と図-6.7 の比較および図-6.8 と図 6-9 の比較は、アスファルト中間層の有無が同一条件下での鉄網の効果を確認できる。これらの図から、鉄網が設置されないとひび割れ幅が 5~7mm程度まで拡大するものが、鉄網が設置されることでひび割れ幅が 2mm 程度以下に制御され、鉄網効果が表れているようにみえる。しかし、図-6.10 および図-6.11 に示されているように、目地部であっても誘発されたひび割れの挙動は、1mm 程度の変動しかないことから、上述の鉄網の有無によるひび割れ幅の違いは鉄網が降伏していることと併せて、鉄網の効果ではないと判断できる。

図-6.10 亀裂変位計によるひび割れ幅の測定結果(目地部、中間層なし)

図-6.11 亀裂変位計によるひび割れ幅の測定結果(目地部、中間層あり)

6.1.5 実道での鉄網の効果

(1)現場から採取した鉄網の調査

試験舗装における鉄網の効果の検証では、材齢初期にひび割れを誘発発生させたため、疲労に起 因するひび割れとは異なるといえる。そこで、供用中の国道 113 号および 13 号のコンクリート舗 装に発生したひび割れを対象に、ひび割れ幅と鉄網の状態を当該コンクリート版から採取したコア 供試体を用いて調査し、鉄網の効果を確認することとした。

採取したコアの目視調査結果を表-1 に示す。5 箇所のひび割れ部から採取したコアのうち、B16 の鉄網はすでに破断していた。コア番号 A132 のひび割れ幅はコンクリート版表面で 0.5mm 程度 であったが、コア側面では 0.02mm と目視では確認できないほど狭かった。A5 のひび割れは底面 まで貫通していなかった。これは、ひび割れがコンクリート表面から発生していることを意味して おり、疲労ひび割れは版底面から発生するとする従来の考えとは異なる。このひび割れの発生原因 については、今後の課題としたい。

表-6.1 から、版厚方向のひび割れ幅分布に着目すると、A1、B15 では鉄網位置のひび割れ幅はコ ンクリート版上下面のひび割れ幅に比べて小さく、鉄網位置のひび割れ幅の制御効果がある程度認 められた。

	77	-++++:	00	「割れ幅(mm	1)		鉄網(D6 銵	特筋で構成)	
国道	番号	(mm)	表面	鉄筋位置	底面	腐食の	鉄筋位置	間隔	鉄筋比
	E .	(11111)	2×111	29 (11) [11]	/expire	有無	(mm)	(mm)	(%)
	A1	φ200×260	0.84	0.26	0.07	無	83		0.061
119 旦	A4	φ 200×240		ひび割れなし		—	65	900	0.066
115 5	A5	φ 200×242	0.57	0.17	0 🔆	無	82	200	0.065
	A132	φ 200×260	0.02	0.02	0.02	一部孔食	55		0.061
19 旦	B15	φ 200×290	0.35	0.40	0.53	一部孔食	86	150	0.073
10 万	B16	φ 200×300	鉄角	筋破断のため不	明	腐食破断	85	150	0.070

表-6.1 採取したコアの目視調査結果

※ひび割れは貫通していなく、コンクリート表面から135mmの位置まで発生。

図-6.12 は、ひび割れが発生していない A4 コアから採取した鉄筋の応力-ひずみ関係を示したものである。この図で、降伏点が認められ、その数値からこの鉄筋はJIS G 3112 で規定されている呼び名 D6 SD345 であることがわかった。この降伏した鉄筋に対して再度引張試験を実施し、応力-ひずみ関係を求めると図-6.13 のようになる。この図で示されているように、再載荷後の鉄筋には降伏点がなく、なだらかに塑性域に移行していることがわかる。なお、再載荷時の応力がやや大きい原因は載荷速度の影響であると思われる。

図-6.14 および図-6.15 は、A5 および A132 から採取した鉄筋の応力-ひずみ関係である。A1 は図-6.13 と同様に降伏点が認められなかった。これは供用中のひび割れ発生により降伏したものと考

図-6.13 A4 の応力・ひずみ関係(再載荷)

えられる。また A5 および B15 の鉄筋も降伏状態であることを確認した。A132 は図-6.12 と同様、 降伏点が認められた。これはひび割れ幅が 0.02mm 程度と著しく小さいことから、この鉄筋に発生 する引張応力は弾性域内であったものと思われる。

これより、本研究の範囲において、国道で長期供用されているコンクリート舗装において発生した横断ひび割れ発生個所 5 箇所のうち、1 箇所を除いて鉄網を構成する鉄筋は降伏しているか破断していた。これらから鉄網によるコンクリート版のひび割れ幅を制御する構造的効果は、ほとんど期待できない。

図-6.14 A5の応力-ひずみ関係

図-6.15 A132の応力-ひずみ関係

(2)ひび割れに発生による鉄網の発生応力の算定

表-6.1 に示したように、ひび割れ発生後、ひび割れ幅は 0.02~0.4mm 程度生じている。ここで、 連続鉄筋コンクリートのひび割れ制御式[参考文献]をもとにひび割れ間隔を固定する式に修正し、 現場で実測したひび割れ幅、コンクリートの弾性係数、コンクリート版厚、鉄筋量を用いて、ひび 割れ断面での 鉄網に発生する応力の算定を試みた。修正したひび割れ制御式として、鉄筋の応力 式を式(6.3)に示す。ひび割れ幅の算定式を式(6.4)に示す。

$$\sigma_{s} = E_{s} \cdot \left[\left(\varepsilon'_{sh,s} + \varepsilon_{\Delta T,s} \right) \left[\left(1 + \frac{np}{\rho} \right) \frac{\eta_{2}}{\frac{2}{L_{max}} + \frac{np}{\rho}} - 1 \right] + \varepsilon_{s\Delta T,s} \right]$$

$$\frac{1}{\rho} = 1 + \frac{(h/2 - d)^{2}}{I_{c}/A_{c}}$$

$$\eta_{1} = L_{b}^{2} + 7.5\varphi + 26.6\varphi^{2}/L_{b}$$

$$\eta_{2} = 1 + 6.25\varphi/L_{b}$$

$$L_{b} = \frac{\varphi}{4(1 + np/\rho)} \cdot \frac{E_{s}}{K_{s}}$$
(6.3)

ここに、

$$a_s$$
: 鉄筋最大応力 (MPa)
 E_c : コンクリートの弾性係数 (MPa)
 E_s : 鉄筋の弾性係数 (MPa)
 n : 鉄筋とコンクリートの弾性係数の比 (= E_s/E_c)
 p : 鉄筋比 (= A_s/A_c) (%)
 L_{max} : ひび割れ間隔 (mm)
 $e'_{sh,s}$: 鉄筋位置における舗設後からの収縮ひずみ (×10⁶) (= $a_c \Delta T_s$)
 $e_{\Delta}T_s$: 鉄筋位置における舗設後の温度からの温度下降ひずみ (×10⁶)
 $e_{s_{\Delta}T,s}$: 鉄筋の舗設後の温度からの温度下降ひずみ (×10⁶)
 ϕ : 鉄筋の直径 (mm)
 K_s : 付着剛性 (GPa/m)
 A_c : コンクリートの断面積 (mm²)
 L : コンクリートの横方向断面の断面二次モーメント (mm⁴)
 d : コンクリート上縁からの距離 (mm)
 a : コンクリートの熱膨張係数 (1/ °C)
 ΔT_s : 鉄筋位置における舗設後からの温度降下量 (°C)

Ks: 付着剛性 (GPa/m)

である。

$$W = 2\left(1 + \frac{np}{\rho}\right) \frac{\eta_1}{\frac{2}{L_{\max}}\eta_1 + \frac{np}{\rho}\eta_2} \left(\varepsilon'_{sh,s} + \varepsilon_{AT,s}\right)$$
(6.4)

ここに、

w:鉄筋位置のひび割れ幅(mm)

である。

入力した数値を表-6.2 に示す。ここでは実測のひび割れ幅に算定値が合うように温度降下量を調整した。表-6.3 に算定結果を示す。この表から明らかなように、A132 の場合を除いて鉄筋応力は 著しく大きく、降伏している結果が得られた。

項目	値	備考		
コンクリートの弾性係数	40,000MPa	実測値をもとに設定		
鉄筋の弾性係数	200GMPa	想定值		
鉄筋径	6mm	実測値		
付着剛性	392GPa/m	示方書推奨値		
版厚	240~290mm			
鉄筋間隔	コアからの実測値	実測値		
上縁から鉄筋位置までの距離	コアからの実測値			
コンクリートの熱膨張係数	10×10 ⁻⁶ / °C	想定值		
ひび割れ間隔	50,000mm	実測値		
版実石の乾燥収縮れずな	100×10^{-6}	相字体		
版表面の配線収縮いすみ	0×10^{6} (コア A132 のみ)			
版底面の乾燥収縮ひずみ	0×10^{-6}	想定值		
版表面の温度降下量	0∼20°C	実測ひび割れ幅に合うように		
版底面の温度降下量	0∼10°C	設定		

表-6.2 鉄筋応力算定に用いた入力値

表-6.3 算定結果

供告书任内		上下面のひび割	れ幅 (mm)	鉄筋最大応力	みたなっていたまた
供訊件名		実測値	計算値	(MPa)	<u></u>
A 1	上	0.84	0.82	1.040	[欠/上
AI	下	0.07	0.07	1,240	阳中八
45	上	0.57	0.58	030	陈伟
Að	下	0.00	0.00	000	平以
A 1 9 9	上	0.02	0.04	01	形子生
A152	下	0.02	0.05	91	伊巴坦
D15	上	0.35	0.36	220	[欠/上
B19	下	0.53	0.50	880	1年1人

6.1.6 鉄網の必要性

以上より、鉄網はコンクリート版にひび割れが発生したのち、鉄筋の降伏点以上の引張を受ける ことが、本試験舗装および国道のコンクリート舗装から明らかになった。これは構造細目に規定さ れている鉄筋量約 3kg/m² が、コンクリート版の自重を外力に設定し、それに見合う鉄筋量のみを 計算しているためで、ひび割れ発生時の鉄網への負荷を全く考えていないためである。

一方、コンクリート舗装の施工においては、鉄網を設置するために2層でコンクリートの敷均し や締め固めを行う必要が生じ、施工手間の増大やコンクリート品質に影響を及ぼす場合があるだけ でなく、施工効率が大きく損なわれる。

これらのことを勘案すると、今後も慎重に検討する必要があるが、ひび割れ幅の抑制を目的とした鉄網の採用は不必要であると思われる。

6.2 アスファルト中間層の効果

アスファルト中間層は路盤の耐水性や耐久性を改善する目的で、路盤の最上部に設けるものであ り、一般に密粒度アスファルトコンクリートを用い、版厚は4cmを標準としている。しかしながら、 舗装設計施工指針等の基準類の記述では、アスファルト中間層の設置は標準ではなく、重荷重対応 のN6やN7交通区分でさえ、アスファルト中間層のある断面例とアスファルト中間層のない断面 例が並列に記載されている状況にある。ここでは目地部およびひび割れ部の段差に注目し、アスフ ァルト中間層の効果を検証した。

6.2.1 測定箇所および測定方法

段差測定箇所は、図・6.16 に示す段差測定箇所 A~J の 10 箇所とした。段差の測定方法は、舗装 調査・試験法便覧「S031 舗装路面の段差の測定方法」に準拠し、横目地もしくは横ひび割れを 500mm ピッチで9 箇所測定(図・6.17 参照)し、そのうちの荷重走行車のタイヤが通過する測定位 置2、3、4、6、7、8 で測定した段差量の平均値を平均段差量とした。測定に用いたテーパーゲー ジの仕様は測定範囲が 0.3~4.0mm で最小目盛りは 0.05mm である。テーパーゲージの外観と段差 測定状況を写真・6.1 に示す。段差の測定は、路盤のエロージョンを促進するために一部の目地に散 水を実施した以降に開始した(2009 年 7 月より測定開始、それ以前には段差は全く発生していな かった)。散水箇所は段差測定箇所 B および J である。

※段差測定箇所:A~Jで,うち散水箇所はBおよびI

図-6.16 試験舗装平面図と段差測定箇所

図-6.17 段差測定位置(断面図)

写真-6.1 テーパーゲージによる段差量測定状況(白タンクとパイプは散水装置)

6.2.2 測定結果

図-6.18 は散水により路盤のエロージョンを促進させたひび割れ部の平均段差量と荷重車通過輪 数の関係を示したものである。この図から明らかなように、中間層のない測定箇所 B は明らかに中 間層を有する測定箇所 I よりも段差量が大きくなった。中間層なしの段差量は、散水を開始した 50 万回走行後から著しく増加し、80 万回走行後は段差量 1.5mm 程度になりそれ以上増加していない。 一方中間層ありの平均段差量は、散水後 80 万回までほとんどゼロであり、80 万回を超えたあたり から漸増し 100 万回以降は 0.5mm 程度で変化ない傾向が認められた。このような段差の経時変化 が生じるメカニズムについては今後の課題とするが、この図から、段差に及ぼす中間層の効果はは っきりと認められたといえる。

図-6.19 は、図-6.18 と同じくひび割れ部の段差の結果であるが、散水行わない自然条件での平均 段差量と荷重車通過輪数の関係を示したものである。なお、この区間では鉄網が設置されいる。段 差測定は 90 万輪通過後より実施している。この図から、中間層の有無にかかわらず平均段差量は 0.5~1.0mm 程度であり、荷重車通過輪数が増加しても平均段差量はほとんど増加していないこと

図-6.18 平均段差量と荷重車通過輪数との関係(散水促進エロージョン箇所、ひび割れ部)

図-6.19 平均段差量と荷重車通過輪数との関係(散水なし箇所、ひび割れ部)

がわかる。したがって、自然環境下での段差量へのアスファルト中間層の効果は、荷重車通過輪数 130万回時点では認められなかった。

図-6.20 は目地部での平均段差量と荷重車通過輪数の関係を示したものである。散水は行っていない。この図から、目地部の平均段差量は測定箇所により異なるが 0.2~0.7mm 程度であり、荷重車通過輪数にかかわらずほとんど一定に推移していることがわかる。したがってアスファルト中間層の有無による平均段差量の差はこの図からは認められなかった。また、この図と図-6.19 とを比較すると、目地部の段差量よりもひび割れ部の段差量の方がやや大きい傾向が認められた。しかし

図-6.20 平均段差量と荷重車通過輪数との関係(散水なし箇所、目地部)

ながら、自然環境下の段差量は極めて小さい値であり、コンクリート舗装の耐久性の観点からは全 く問題がない数値であった。

ただし、散水箇所のひび割れ部の FWD による荷重伝達については、図-6.21 に示すように、段 差が小さいアスファルト中間層を有する場合であっても荷重伝達率はかなり小さな値になるので、 注意が必要である。また、図-6.22 に示すように、目地部の荷重伝達率は、アスファルト中間層の 効果は認められなかった。

図-6.21 ひび割れ部の荷重伝達率と荷重車通過輪数との関係(散水促進エロージョン箇所)

図-6.22 目地部の荷重伝達率と荷重車通過輪数との関係(散水なし)

7.構造設計における信頼性の検証

(1) はじめに

舗装が設計期間を通して破壊しない確からしさを信頼性といい、その破壊しない確率を信頼度という。舗装の 構造に関する技術基準によると、コンクリート舗装の信頼度は 70%とされ、これを基準に信頼に応じた係数(安 全係数)が決定されている。そのため、信頼性設計を適切に行うには、コンクリート舗装の信頼度(供用性)を 正しく把握することが重要となる。

(2) 概要

一般にコンクリート舗装は、重交通路線で施工され供用さている。舗装の構造に関する技術基準の別表2や舗装設計便覧において、信頼度の算出に使用された供用データは平成6年時点では供用年数が短く破壊した箇所が少なかったと考えられ、表-7.1に示すようにN₆~N₇交通のような重交通路線のデータがほとんど考慮されていない。

そこで、これら重交通路線の供用データを収集し、重交通路線のコンクリート舗装の信頼度の確認を行った。

交通量の区分	N ₃ +N ₄	N ₅	N ₆ +N ₇
データ数	520	130	3
破壊までの平均年数	22.8	21.2	24.3
標準偏差	6	5.6	8.6
20年以上である確率	0.68	0.58	0.69
変動係数	0.26	0.26	0.35

表-7.1 セメント・コンクリート舗装の新設から補修までの期間1)

(3) 解析

1) 舗装管理支援システムデータ

解析には舗装管理支援システムのデータを使用した。このシステムは、国道の舗装を効率的、計画的に維持管理するために開発されたシステムであり、舗装の種別、大型車交通量区分、供用年数等の現場情報や、ひび割れ、わだち掘れ、平坦性等の路面性状調査データが蓄積されている。国道では交通量が多いため、N₆~N₇交通のような重交通路線のデータ数が多く、信頼度の確認において精度を高めることができる。本解析では、H11年からH20までのデータを使用した。

2) 舗装の破壊の定義

舗装の信頼度は、舗装の設計期間に対する破壊しない確率であり、舗装の破壊をどのように定義するかにより 信頼度は変化する。本検討では以下の2通りの方法により舗装の破壊を定義した。

a)舗装が打換えられた時

b) ひび割れ度が 10(cm/m²)以上となった時

(4) 結果

1) 舗装が打換えられた時を破壊とした場合

a) データの抽出フロー

解析は舗装が打換えられた時の年数を求めることにより行った。データの抽出フローを表-7.2に示す。

打換えによる整理では、新設のコンクリート舗装のデータのうち1回目の補修が打ち換えのものを抜き出した。 また、補修延長の違い等による影響を無くすため、現場単位毎にデータを統合した。

これらについて破壊までに経過した年数を整理し、信頼度の算出を行った。なお、本検討では、トンネル内のコンクリート舗装についてはデータから削除した。

表-7.2 抽出フロー

1	新設のCo舗装データの抽出(トンネルは除く)
2	1回目の補修が打ち換えのものを抽出
3	データの統合(同一路線の同時期の補修データを1つに統合)
4	破壊までに経過した年数の整理、および信頼度の算出

b) 解析結果

新設から補修までの期間を整理した結果を表-7.3、図-7.1に示す。舗装管理支援システムにおいて、表-7.2 の条件下では、N₅交通以下のデータはほとんど得られなかったため、N₆交通以上について示している。

N₆、N₇交通ともに舗装設計便覧に示されるコンクリート舗装の信頼度70%を大きく上回る結果が得られた。本調 査では、対象を補修されたコンクリート舗装としたため、実際のコンクリート舗装の新設から補修までの期間は 表-7.3の値よりも長くなると考えられる。

交通量区分	N ₆	N ₇	N ₆ +N ₇
データの数	30	35	65
破壊までの平均年数	28.3	35.1	31.9
標準偏差	8.8	11.3	10.7
20年以上である確率	0.83	0.91	0.87
変動係数	0.31	0.32	0.34

表-7.3 破壊するまでの期間

図-7.1 新設から補修までの期間の度数分布

- 2) ひび割れ度が10(cm/m²)以上となった時を破壊とした場合
- a) データの抽出フロー

解析はひび割れ度が10(cm/m²)となる時の年数を求めることにより行った。データの抽出フローを表-7.4に示 す。新設のコンクリート舗装のデータのうち、補修履歴がなく、過去にひび割れ度が10(cm/m²)を超えたものを 抜き出し、過去と最新のひび割れ度のデータよりひび割れ度が10(cm/m²)となる時の年数を求めた。なお、舗装 管理支援システムではひび割れ率で管理しているため、式(7.1)の換算式を用いて換算し解析を行った。

表-7.4 抽出フロー

1	新設のCo舗装データの抽出(トンネルは除く)
2	補修履歴の無いものを抽出
3	前回路面調査時のひび割れ率、および最新路面調査時のひび割れ率をひび割れ度に換算。
4	前回ひび割れ度 < 10(cm/m²) < 最新ひび割れ度 となるものを抽出
5	ひび割れ度=10(cm/m ²)となるときの年数を算出

C:ひび割れ度(cm/m²) C₀:ひび割れ率(%) C=C₀(C₀≦5%) C=-25+√(625+120C₀)(5%<C₀)

(7.1)

b) 解析結果

新設からひび割れ度が10(cm/m²)となるまでの期間を整理した結果を表-7.5に示す。舗装管理支援システムに おいて、表-7.4の条件下では、N₅交通以下のデータは得られなかったため、N₆交通以上について示している。

N₆、N₇交通ともに舗装設計便覧に示されるコンクリート舗装の信頼度 70%と同程度の結果が得られた。本調査では、対象をひび割れ度が 10(cm/m²)以上となったコンクリート舗装としたため、実際のコンクリート舗装の新設から補修までの期間は表-7.5の値よりも長くなると考えられる。

交通量区分	N ₆	N ₇	N ₆ +N ₇
データの数	154	159	313
破壊までの平均年数	24.4	27.8	26.1
標準偏差	10.0	11.5	10.9
20年以上である確率	0.67	0.75	0.71
変動係数	0.41	0.42	0.42

表-7.5 破壊するまでの期間

3) コンクリート舗装のひび割れ度の推移

図-7.2 にコンクリート舗装における供用年数とひひ割れ度の関係を示す。使用データは舗装管理支援システ ムのH17年のデータであり、トンネル部を除くすべてのコンクリート舗装のひひ割れ度データをプロットしたも のである。図中には N₅~N₇交通のデータのそれぞれの近似直線及び、ひび割れ度が 10(cm/m²)を超える累積割合 を示している。供用50年であってもひび割れ度が10(cm/m²)以下のものが多いことがわかる。以上より、今回の ひび割れ度の検討では、ひび割れ度 10(cm/m²)以下のものは考慮されていないが、このようなものが考慮できれ ば、コンクリート舗装の信頼度はさらに高くなると考えられる。

図-7.2 供用年数に対するひび割れ度

(5) まとめ

本検討では、信頼度の解析方法を2通りの方法により算出した。結果は前述したとおりであるが、舗装が打換 えられた時を破壊とした場合には信頼度は80~90%程度、ひび割れ度が10(cm/m²)以上となった時を破壊とした場 合には信頼度は 70%程度となった。以上より、重交通路線におけるコンクリート舗装の信頼度には、少なくとも これまでと同様の70%という値が適用できることが判明した。

今後さらに多くのデータが集まることにより、より的確にコンクリート舗装の信頼度の算出が可能になると思われる。

参考文献

- 1) 社団法人日本道路協会: 舗装の構造に関する技術基準・同解説、平成13年7月
- 2) 社団法人日本道路協会: 舗装設計便覧、平成18年2月

8. 結論

本共同研究では、コンクリート舗装において、現在使用されている設計方法の検証や見直し、耐 久性の確認を目的として、荷重応力式や温度応力式、疲労度、路盤の設計曲線、構造細目、信頼性 の検討を行うとともに、データをとりまとめた。総括すると以下のとおりである。

< コンクリート版の構造設計の検討 >

- ・ 輪荷重応力式を検討した結果、以下のことがわかった。
 - アスファルト中間層を設置した場合、コンクリート版の縦自由縁部のひずみはわずかに大きく、縦自由縁部応力に対する載荷位置の影響は離れた位置で低減されにくい。
 - 縦自由縁部応力に対する載荷位置の影響について、現行設計法の輪荷重応力式では自由縁 部から近い位置で低減率を大きく見積もっている可能性がある。
 - ▶ 横ひび割れ部や横目地部の動的な挙動について、3DFEM で正確に再現できることを確認 するとともに、横ひび割れ部の荷重伝達については鉄網やアスファルト中間層の効果が少 ないことがわかった。
- 温度応力式を検討した結果、以下のことがわかった。
 - ▶ 全国 9 カ所で1年間温度計測し、地域特性を考慮した温度差とその発生頻度を求めた。
 - ▶ 温度応力は、コンクリート版の縁部より中央部の方が大きい。
 - ▶ 温度応力について、版厚 30cm までは現行設計方法による算出結果が 3DFEM による算出 結果よりも小さい。
 - ▶ 温度応力について、現行設計法による計算では版厚による影響が小さいが、3DFEMは版 厚の影響が大きい。

なお、1 測定箇所での測定結果なので、他の地域でも解析が必要である。

- < 路盤の構造設計の検討 >
- ・現行の設計曲線の信頼度について解析した結果、クラッシャラン、粒度調整砕石の設計曲線は 80%、70%の信頼度である。また、セメント安定処理路盤の設計曲線は、路盤厚 15cm で信頼 度 60%、路盤厚 30cm で信頼度 90%と、路盤厚によって信頼度が異なる。
- 信頼度 60%~90%に設定し、各路盤材料の設計曲線を求めたところ、クラッシャランの信頼度
 80%の線と粒度調整砕石の信頼度 90%の線、粒度調整砕石の信頼度 70%の線とクラッシャラン
 の信頼度 60%の線はほぼ重なり、セメント安定処理の現行設計曲線は信頼度 90~60%の間に位置していた。
- 現在用いられているセメント安定処理路盤材の荷重分散能力は、従来の設計方法よりも高くなっている可能性がある。

- < コンクリート舗装の構造細目の検討 >
- ・ 今回調査した現場では、ひび割れ発生後、鉄網は降伏点以上の引張を受けることがわかり、鉄網によるひび割れ幅の抑制効果は見られなかった。
- コンクリート版のひび割れ部で、散水により路盤のエロージョンを促進させた場合、アスファルト中間層を設置することにより段差発生を抑制する効果が認められた。
- < 構造設計における信頼性の検証 >
- 重交通路線におけるコンクリート舗装の信頼度は、少なくともこれまでと同様の70%という値が適用できる。

9. 今後の課題等

コンクリート舗装の構造設計の見直しに向けて様々な検討を実施した。しかし、疲労度の検討等、 研究期間内では結果が出ずに判断できない検討項目については、今後の検討のための資料として、 データのみとりまとめている。今後も土木研究所舗装走行実験場における促進載荷試験や全国にお ける温度調査を継続する予定であり、そのデータを蓄積し、疲労度や構造細目等を検討していく必 要がある。

謝 辞

本共同研究を実施するにあたり、舗装管理支援システムのデータをご提供いただいた国土交通省 および内閣府沖縄総合事務局、コンクリート版の温度測定にご協力いただいた国土交通省東北地方 整備局東北技術事務所、国土交通省中部地方整備局中部技術事務所、国土交通省中国地方整備局中 国技術事務所、国土交通省九州地方整備局九州技術事務所、さらに、現地調査にご協力いただいた 国土交通省の関係者の方々に感謝の意を表します。

参考資料

付録1. 舗装走行実験場における計測データ

1 連続データ	
1)ダミー版 F	1
2)誘発ひび割れ部および目地部 C	5
3)Co 版表面と底面の温度差発生頻度	12
4)縱自由縁部 E	15
5)鉄網 S	19
6) 亀裂変位 K ·······	21
2 段差量測定および計算結果	
1)段差量測定	22
2)段差量計算	23
3 静的載荷試驗結果	
1)ひび割れ部および目地部C	26
2)自由縁部 E	28
3)亀裂変位 K	30
4)土圧 P	30
4 FWD 測定結果 ·······	32
5 動的載荷試験結果	36
6 表面性状測定結果	42

付録1. 舗装走行実験場における計測データ

1 連続計測データ

1) ダミー版

・ひずみの経時変化(温度補正前)

300 温度補正後 200 100 ひずみ(×10⁴) 0 -100 -200 上剖 中央 -300 下部 -40012/18 2/14 4/12 6/9 8/6 10/3 11/30 1/27 3/26 5/23 7/20 9/16 11/13 1/10 日付

(温度補正後)温度:20℃,線膨張係数:10×10⁻⁶℃で温度補正

(温度補正後)温度:20℃,線膨張係数:9×10⁻⁶/℃で温度補正

舗装体温度とひずみの関係(1ヶ月の内、任意の1日のデータを抽出)

付録 1-3

++0	1	1 (24) (14) (14) (14) (14) (14) (14) (14) (1	(*************************************	、 下部 1
	/5 2/1	2.65 11.7	2.62 12.6	2.11 13.6
	3/1	4 12.45	13.07	4 13.82
	4/4	12.09	13.32	14.07
	4/30	11.27	12.47	13.17
200	6/1	10.87	12.92	13.23
第	7/1	10.60	12.15	12.11
	8/1	10.99	10.81	9.91
	9/1	9.84	11.14	9.55
	10/1	11.74	13.45	12.19
	11/1	11.61	12.68	11.95
	12/1	11.94	12.55	12.05
	1/1	12.58	12.80	12.71
	2/1	11.89 1	12.57 1	12.27 1
	3/1 4	2.04 1	2.53 1	2.08 1
	/1 5	3.17 1	2.09	1.88
	/1 5/	.83 10	.05 11	9.60
2009年	31 7/	.97 11.	.68 10.	.96 96.
	1 8/	13 11.	80 10	33 9.
	1 9/	04 11.	37 11.	78 9.
	1 10/	88 12.	12 11.	83 10.
	1 11/3	7 12.02	96 12.50	12.31

010年	1/1	11.99	12.15	12.22	2.4	0.0	47	9.5
2	12/2	11.61	12.32	12.00	7.1	0.0	82	9.3
	11/3	12.02	12.50	12.31	6.7	0.0	73	9.9
	10/1	12.17	11.96	10.40	20.6	0.0	76	4.5
	9/1	11.88	11.12	9.83	24.8	0.0	83	3.4
	8/1	11.04	10.37	9.78	24.7	0.0	80	4.1
9年	7/1	11.13	10.80	9.33	23.1	2.5	90	0.0
200	5/31	10.97	11.68	9.96	19.2	15.0	95	0.1
	5/1	11.83	11.05	9.60	18.6	0.0	63	11.9
	4/1	13.17	12.09	11.88	10.0	4.5	83	0.6
	3/1	12.04	12.53	12.08	7.8	0.0	62	0.2
	2/1	11.89	12.57	12.27	6.7	0.0	51	9.7
	1/1	12.58	12.80	12.71	3.0	0.0	44	9.3
	12/1	11.94	12.55	12.05	6.8	0.0	68	9.2
	11/1	11.61	12.68	11.95	13.0	0.0	73	9.6
	10/1	11.74	13.45	12.19	18.7	4.5	92	0.1
	9/1	9.84	11.14	9.55	27.3	0.0	84	1.7
	8/1	10.99	10.81	9.91	27.6	0.0	77	5.1
8年	7/1	10.60	12.15	12.11	22.2	0.0	77	6.0
200	6/1	10.87	12.92	13.23	18.2	0.0	75	12.2
	4/30	11.27	12.47	13.17	19.0	0.0	70	11.2
	4/4	12.09	13.32	14.07	11.5	0.0	60	9.3
	3/1	12.45	13.07	13.82	4.8	0.0	48	8.8
	2/1	11.74	12.85	13.64	-1.1	0.0	50	10.1
	1/5	12.65	12.62	12.11	1.0	0.0	80	3.7
		上部	₽	下部	0			
4		아파 114 31 31 144 144	擬開張振致□ (×10 ⁻⁶)		平均気温(°C	降水量 (mm)	平均湿度 (%)	(H)

・線膨張係数(ダミー版)まとめ

2) 誘発ひび割れ部および目地部のひずみ

・下部(表面より22.5cm)のひずみ

(中間層有無の比較)

(中間層有無の比較:温度20℃、線膨張係数 11.5×10⁻⁶/℃で温度補正)

・日毎の温度とひずみCの関係(例) 2009.1.1

付録 1-7

付録 1-8

医
\mathbb{R}
6
\mathbf{C}
to
Þ
G
IJ
廀
迥
6
俥
Ш
•

11	
ŝ	
-	
8	
2	

道宁铀品	全土 幺四	医丁酮	また						値は	, x 10 '	ပ္ပ်							7	「ち」値	
Ne Ne Ne	うてて	귀며까		12月22日	1月5日	2月1日	3月1日	4月4日	4月30日	6月1日	7月1日	8月1日	9月1日	10月1日	11月1日	12月1日	ゲージ名	個別、	ゲージ別	中間層有無
			ч	11.67	10.40	10.99	11.26	10.38	10.22	9.78	9.41	9.63	9.17	9.77	10.25	10.98		10.30		
マび割た部	兼		₽	11.02	10.63	11.26	11.79	11.03	10.17	10.63	10.20	8.88	9.44	12.24	11.08	11.84	C1	10.78	11.43	
			۴	10.46	14.26	14.53	13.97	14.29	13.59	13.10	12.62	10.65	11.27	15.37	13.77	13.80		13.21		
			Ч	8.97	10.79	10.06	11.01	10.17	9.75	9.73	9.10	10.04	8.82	9.56	9.85	10.02		9.84		
横目地	Ι	兼	₽	11.81	11.43	12.10	12.41	11.83	11.04	11.60	11.18	10.35	11.04	13.78	12.92	13.04	C2	11.89	11.71	11.68
			۴	10.83	13.75	14.34	13.75	13.36	12.04	13.09	12.60	10.56	12.56	16.67	15.61	15.18		13.41		
			ч	9.43	9.70	9.54	10.28	10.08	9.98	9.80	9.28	9.64	8.88	10.11	10.29	10.10		9.78		
ひび割た部	有		₽	10.32	12.18	12.45	12.62	11.91	10.82	11.95	11.14	9.98	10.40	14.52	12.94	13.18	ទ	11.88	11.89	
			۴	10.06	14.51	14.80	14.26	14.22	12.94	14.24	13.61	11.58	12.43	18.49	15.64	15.27		14.00		
			Ч	8.14	7.65	7.89	8.51	8.65	8.65	8.94	8.53	8.70	8.26	8.82	9.32	9.67		8.59		
ひび割た部	有		₽	11.01	11.09	11.25	11.65	10.86	10.16	10.66	10.29	9.87	9.85	12.61	11.65	11.69	C4	10.97	10.59	
			۴	8.27	13.35	13.63	12.67	12.43	11.42	12.24	12.04	10.24	11.67	14.93	12.89	13.04		12.22		
			Ч	10.25	10.21	10.21	10.31	10.04	9.48	9.09	8.67	9.46	8.45	9.61	9.56	9.85		9.63		
横目地	Ι	有	₽	11.81	11.47	11.17	11.70	10.81	10.02	10.45	9.96	9.60	9.75	12.67	11.99	11.63	C5	11.00	10.87	10.98
			۴	8.69	13.75	15.03	13.70	13.71	11.33	11.90	11.15	9.31	10.26	13.91	11.34	11.57		11.97		
			4	10.32	9.14	8.78	9.52	10.04	9.74	9.75	9.62	10.44	9.10	9.95	9.89	9.99		9.71		
マグ割た部	兼		₽	11.23	11.54	11.78	11.46	10.81	10.66	11.10	10.56	10.36	9.95	12.60	11.69	12.21	C6	11.23	11.46	
			۴	8.26	14.04	15.58	14.19	13.71	12.97	14.08	13.31	11.23	12.89	16.16	14.21	14.29		13.45		

Т	
9.1	
õ	
20	

	中間層有無					11.96									10.85				
™均値	ゲージ別		11.60			12.21			12.08			10.69			10.53			11.32	
ь	個別	10.88	11.17	12.75	9.71	12.57	14.35	9.85	12.24	14.14	8.87	10.94	12.27	9.42	11.06	11.09	9.73	11.28	12.95
	ゲージ名		C1			C2			ß			C4			C5			C6	
	1月1日	11.29	11.83	14.00	9.58	12.53	14.93	9.91	12.62	15.12	9.17	11.23	12.33	9.91	11.28	11.35	9.59	11.65	13.46
	12月2日	10.87	11.26	14.04	9.14	12.20	14.98	9.66	12.22	15.10	8.90	11.08	12.07	9.54	11.29	11.11	9.44	11.30	13.98
	11月3日	10.91	11.78	14.96	9.37	12.87	16.24	9.95	12.71	15.99	9.04	11.53	13.66	9.68	11.64	12.12	9.67	11.66	14.73
	10月1日	11.07	10.71	12.25	11.13	13.64	15.16	10.54	12.15	14.67	9.20	10.74	12.36	9.29	10.58	9.95	9.94	10.80	12.47
	9月1日	10.23	9.80	10.78	10.86	12.39	13.08	10.10	11.28	13.03	9.46	10.07	11.12	8.99	9.82	9.76	9.82	10.10	11.68
°C)	8月1日	9.85	9.49	10.66	9.50	11.14	11.94	9.70	10.88	11.81	8.53	10.04	11.16	9.19	10.24	10.42	9.08	9.72	10.97
ة (× 10 ⁻⁶ /	7月1日	12.84	12.20	12.64	9.48	12.32	13.66	9.43	11.42	13.32	8.12	10.19	11.57	8.68	10.58	10.59	10.07	10.65	12.12
傾き	5月31日	9.66	10.63	11.83	9.17	13.33	14.16	9.20	12.41	14.19	7.86	11.04	13.15	8.39	11.22	11.62	9.50	11.64	12.56
	5月1日	10.59	9.65	9.95	9.85	11.45	11.57	10.08	11.23	11.33	9.15	10.34	10.87	69.69	10.46	9.77	10.05	10.25	10.87
	4月1日	11.50	12.21	12.91	9.71	13.27	14.88	10.38	13.08	14.25	00'6	11.58	11.92	10.28	11.69	11.18	10.26	12.21	12.57
	3月1日	10.49	11.41	13.19	9.42	12.74	15.06	9.56	12.96	14.70	8.65	11.25	12.70	9.26	11.43	11.84	9.36	11.91	13.89
	2月1日	10.36	11.79	14.00	9.07	12.62	15.39	9.30	12.87	14.87	8.65	11.28	13.81	9.22	11.50	12.41	9.31	12.28	14.96
	1月1日	11.73	12.41	14.57	9.99	12.98	15.48	10.19	13.28	15.50	9.51	11.88	12.86	10.39	12.11	12.06	10.38	12.40	14.10
新生		ч	₽	۴	щ	₽	۴	Ч	₽	۲	ч	₽	۴	ч	₽	۴	Ч	₽	۴
と見て	十回道					兼									忄				
全化 40日	现入消气		兼			Ι			俥			栯			Ι			兼	
田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	测先固则		マび割た部			横目地			ひび割た部			マび割た部			横目地			マび割た部	

・目地部および誘発ひび割れ部(散水試験を実施した C1,C6 は除外)

3) Co 版表面と底面の温度差の発生頻度:2008 年1月1日~2009 年12月31日(ダミー版Fおよびひび割れ・目地部 C)

(温度差発生頻度)

	寻开/庄 略行	目医見	温度差の大 きいところ	0.000	0.005	0.018	0.032	0.040	0.050	0.080	0.100	0.125	0.190	0.360	0.410	0.320	0.220	0.048	0.002	2
	むき キド 単砂	副教政	温度差の小 さいところ	0.000	0.000	0.000	0.002	0.016	0.037	0.085	0.110	0.155	0.205	0.390	0.600	0.335	0.063	0.002	0.000	2
		,08年+,09年		0.000	0.000	0.000	0.011	0.035	0.066	0.095	0.148	0.168	0.194	0.282	0.356	0.421	0.201	0.022	0.000	2
	ダミー版	+60,	ダミー版 F	0.000	0.000	0.000	0.013	0.037	0.067	060.0	0.150	0.160	0.187	0.295	0.365	0.414	0.200	0.020	0.000	2
		,08年		0.000	0.000	0.000	0.010	0.032	0.065	0.100	0.146	0.177	0.201	0.270	0.347	0.427	0.203	0.023	0.000	2
		98年+,09年		0.000	0.000	0.011	0.030	0.056	0.083	0.121	0.133	0.147	0.165	0.255	0.289	0.435	0.242	0.033	0.000	2
		09年	中間層:有 C5	0.000	0.001	0.017	0.035	0.058	0.076	0.116	0.130	0.140	0.159	0.268	0 258	0.421	0 274	0.047	0.000	2
	部	08年		0.000	0.000	0.004	0.025	0.054	0.090	0.125	0.135	0.154	0.171	0.241	0.321	0.450	0.210	0.020	0.000	2
頻度	目地	08年+,09年		0.000	0.003	0.017	0.041	0.061	0.088	0.119	0.135	0.143	0.164	0.229	0.259	0.407	0.268	0.064	0.002	2
		,	中間層:無 C2	0.000	0.006	0.027	0.048	0.059	0.083	0.120	0.129	0.141	0.162	0.224	0.231	0.376	0.302	0.086	0.004	2
		,08年		0.000	0.000	0.008	0.033	0.060	0.097	0.122	0.140	0.148	0.168	0.223	0.238	0.436	0.261	0.065	0.000	2
		,08年+,09年		0.000	0.005	0.019	0.042	0.063	0.099	0.119	0.132	0.143	0.162	0.217	0.206	0.383	0.308	0.099	0.004	2
		 460,	中間層:有 C4	0.000	0.009	0.028	0.046	0.063	0.095	0.118	0.126	0.139	0.159	0.216	0.197	0.338	0.333	0.124	0.008	2
	割れ部	,08年		0.000	0.001	0.010	0.038	0.063	0.102	0.120	0.137	0.146	0.165	0 219	0.215	0.428	0.283	0.074	0.000	2
	誘発ひひ	,08年+,09年		0.000	0.007	0.022	0.046	0.067	0.099	0.124	0.127	0.139	0.156	0.214	0.232	0.395	0.286	0.083	0.003	2
		 460,	中間層:無 C3	0.000	0.010	0.027	0.050	0.066	0.094	0.124	0.125	0.140	0.155	0.208	0.209	0.358	0.320	0.107	0.005	2
		'08年		0.000	0.003	0.018	0.041	0.068	0.102	0.125	0.129	0.138	0.157	0.219	0.257	0.433	0.252	0.058	0.000	2
		温度差(°C)		$21(20\sim21.9)$	$19(18 \sim 19.9)$	$17(16 \sim 17.9)$	$15(14 \sim 15.9)$	$13(12\sim13.9)$	$11(10\sim11.9)$	$9(8 \sim 9.9)$	$7 (6 \sim 7.9)$	$5(4 \sim 5.9)$	$3(2\sim 3.9)$	$1(0\sim 1.9)$	$-1(0.1 \sim 2.0)$	$-3(2.1\sim 4.0)$	$-5(4.1\sim 6.0)$	$-7(6.1\sim 8.0)$	$-9(8.1 \sim 10.0)$	合計

付録 1-13

(疲労度の試算) ・計算条件

設定された舗装の目標 (情報度 (%) 考慮 本行頻度 本行頻度 上行頻度 上行例度 方式) 本行頻度 (計例の工廠数(単約) 本分な 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	項	E	条件
	ヨ 三 三 井 郡 々 よ 子 晴	舗装の設計期間(年)	20
走行頻度 走行頻度 志行頻度 路周の有無 十分次 コングリート結果の種類 23 コングリート結果の種類 24 広力算出位置 第一二、23 広力算出位置 第一二、23 広の条件 第四年(系数、(APa)) 第四年(系数、(APa)) 30 和世界強度 (APa) 第四年(系数、(APa)) 30 市営額 第目自縁 市営額 第目自縁 市営額 第目自縁 市営額 第目自縁 市営額 第日前線 市営額 第日前線 市営額 第日前線 市営額 第四年(第四年) 市営額 第四年)	成化ですいて開致ショで	信頼度 (%)	考慮しない
レー1 四尺 F1 側の車線数(車線) 23 コングリート舗装の種類 普通コ コングリート舗装の種類 普通コ 広力算出位置 離自車線器 成の条件 瓶(F) 魚(Pa) (1) 市(1) 一(1) (1) (1) (1) 一(1) (1) (1) (1) 一(1) 前(1) (1) (1) (1) (1) (1) (1) 前(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (2) (2)	地 野 少 平	路肩の有無	十分な路肩有り
コングリート舗装の種類 普通コ 応力算出位置 統目 補約 施厚 (cm) 統自 補約 施厚 (cm) 30. 曲げ強度 (MPa) 30. 通び酸素 (MPa) 30. 通び素 (MPa) 30. 加. 加. 加. 加. 加. 加. 加. 加. 加. 加. 加. 加. 加.	た11 頻良	片側の車線数(車線)	2車線
応力算出位置 応事業(MPa) (Co版の条件 一曲げ強度(MPa) 一曲げ強度(MPa) 一曲げ強度(MPa) 一一一一一一一一一一一一一一一一一一一一一一 一一一一一一一一一一一一	コングリート	舗装の種類	普通コンクリート
版厚 (cm) 版厚 (cm) 出 曲げ強度 (MPa) 四 血に労強度 (MPa) 30, 第世公式 30, 第世の 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,	応力算	出位置	縦自由縁部, 横目地部
曲げ強度(MPa) 点 単性係数(MPa) 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,		版厚 (cm)	25
応応の条件 弾性係数 (MPa) 30, 30, ボアソン比 30, 30, ボアソン比 30, 30, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1		曲げ強度 (MPa)	4.4
	い話の冬年	弹性係数 (MPa)	30,000
温度膨張係数(1/℃) 1.0. 機収縮目地間隔(m) 1 輸荷重群と通過輸数 舗装設書 輸荷重群と通過輸数 舗装設書 空通条件 温度差が正または負のと 3 支の大型車の比率 第 3 方イヤ技地半径 舗装設書 3 路盤支持力係数K ₁₅ (MPa/m) 6 1 振行度算定 1.0. 6		ポアソン比	0.2
横収縮目地間隔(m) 1 輸荷重群と通過輸数 舗装設書 範方重群と通過輸数 舗装設書 芝通条件 温度差が正または負のと 3 シの大型車の比率 第 予イヤ接地半径 舗装設書 路盤支持力係数K ₁₅ (MPa/m) 1 疲労度算定 1		温度膨張係数 (1/°C)	1.0.E - 05
輪荷重群と通過輪数 舗装設書 交通条件 2 定述または負のと 2 の大短車の比率 第 に 第 に 第 に 第 に 第 に 第 に <		横収縮目地間隔 (m)	10m
交通条件 温度差が正または負のと 称 きの大型車の比率 離抜読言 タイマ接地半径 舗装読言 路盤支持力係数K ₅₅ (MPa/m) 1 疲労度第に 4000 1000 1000 1000 1000 1000 1000 100		輪荷重群と通過輪数	舗装設計便覧参照
タイヤ夜地半径 舗装設書 路盤支持力係数K ₁₅ (MPa/m) 1 酸紫支持力係数K ₁₅ (MPa/m) 1 市 労費業 市	交通条件	温度差が正または負のと きの大型車の比率	郊外部
路盤支持力係数K ₅₅ (MPa/m) 1 疲労度算定 舗装設言 		タイヤ接地半径	舗装設計便覧参照
振労度算定 編装設計	路盤支持力係	数K ₇₅ (MPa/m)	100
1、211-1、4世界推荐を10/) 50	疲労思	ぎ算定	舗装設計便覧参照
コングリートリン版力 収壊地 (70)	コンクリートの疲労	行破壞確率 (%)	50, 20

・計算結果

1		
/		
ì		
1		
Ł		
_		

		計便覧	て 差	X	0.33	0.00	0.03	67.86	0.69	4.27
		舗装設	温厚	1	0.06	0.00	0.00	1.50	0.06	0.43
		'08年+ '09年			0.12	0.00	0.01	3.28	0.13	0.93
	ダミー版	,09年	ビゼニー語		0.12	0.00	0.01	3.54	0.14	1.00
		,08年		1	0.11	0.00	0.01	3.11	0.12	0.88
		08年+ 709年	4	Ē	0.25	0.00	0.02	16.05	0.39	2.61
		99年	国間日	二十回/昌	0.31	00.00	0.02	31.23	0.54	3.50
	日告じ	08年	L L L L L L L L L L L L L L L L L L L	5	0.20	00.0	0.01	9.18	0.27	1.90
疲労度	日州	'08年+ '09年	ŧ	**	0.36	00.0	0.03	50.51	0.66	4.24
		——————————————————————————————————————	一個四一	. 十周/冒 :	0.47	0.00	0.04	87.90	0.97	6.01
		,08年	6.0	20	0.25	0.00	0.02	13.90	0.37	2.51
		`08年+ ,09年	4	Ē	0.41	0.00	0.03	71.00	0.79	5.00
		 460,	四副中・	: 十周/眉	0.52	00.00	0.04	116.41	1.12	6.88
)割れ部	,08年	Ú	C4	0.29	00.00	0.02	25.58	0.47	3.11
	誘発ひて	'08年+ '09年	自	*	0.46	0.00	0.04	92.69	0.95	5.91
		,09年	四間中		0.54	0.00	0.05	125.24	1.17	7.19
		,08年	50	5	0.38	0.00	0.03	51.71	0.69	4.42
		破確壊率	(%)		I	50	20	Ι	50	20
計算条件		疲 沙 小	声作な		<u></u> ⊒੯(a)	(1) 		$\overline{\pi}^{\mu}(a)$	(1) ,1	(1))
		広算力出	位置			横目地 部		-	縱自由 緣部	

4)縦自由縁部のひずみ

・下部(表面より22.5cm)のひずみ

付録 1-15

日付

1/27

3/9

6/9

・下部(表面より 22.5cm)のひずみ
 (温度 20℃、線膨張係数 11.5×10℃で温度補正)
 (中間層有無の比較)

の関係
Э
ひずみ
Ĺ,
手の温度
圅
Ш
•

2	
-	Г
~	
0	
0	
\sim	

		_		_	_	_	_	_					_				_		
	12月1日	7.78	14.56	16.64	10.26	11.14	13.17	9.44	12.42	13.37	12.10	12.70	15.92	11.07	12.51	15.04	7.99	10.00	11.75
	11月1日	7.72	14.71	18.17	9.65	10.99	13.43	8.51	12.09	12.46	11.95	13.24	16.40	11.05	13.06	15.75	7.87	10.17	11.46
	10月1日	5.54	14.30	20.89	9.75	8.94	12.86	6.05	9.89	10.76	9.69	12.66	16.33	8.80	11.75	14.58	6.45	10.06	12.29
	9月1日	5.96	13.75	17.13	8.47	9.60	11.70	6.59	9.40	10.58	9.87	11.31	14.89	9.00	11.70	13.98	7.18	9.88	11.25
	8月1日	4.78	10.33	13.62	8.05	7.83	7.66	5.73	7.84	7.14	9.56	9.81	11.27	8.21	8.93	8.91	6.47	8.09	8.11
(O,	7月1日	5.96	11.21	15.74	7.23	8.53	10.75	5.40	8.66	10.27	8.63	10.21	14.00	7.45	10.31	12.25	5.66	8.71	10.73
莟(× 10 ^{−6} /	6月1日	7.81	12.84	17.26	8.78	10.12	12.18	6.55	10.14	11.75	10.47	11.93	15.61	9.06	11.46	13.47	6.67	9.67	11.55
傾	4月30日	6.34	11.37	14.46	7.96	8.13	9.23	5.59	8.22	9.08	9.10	9.79	12.41	7.69	9.05	10.36	5.78	7.97	9.34
	4月4日	7.29	12.84	15.56	9.27	9.90	11.93	7.26	10.24	11.70	10.53	11.46	15.25	8.97	10.66	12.81	7.20	10.05	12.20
	3月1日	6.89	13.23	15.66	10.69	11.06	12.69	8.77	11.51	13.37	10.64	11.70	14.98	9.36	11.18	13.46	7.19	10.76	12.24
	2月1日	7.12	14.73	16.46	10.09	11.21	13.74	8.77	12.88	15.74	10.31	12.64	17.06	9.51	13.04	16.00	7.23	12.65	14.83
	1月5日	5.18	11.93	14.76	8.20	9.43	10.76	7.27	10.53	13.02	8.97	10.48	13.29	6.21	10.00	11.61	2.56	8.82	9.99
	12月22日	0.04	2.60	3.92	0.07	1.13	4.32	-1.00	-0.22	3.78	0.39	3.47	5.21	1.00	4.57	3.83	0.50	5.40	6.01
医法	回対	ᅬ	₽	۴	ᅬ	₽	⊬	ч	₽	۴	ч	₽	⊬	ч	₽	۴	ч	₽	۴
ゲージ	No.		E6			Ξ	•		E2			E3	•		E4			E5	
町中	層					兼						有無				4	É.		
全土 公平	패지 개덕			ŧ	ŧ						1		4	Ē					
丧表	<u>(</u> 2		10					I				5							
測定	箇所				<u> </u>					自由	縁部								
		I																	

2008.1-測定 版

	1月1日	7.79	15.23	18.28	10.45	11.65	8.60	9.79	12.72	14.39	12.41	13.35	16.60	11.57	13.65	16.31	8.50	10.70	11.85
	12月2日	7.28	13.80	16.80	9.62	11.12	6.62	8.60	10.67	12.02	10.97	12.24	15.66	10.23	12.04	15.33	7.60	9.55	10.85
	11月3日	7.39	15.53	19.62	9.70	11.04	6.35	9.09	12.62	13.89	12.15	14.00	17.72	11.26	13.77	17.43	8.17	10.94	12.58
	10月1日	6.41	14.09	19.08	10.96	11.21	5.04	9.69	14.02	13.27	11.89	12.60	14.97	11.24	11.88	13.69	7.69	8.77	8.97
	9月1日	6.11	11.99	16.33	9.92	9.75	6.62	8.00	11.10	10.69	11.19	11.81	13.76	10.43	11.89	12.35	7.98	9.51	9.87
.₀C)	8月1日	4.95	11.14	14.73	8.13	8.27	6.09	7.64	10.20	9.24	9.79	10.45	12.38	8.86	10.15	10.47	6.84	7.98	8.33
き(×10 ^{−6} /	7月1日	5.02	11.86	16.30	7.58	8.69	11.27	7.31	11.37	10.49	8.95	10.67	14.20	8.27	10.88	12.34	6.15	8.29	9.27
傾	5月31日	4.83	12.79	17.74	8.48	9.48	_	7.34	11.44	10.06	9.52	11.56	13.57	9.02	11.72	13.12	7.03	9.69	10.79
	5月1日	5.77	11.31	13.98	8.80	8.45	8.68	7.98	10.06	8.94	10.25	10.44	11.85	9.38	9.95	10.01	7.40	8.89	9.00
	4月1日	6.03	14.86	17.04	10.01	10.62	10.68	9.69	14.06	11.34	11.42	13.03	13.99	96.6	12.20	12.04	8.39	10.61	10.23
	3月1日	6.63	13.80	18.22	9.69	11.53	13.48	8.76	12.29	12.79	10.78	12.52	15.23	9.71	12.06	14.42	7.58	10.33	11.65
	2月1日	6.99	16.02	20.38	9.48	11.47	14.09	9.28	14.86	15.66	11.58	14.36	18.18	10.48	14.07	16.97	7.62	11.27	13.31
	1月1日	09'1	15.15	17.69	10.83	11.72	13.91	10.41	13.88	15.19	12.64	13.39	16.59	11.64	13.80	15.99	8.63	10.80	12.32
生業	副ガ	ч	₽	۴	ч	₽	۴	ч	₽	۴	ч	₽	۴	ч	₽	۴	ч	₽	۴
ゲージ	No.		E6			Ξ			E2			E3			E4			E5	
副中	围					兼						有無				4	Ē		
全土 公田	選入 ilfr5			ŧ	ŧ	栕													
丧责	(je		10									5							
巡近	箇所									日日	縁部								

付録 1-18

5)鉄網ひずみ

・鉄網ひずみと亀裂変位量の関係

(鉄網ひずみ:中間層有無工区でそれぞれ最大値を示した S1 と S6) (亀裂変位量:鉄網ひずみ S1 に対して K3、S6 に対して K4)

(データ: 亀裂変位量が増加傾向にある 2009.7 以降)

2009年(7.1-12.31)

6) 亀裂変位

上部ゲージ

※K3-1 データ異常のため途中から削除

1) 段差量測定結果

朡溠測定結県

測定箇所:①誘発ひび割れ部(中間層無・鉄網無) ②誘発ひび割れ部(中間層有・鉄網無)

測定箇所:横断方向に20cmピッチで9点

測定方法:舗装調査・試験法便覧 S031(スケールによる方法)

		_					 	 	 _
		Ave	0.1	0.1	0.2	0.4			
		6	0.0	1.0	1.0	1.0			
	網無)	ω	0.0	0.0	0.0	0.5			
	有•鉄	7	0.0	0.0	0.0	0.5			
	中間層	9	0.0	0.0	0.0	0.0			
	れ部(1	5	0.0	0.0	0.5	0.5			
	いび割	4	0.0	0.0	0.5	0.5			
	2)誘発:	33	0.0	0.0	0.0	0.0			
	0	2	1.0	0.0	0.0	0.0			
(mm)		-	0.0	0.0	0.0	0.5			
業量		Ave	0.2	0.9	1.3	1.3			
斑		6	0.0	1.0	1.0	1.0			
	月無)	œ	0.0	1.0	1.0	1.0			
	₩・鉄絲	7	0.0	1.0	1.5	1.0			
	日間層	9	2.0	2.0	3.0	3.5			
	れ部(ロ	5	0.0	1.0	1.5	1.5			
	ゝび割ぇ	4	0.0	1.0	2.5	2.5			
)誘発(33	0.0	1.0	1.0	1.5			
	0	2	0.0	0.0	0.5	0.0			
		-	0.0	0.0	0.0	0.0			
			02	C		C			
	、累積:0		15	300	45(909			
輪数	積) (0	000	000	000			
三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三	· 】 】			200,	300	400,			
1			7月14日	10月22日	12月24日	2月25日			

・計算条件

- ●たわみ量の算出方法
 - ・ JSCE示方書 たわみ量算定式(コンクリート版自由縁部の算定式)
 →As中間層の有無によるたわみ量は同一となる
 (→"軸荷重iによるたわみw_i"="輪荷重F_iによるたわみw_e"とする)

●荷重車条件:10万輪走行期間あたり

•	荷重車					
	自重	12	t			
	載荷板(前)) 10	t			
	載荷板(後)) 11	t	荷重車計	33	t
•	<u>軸重(メーカー測定値)</u>)		9.80665		
	前軸	7.05	t	69.1 k	٨N	
	後前軸	13.07	t	128.2 k	٨N	
	後後軸	12.97	t	127.2 k	N	
•	<u>輪荷重</u>					
	 	3.53	t	34.6 k	٨N	
	後前輪	6.54	t	64.1 k	٨N	
	後後輪	6.49	t	63.6 k	κN	
•	5t換算輪数					
		0.25	輪			
	後前輪	2.92	輪			
	後後輪	2.83	輪	1台計	5.99	輪
	10万輪相当	6台数 16,681	台			
•	<u>荷重繰り返し回数</u> (10万輪走行期間中)	16,681	回			

●年間降水量について

- ・荷重車走行時、ひび割れ部に散水を実施(H21.7~)
 →ひび割れ1カ所につき、10万輪相当走行期間中に降水量1,500mm相当を 散水
- ・10万輪相当走行期間を1年とし、年間降水量を1,500mmとする

·計算結果

路線名: 舗装走行実験場 区間 : 共同研究Co工区

- ●計算条件
 ・たわみ量 :示方書(解Ⅲ-1.2.1)コンクリート版自由緑部の算定式を使用 (→As中間層の有無でたわみ量は同一)
 ・荷重車走行期間:14年間(5括換算輪数40万輪相当)
 ・降水量 :10万輪相当走行期間を1年とする(荷重車走行1年間で降水量4年間分)

O交通量·降雨量

					※アメダス:	
年度	大型車 交通量 (台/日)	混入率 (%)	日交通量 (台/日)	年度交通量 (台)	平均降水量 [※] (mm)	
H21 10万輪				16,681	1,500	
H21 20万輪				16,681	1,500	
H21 30万輪				16,681	1,500	
H21 40万輪				16,681	1,500	
			合計交	通量(上下線)	年間降水量	(平均)
				66,724	1,500	mm
			合計	交通量(片側)		
				66,724		

〇入力条件

項目	記号	単位	入力値	
荷重	F	Ν	-	
路盤反力係数	K ₇₅	GPa/m	0.030	※施工時のHFWD測定結果より(中間層無工区、路盤厚30cm)
コンクリートのヤング係数	Ec	MPa	33,000	※曲げ強度 5.6MPaより
コンクリートのポアソン比	ν		0.2	
コンクリート版厚	h	mm	250	
年間降水量	PRE	mm	1,500	
平均目地間隔	JS	m	10	
排水に関する係数	DR		1	(排水なし0,端部からの排水1):ダウエルバーを有さない場合に入力
路肩の有無に関する係数	C ₂		0.06	(ない場合0.06,ある場合0.94)

O計算値

剛比半径		mm	1105
コンクリート版 たわみ量	w _e	mm	1.20322E-05 × F _i
			ここで、F _i :荷重(N)

エロージョン量

	重	たわみ量※	仕事率	C ₁	C1•P-9	軸荷重iに対する	相対度数	全交通量	軸荷重iの	エロージョン量
(ton)	(N)	W _e	P			許容繰返し数	SD	ATV	推定繰返し数	
	9.80665×10^{3}	(mm)				Ni			$n_i = SD \times ATV$	
3.53	34,568	0.42	2.88	1.00	-6.13	#NUM!	1 0000	66,724	66,724	0.000
6.54	64,086	0.77	9.88	1.00	0.88	64,575,356	1 0000	66,724	66,724	0.006
6.49	63,596	0.77	9.73	1.00	0.73	86,780,769	1 0000	66,724	66,724	0.005
※"一〇二 一 一 ※ 「 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	よるたわみw _i =	輪荷重Fiによる	ったわみw _{ei} "とす	-2				累積エロ	コージョン量 ER:	0.011

※"軸荷重iによるたわみwi=輪荷重Fiによるたわみwei"とする

目地段差量	FT	(i)ダウエルパーを有する場合	1.00	mm
		(ii)ダウエルバーを有さない場合	0.53	mm

3) 段差量測定結果まとめ

		段差量	(mm) ^{**}		仍辛
通過輪数(万輪) (散水開始以降)	0	20	30	40	p左 増加量
測定日	'09/7/14	'09/10/22	'09/12/24	'10/2/25	
①ひび割れ部 (中間層無, 鉄網無)	0.2	0.9	1.3	1.3	1.1
②ひび割れ部 (中間層有,鉄網無)	0.1	0.1	0.2	0.4	0.3

※段差の測定は、舗装調査試験法便覧S031(スケールによる方法)により実施した。段差量は、横断方向に50cmピッチで9点測定し、平均値を示した。

4) 段差量計算結果まとめ

試算期間(散水40万輪相当走行期間;H22.2現在)

算出方法	対象期間	段差量 計算値(mm)	段差 実測値	<u> き量</u> 直(mm)
		ダウエル無	中間層無	中間層有
JSCEたわみ量 算定式	散水開始以降 40万輪相当走行期間	0.53	1.1	0.3

5) 段差量試算結果(H22 年度 40 万輪走行分)

試算条件

1H21と同条件(年間降雨量1,500mm)
 2年間降雨量3,000mm(2倍)
 3年間降雨量15,000mm(10倍)

降雨(曹	**	年	間降雨量(n	nm)
ן / נאו דיי		1,500	3,000	15,000
段差量	ダウエル無	0.63	0.81	2.13
(mm)	ダウエル有	1.19	2.28	22.76

3 静的載荷試験

1)ひび割れ部および目地部 C

・底面ひずみ:ゲージ上、中、下の測定値から推定

												Co版底	「国のひ	j 4 di (;	< 10 ⁻⁶)										
		-		. 験 (H2	1.6.4)		20	日数	휯(H 21.	8.27)	-	3 3 1	観点	(H21.1	ا.ھ)			试験 (H	21.12.1	(क्र)		20 8	試験 (H 2	2.3.1)	
載荷点 荷重	팉(kN)	19.6	39.2	58.8	78.5	98.1	19.6 3	39.2	58.8	78.5 5	18.1 1: 1:	9.6 3!	9.2 58	.8 78	5 98	.1 19.	5 39.2	58.8	78.5	98.1	19.6	39.2	58.8	78.5	98.1
C6b反対側 C6(中間層有,鉄網無)	1	2	2	3	4	2	4	7	6	11	0	0	0	0	- -	0 0	0	-	-	0	0	-1	-1	Ē
C6a直上		21	43	64	85	106	15	30	45	60	75	20	41 (31 8	11	1 1	9 39	58	77	97	19	38	56	75	94
	伝達率(%)	3.5	3.6	3.5	3.5	3.5	14.8 1	14.8	14.8	14.8	4.8	0.5 -(0.5 -0	2 -0	5 -0	.5	7 0.7	0.7	0.7	0.7	-1.0	-1.0	-1.0	-1.0	-1.0
C5b反対側 C5((中間層有, 鉄網N)	3	9	8	11	14	3	5	8	10	13	2	4	9	8	0	2 4	9	8	10	2	4	9	8	10
C5a直上		16	32	48	63	79	16	32	48	64	80	17	33 (50 6	3 99	33 1	5 33	49	99	82	16	32	48	64	80
	伝達率(%)	17.4	17.4	17.4	17.4	17.4	16.3 1	6.3	16.3	16.3	6.3	2.4 1.	2.4 12	4 12	4 12	.4 11.	9 11.9	11.9	11.9	11.9	12.8	12.8	12.8	12.8	12.8
C4b反対側 C4(中間層有,鉄網有)	3	9	6	12	14	4	8	12	16	19	-	2	3	4	5	1 2	ŝ	2	9	4	8	11	15	19
C4a直上		18	37	55	74	92	18	35	53	70	88	17	35 (52 é	3 6;	37 1	7 34	51	67	84	17	34	51	68	86
	伝達率(%)	15.8	15.7	15.7	15.7	15.7	22.2 2	2.2 2	22.2	22.2	2.2	5.7	5.7 5	.7 5.	.7 5	.7 6.	3 6.8	6.8	6.9	6.8	22.2	22.2	22.2	22.2	22.2
C3b反対側 C3(中間層無, 鉄網有)	-		2	2	3	З	7	10	14	17	0	0	0	0	0	1	2	2	ŝ	0	0	0	0	0
C3a直上		17	34	51	68	85	14	29	43	57	72	17	34 {	50 6	3 23	34 1	5 32	48	64	80	17	34	51	68	85
	伝達率(%)	3.6	3.6	3.6	3.6	3.6	24.4 2	24.4	24.4 2	24.4 2	4.4	0.6 (0.6 0	.6 0.	.6 0	.6 3.	3.8	3.8	3.8	3.8	-0.2	-0.2	-0.2	-0.2	-0.2
C2b反対側 C2((中間層無, 鉄網N)	6	11	17	22	28	5	10	15	19	24	4	8	12 1	; 9	0;	4 8	12	16	20	4	8	11	15	19
C2a直上		15	30	45	59	74	15	29	44	58	73	16	32 ,	48 6	34 8	30 1	5 31	47	63	79	18	35	53	71	88
	伝達率(%)	37.8	37.8	37.8	37.8	37.8	33.6 3	33.6 \$	33.6 3	33.6 3	33.6 2.	4.5 2,	4.5 24	5 24	5 24	.5 25.	1 25.1	25.1	25.1	25.1	21.6	21.5	21.5	21.5	21.5
C1b反対側 C1(中間層無, 鉄網無)	1	3	4	5	9	4	8	12	16	21	1	3	4	9	7	0 0	1	1	-	0	0	0	0	0
C1a直上		16	32	48	64	80	13	25	38	51	63	15	29 4	14 E	. 6	3 1	5 31	46	62	17	16	32	48	65	81
	伝達率(%)	8.0	8.0	8.0	8.0	8.0	32.6 3	32.6	32.6 🤅	32.6	32.6	9.8	9.8 5	.8 9	8	.8	2 1.2	1.2	1.2	1.2	-0.2	-0.2	-0.2	-0.2	-0.2

付録 1-27

2) 自由縁部 E

・底面ひずみ:ゲージ上、中、下の測定値から推定

		98.1		88	91	83	84	103
	:3)	78.5		70	73	67	67	82
	<u></u> Е(H22	58.8		53	55	50	50	62
	2	39.2		35	37	33	33	41
		19.6		18	18	17	17	21
		98.1		88	85	85	82	06
	12)	78.5		71	68	68	66	72
	В (H 21.	58.8		53	51	51	49	54
	40	39.2		35	34	34	33	36
		19.6		18	17	17	16	18
0		98.1		90	91	84	84	113
× 10 ⁻⁶)	11)	78.5		72	73	67	67	06
(ずみ(Щ (H21.	58.8		54	54	50	50	68
面のひ		39.2		36	36	33	34	45
庳		19.6		18	18	17	17	23
		98.1		100	97	92	88	102
	(8.	78.5		80	78	74	71	81
=	E (H21	58.8		60	58	55	53	61
	20	39.2		40	39	37	35	41
		19.6		20	19	18	18	20
		98.1		97	98	89	79	103
	j (H21.6)	78.5		78	78	71	63	82
		58.8		58	59	53	48	62
		39.2		39	39	35	32	41
		19.6		19	20	18	16	21
		荷 荷重(kN)	置 ゲージNo.	5 E5(中間層有-鉄網有)	4 E4(中間層有•鉄網有)	2 E2(中間層無•鉄網有)	1 E1(中間層無-鉄網無)	6 E6(中間層無-鉄網無)10m
		載	位	Ξ	E4	E2	Ē	E6

亀裂変位 K	(C-b 載荷時)
3)	Ξ

荷重事	t荷位置	-	1回日	3 (H21.6.	(4)			20目((H21.8.2	(2)			3回目(H21.11.	4)		7	4回目(ト	121.12.1 [,]	4)			5回目(H	22.3.1)		
			荷	重 (kN)				荷亶	重 (kN)				荷重	夏 (kN)				荷重	(kN)				荷重	(kN)		
ゲージNo.(設置位置)	イ し に ジ 間	19.6	39.2	58.8	78.5	98.1	19.6	39.2	58.8	78.5	98.1	19.6	39.2	58.8	78.5	98.1	9.6 3	39.2	38.8	18.5 9	8.1 15	9.6 39	.2 58	.8 78.	5 98.	-
		4-12	亀裂変位	変化量	(mm)		倳	裂変位	変化量	(mm)		倳	裂変位	変化量	(mm)		鲁	裂変位3	を化量((mm)		亀裂	変位変/	·L量 (m	m)	
K6(中間層有・鉄網無・ひび割れ部)	-1(上)	0.00	-0.01	-0.01	-0.01 -	-0.02	0.00	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.03 C	00.0	00.0	00.0	0.01 0	.01 0.	00 00	00 -0.0	1 -0.0	1 -0.0	-
	-2(F)	0.01	0.02	0.03	0.03	0.04	0.02	0.04	0.05	0.07	0.09	0.02	0.03	0.05	0.07	0.08	0.01 0.0).02 (<u>) 03</u>	0.05 0	.06 0.	01 0.	02 0.0	0.0	3 0.0	4
K5(中間層有・鉄網N・目地部)	(エ)ー	-0.01	-0.01	-0.02	-0.03 -	-0.04 -	-0.01 -	0.02 -	-0.02 -	-0.03 -	-0.04 -	- 10.0	0.01	0.02	0.03	D.03 -C)-01 -C)- 02 -()- (03)	0.04 -0	.05 -0.	01 -0.	02 -0.0	13 –0.C	4 -0.0	4
	-2(下)	0.00	0.01	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.03	0.00	0.01	0.01	0.02	0.02	00.0) 00.(00.0	00.00	00	00 00	00 0.0	0.0	1 0.0	-
K4(中間層有・鉄網有・ひび割れ部)	-1(上)	0.00	00.00	0.00	-0.01 -	-0.01 -	-0.01	0.01 -	0.02 -	-0.02 -	·0.03	- 00.0	0.01	0.01	0.01	0.02 (00.0).01 –C)- 10.0	0.02 -0	.02 0.	00 -0.	01 -0.0	1 -0.0	2 -0.0	2
	-2(下)	0.01	0.02	0.02	0.03	0.04	0.00	0.01	0.01	0.01	0.02	0.01	0.01	0.02	0.03	0.03 (00.0	0.01	0.01	0.02 0	.02 0.	00	01 0.0	0.0	2 0.0	2
K3(中間層無・鉄網有・ひび割れ部)	-1(エ)	0.05	0.11	0.16	0.22	0.27	0.00	0.00	- 00.0	-0.01 -	-0.01	0.02	0.04	0.06	0.09	0.11 (0.01 0) 101).02 C	0.03 0	.04 0.	01 0.	01 0.0	0.0	3 0.0	e
	-2(下)	0.03	0.05	0.08	0.10	0.13	0.03	0.06	0.08	0.11	0.14	0.04	0.08	0.12	0.17	0.21 (0.04 C) 08 (0.12 C	0.16 0	.20 0.	03 0.	07 0.1	0 0.1	3 0.1	9
K2(中間層無・鉄網N・目地部)	-1(上)	-0.01	-0.02	-0.03	-0.04 -	-0.05 -	-0.01 -	- 0.03 -	- 0.04 -	- 0.05 -	- 90.0-	-0.01	0.02	0.02	0.03	0.04 –()-01 -C)- 10.0)- 20.0	0.03 -0	.03 -0.	01 -0.	01 -0.0	0.0	2 -0.0	e
	-2(下)	0.00	0.00	0.00	0.00	-0.01	0.00	0.00	0.00	0.00	·0.01	0.00	0.01	0.01	0.01	0.02 (00.0) 01 (0.01 C	0.01 0	.02 0.	00 00	01 0.0	0.0	1 0.0	2
K1(中間層無・鉄網無・ひび割れ部)	(エ)ー	0.01	0.01	0.02	0.02	0.03	0.00	0.01	0.01	0.01	0.02	0.02	0.03	0.05	0.07	0.08 (0.01 0).03 (0.04 (0.06 0	.07 0.	02 0.	03 0.0	15 0.0	6 0.0	8
	(4)	000	0.04	0.05	200	0 00	000	0.03	0.05	0.07	000	0.03	0.06	008	111	111 (0 601	7 700	900	0 80 0	10	0 00	10 10	0.0	8 U 1	-

4) 土圧 P (荷重 10t 載荷時)

				1±	(PDa)		
	通過館教						
設置位置	「「「「「」」	P1:ひび割れ	P2:目地	P3:ひび割れ	P4:ひび割れ	P5:目地	H信びの:9H
		(中間層無,鉄網無)	(中間層無)	(中間層無,鉄網有)	(中間層有,鉄網有)	(中間層有)	(中間層有,鉄網有
	0	6.18	13.41	11.10	11.39	17.80	11.22
신부 작습	10	5.78	10.32	0.89	16.23	11.93	3.36
留旧	20	15.68	13.39	16.13	9.47	18.71	1 0.09
⊒ I	30	48.50	8.46	0.27	10.43	21.96	7.47
	40	65.94	6.85	16.03	8.95	28.60	8.20
			P7			P8	
			(中間層無)			(中間層有)	
	0		12.31			11.11	
46 中	10		13.02			8.50	
所で	20		15.51			12.39	
⊒ I	30		16.39			15.07	
	40		15.93			14.40	

 \sim Т

目地・ひび割れ部

亀裂変位

土圧

自由縁部

4 FWD 測定

	7717				変位量		<u>金平尚</u> :セン	<u>上</u> 00 サー位間	写(mm)				路面温度	気温
	測点	-300	0	200	300	450	600	750	900	1200	1500	2000	(°C)	(°C)
初期値	1	288	299	289	284	274	260	248	235	203	166	132	9.9	13.2
(H20)	3	299	315	300	298	287	269	259	247	211	176	127	13.2	14.4
	5	310	318	311	309	303	288	279	266	236	205	164	13.6	14.1
H20.1.7	7	286	297	290	288	282	268	261	250	224	183	156	13.5	13.2
	9	300	311	306	303	295	279	268	258	224	184	150	13.0	13.3
	12	290	306	298	294	288	2/3	263	248	212	1/4	129	12.8	13.2
	15	270	282	278	274	265	202	207	200	100	173	120	12.0	10.1
	17	262	282	273	269	259	243	240	220	199	183	139	13.4	12.7
	19	233	249	241	234	226	208	197	185	158	131	99	12.6	12.5
	21	271	290	274	268	254	236	221	207	174	141	108	11.5	12.3
50万輪後	1	280	294	283	279	262	253	243	228	199	173	131	22.6	20.7
	3	283	297	283	280	266	255	246	231	201	175	132	22.9	23.1
H21	5	291	307	297	296	282	273	266	252	230	215	194	23.9	22.1
初期値	7	283	297	288	284	275	265	258	244	216	191	144	23.9	23.4
1101 4 7	9	281	294	283	284	269	258	250	238	213	197	180	25.3	23.8
H21.4.7	12	288	303	296	292	2/9	208	258	241	208	1/0	122	25.1	22.9
	15	268	283	273	270	259	200	2/4	200	210	183	143	25.0	23.0
	17	261	277	267	263	251	241	232	219	190	166	123	26.6	23.5
	19	267	281	270	266	251	240	231	214	184	161	122	26.8	22.6
	21	247	263	253	253	240	230	223	210	184	163	126	27.4	22.9
60万輪後	1	279	293	284	278	265	252	245	230	201	178	135	25.5	29.7
	3	274	289	282	276	265	254	246	232	205	180	143	26.6	30.4
H21	5	286	296	293	289	279	271	265	255	236	234	237	26.7	30.7
10万輪後	7	278	290	282	281	269	260	254	241	212	188	140	29.1	32.5
1101.0.0	9	2/6	288	2/9	2/8	265	255	250	236	214	209	211	29.4	33.9
HZ1.9.2	13	2/1	280	305	300	202	201	241	220	208	100	118	28.7	33.1
	15	233	278	271	267	256	248	230	272	203	184	150	29.3	32.7
	17	224	238	230	228	214	207	199	187	164	146	114	29.8	33.1
	19	235	247	235	234	220	209	200	186	160	141	120	29.4	31.9
	21	207	221	213	211	200	191	184	174	152	135	105	29.2	33.8
70万輪後	1	281	293	283	283	267	255	247	232	204	179	138	24.0	25.4
	3	289	302	291	285	278	265	257	241	212	183	137	26.5	27.3
H21	5	297	315	305	299	289	281	276	265	242	229	210	26.7	27.1
20万輛後	/	291	300	296	293	284	2/3	267	252	225	200	150	26.9	27.5
LI21 10 0	9	287	301	294	289	2/9	269	263	201	230	100	206	27.0	27.0
HZ1.10.9	13	321	339	328	321	305	289	200	243	225	194	120	28.0	20.3
	15	277	284	280	277	264	257	250	238	213	192	155	28.5	27.2
	17	264	279	269	265	254	242	234	223	194	171	130	28.4	26.9
	19	269	281	273	268	254	241	235	216	192	171	140	28.9	28.2
	21	239	256	249	246	234	224	218	206	181	161	124	30.2	28.5
80万輪後	1	259	274	266	261	249	235	229	214	190	167	129	6.6	10.5
	3	265	278	274	269	258	242	238	224	195	171	133	7.4	10.6
H21 20万龄终	5	2/4	291	280	2/5	267	256	250	241	221	214	215	1.3	10.6
30万1111夜	9	262	273	265	263	249	240	243	221	207	197	194	7.0	10.4
H21.12.15	11	256	271	262	262	247	237	229	213	185	159	110	7.7	10.3
	13	271	288	278	275	258	246	238	224	198	176	143	8.0	11.2
	15	245	256	246	242	241	223	217	207	188	172	140	8.1	11.2
	17	224	236	230	230	218	208	201	190	170	153	122	9.2	12.4
	19	234	248	241	237	222	211	204	193	171	156	138	9.0	12.0
00 T ± 4 //	21	207	223	216	213	201	193	186	176	157	141	110	9.4	12.7
90万輛後	1	263	2/6	265	260	246	233	227	213	187	163	128	9.0	5.5
LI21	<u>১</u>	208	2/9	2/1	2/1	253	240	237	223	198	214	13/	10.8	0.1
40万輪後	7	270	200	201	2// 269	204	200	201	239	221	182	139	10.0	6.6
-107J #m1及	9	264	272	267	265	250	239	234	222	205	195	197	11.6	7.5
	11	259	275	267	264	251	238	231	218	187	158	112	11.5	7.3
	13	280	298	287	280	263	249	241	225	198	172	133	12.1	7.5
	15	251	257	252	250	235	227	222	211	188	171	140	12.2	7.8
	17	226	240	231	229	216	206	203	191	168	150	119	12.1	8.2
	19	230	246	236	232	218	207	201	187	165	148	128	11.7	8.9
1	21	205	220	212	208	199	188	184	173	153	135	107	12.1	8.3

①版史 : 測定結果(各3回平均)(荷重補正後:基準荷重 98.07kN)

<u>v d argo</u> I			itgp .	则足	加不口	<u>- 回一</u>	-1-1) (10	リ里作用」	上次至	54年191년	<u>E</u> 90.0	<u>/////////////////////////////////////</u>			# 7
測定時					変位量	∎µm	:セン1	サー位置	疍(mm)				路面温度	気温	何重 伝達率
	測点	-300	0	200	300	450	600	750	900	1200	1500	2000	(°C)	(°C)	(%)
初期値	2	349	401	412	393	362	332	302	277	228	174	126	11.2	14.6	99
(H20)	4	511	604	366	351	329	302	281	258	211	175	121	12.1	13.8	74
	6	315	345	337	327	311	295	285	265	233	1/5	159	12.4	13.4	97
H20.1.7	8	443	519	401	386	360	328	305	280	231	191	136	12.1	13.2	85
	10	367	432	439	420	387	351	323	297	242	1/8	138	12.2	13.0	99
	14	390	400	413	393	303	329	307	2//	220	163	120	13.2	10.1	93
	14	305	325	264	300	293	2/0	200	247	209	172	124	11.9	12.7	97
	10	202	209	204	200	204	106	100	170	190	1/3	104	12.0	12.4	90
	20	2/5	200	223	210	209	217	207	103	163	120	04	12.0	12.3	97
50万輪後	20	415	491	424	404	365	332	307	276	223	182	119	23.4	22.1	90
0075年間反	4	753	897	188	182	170	159	151	140	123	102	91	23.3	22.1	34
H21	6	411	484	420	403	368	339	315	287	240	203	146	23.8	22.0	91
初期値	8	735	871	175	169	156	146	142	133	118	105	86	25.6	23.0	32
173741 IE	10	375	441	417	397	360	328	305	277	229	189	135	24.5	22.9	95
H21.4.7	12	384	447	353	338	308	283	264	240	198	166	116	25.5	23.5	86
	14	389	457	299	289	267	250	234	215	180	151	106	26.7	23.1	77
	16	366	431	345	330	304	281	263	242	204	173	125	26.2	23.2	87
	18	455	555	210	201	185	173	162	146	122	104	75	27.0	23.3	53
	20	320	376	335	316	285	263	241	218	178	150	103	27.2	23.1	91
60万輪後	2	519	619	555	525	478	436	401	361	293	236	156	26.4	30.1	92
	4	836	996	204	200	185	172	164	154	133	118	92	27.6	31.6	33
H21	6	432	510	449	429	391	358	333	306	252	215	154	28.1	31.4	91
10万輪後	8	850	1014	150	147	138	131	126	118	106	97	84	28.8	31.4	25
	10	399	473	452	429	390	357	330	297	244	203	144	29.3	32.6	95
H21.9.2	12	473	566	331	318	289	265	246	225	184	152	105	29.6	33.6	72
	14	464	550	292	281	259	238	225	205	172	146	106	30.0	33.1	68
	16	433	518	348	333	306	285	265	242	203	172	124	29.6	32.6	78
	18	625	/65	140	139	128	120	114	106	91	80	63	29.9	32.1	31
70下於後	20	361	431	365	348	310	284	258	232	186	153	104	29.2	33.1	89
/0万輛夜		430	514	441	420	389	348	322	280	237	192	127	20.1	20.0	90
LI01	4	//9	932	103	107	270	251	200	201	251	212	154	27.0	27.1	29
□21 20万輪後	0 8	7/0	490 804	166	161	152	1//	120	132	115	103	87	27.0	27.7	31
2075年間1夜	10	385	454	420	300	363	334	309	282	231	103	140	27.0	27.0	94
H21 10 9	12	420	401	329	317	288	267	249	230	188	159	112	27.7	20.0	78
1121.10.0	14	420	502	295	287	262	207	231	212	179	151	108	29.0	27.8	73
	16	403	477	356	339	313	290	272	249	210	177	127	28.5	26.5	83
	18	514	623	187	180	166	155	147	129	114	98	74	29.1	27.6	45
	20	339	398	344	329	294	272	252	228	185	156	109	297	28.2	91
80万輪後	2	449	530	465	440	399	363	334	299	245	196	130	7.3	11.0	91
	4	851	1011	111	108	105	99	96	91	85	79	68	7.3	10.5	19
H21	6	407	479	408	393	355	327	305	271	233	195	142	7.6	10.3	90
30万輪後	8	776	926	134	128	128	114	112	102	95	88	76	7.4	10.5	24
	10	372	438	415	392	356	327	303	273	224	187	134	7.5	10.6	94
H21.12.15	12	471	568	277	264	241	221	207	187	155	128	88	8.0	11.0	63
	14	440	516	257	246	222	209	196	179	152	129	95	8.4	11.3	65
	16	388	458	324	311	283	261	244	224	189	161	116	8.4	11.6	81
	18	590	/1/	143	139	130	121	115	107	92	/9	62	8./	11.9	33
	20	342	402	316	302	269	248	228	206	1/0	142	101	10.9	12.8	86
50万輪俊	2	450	1022	404	442	400	301	330	304	245	196	128	10.4	<u> </u>	90
LI01	4	000	1032	120	130	121	200	200	100	90	107	1/1	10.4	0.4	23
□21	0	42Z 016	498	107	39/	107	329	116	100	232	19/	141	11.Z	1.0	09
すいノノギ間1友	10	302	460	415	30/	357	325	302	272	90 222	190	122	11.2	0.9	<u>24</u> 02
	12	455	5/7	200	276	251	220	217	106	161	122	02	11.0	7.0	52
	14	440	522	250	250	201	200	100	180	152	197	95	125	7.1	65
	16	407	483	326	315	225	262	248	226	189	158	112	12.5	8.4	79
	18	580	705	143	139	128	119	115	107	92	80	62	12.3	8.2	33
	20	351	421	325	308	277	249	234	209	169	138	97	15.7	8.3	85

②冒地およびひび割れ部 : 測定結果(各3回平均)(荷重補正後:基準荷重 98.07kN)

D₀ たわみ量 (版央)

目地部

版央(鉄網有)

<u>ひび割れ部</u>

5 動的載荷試験

1) 動的載荷試験結果例

・ひび割れ部および目地部ひずみ C

(中間層無工区)

(中間層有工区)

・ 土圧 P

(中間層無工区)

(中間層有工区)

(測定値:上面 2.5cm,下面 22.5cm)

则 则	44.48	圏間中	計器	測定位置	枯垂			ŀ	-	-			ן ת	<u> クひずみ(</u>	$\times 10^{-6}$)		ŀ					
位置	24/14-1		No.	(厚さ方向)	H Z	一 回 日	2回目	3回目 4	1回目 51	回目 6L	<u> </u>	日 8 日 8	日回6 日	10回目	11回日	12回目	13回目	14回目 1	5回目:	最次値(+) 員	最小値(-)	客物
			_	H	前輪	-23	-27	-23	-21	-20	-22 -		22 -2	0 -23	-23	-27	-22	-19	-22	-19	-27	-22
ລ			_	上面 (2.5cm)	後前輪	-27	-30	-27	-24	-27	-32 -	-32 -	30 –2	3 –27	-27	-27	-23	-24	-31	-23	-32	-27
ば重	ŧ		5		後後輪	-23	-23	-20	-22	-20	-23 -	-22 –	22 -2	0 -23	-19	-25	-23	-19	-23	-19	-25	-22
割れ	ŧ		5	ł	前輪	28	21	25	27	30	30	26	27 3	0 25	25	27	30	29	30	30	21	27
郶			_	ト国 (22.5cm)	後前輪	29	22	26	29	33	32	32	32 3	0 26	26	26	31	32	34	34	22	29
					後後輪	24	18	21	24	28	28	27	27 2	5 21	21	21	24	27	32	32	18	25
				ł	前輪	-24	-24	-25	-26	-26	-25 -	-24 –	26 –2	9 –24	-22	-28	-27	-25	-26	-22	-29	-25
		ļ	_	上回 (2.5cm)	後前輪	-29	-28	-29	-30	-31	-33	-32 -	34 –3	7 -27	-25	-30	-31	-33	-33	-25	-37	-31
≡≱	1	ŧ	ξ		後後輪	-32	-27	-32	-33	-33	-38 -	-34 –	35 –3	7 –29	-26	-31	-31	-35	-35	-26	-38	-33
릵 把	I		20	H	前輪	22	24	21	25	28	22	22	25 2	4 24	22	24	24	26	27	28	21	24
			_	ト国 (22.5cm)	後前輪	25	25	24	28	30	27	29	30 2	8 24	23	28	27	29	30	30	23	27
					後後輪	27	26	24	30	33	29	32	32 2	9 26	24	26	31	31	32	33	24	29
i				۲ ۲	前輪	-23	-24	-24	-23	-23	-23 -	- 19 -	22 -2	4 -23	-27	-23	-25	-25	-22	-19	-27	-23
5.				(0.5cm)	後前輪	-34	-30	-31	-35	-39	-40 -	-38	40 -3	7 -31	-32	-30	-36	-42	-38	-30	-42	98
5 🗐			č	1	後後輪	-28	-28	-27	-29	-33	-38 -	-37 –	35 –3	0 -27	-27	-28	-30	-35	-35	-27	-38	-31
ē -£			3	Те Ч	前輪	27	28	28	27	22	21	17	20 2	4 30	29	28	25	21	20	30	17	24
; 第				(22.5cm)	後前輪	34	33	33	35	34	34	34	31 3	4 34	33	34	34	32	34	35	31	34
İ	4			11100.33	後後輪	32	30	30	32	31	32	32	30 3	2 29	30	31	33	30	31	30	29	31
i	É			ł	前輪	I	ı	ı	-17	1	-14 -	-12 -	I	-20	-22	-20	-17	-15	-12	-12	-22	-17
÷ ک				(0.5cm)	後前輪	I	1	1	-40	-	-37 -	-33 -	I	-40	-41	-40	-41	-40	-35	-33	-41	-39
5			2	100.2	後後輪	I	I	I	-40	1	-36 -	-33 -	I	-38	-38	-38	-39	-36	-34	-33	-40	-37
ē -£			5	н Ю	前輪	I	I	I	12	1	6	- 8	I	18	18	14	14	10	10	18	8	13
; 第				(22.5cm)	後前輪	I	I	I	33	I	27	24 -	I	36	35	33	34	30	27	36	24	31
ī					後後輪	I	I	I	33	1	28	25 -	I	37	35	33	33	30	29	37	25	31
		1		비	前輪	1	1	1	-14	1	-10	- 1-	1	-15	-19	-16	-14	-10	-10	-7	-19	-13
Π					後前輪	I	-	I	-29	-	-24 -	-21 -	I	-32	-33	-33	-30	-24	-24	-21	-33	-28
∎≢	I	4	ц С	1000.21	後後輪	ı	ı	I	-30	1	-21 -	-20 -	I	-34	-31	-33	-30	-25	-21	-20	-34	-27
		ŗ	3	اللا بلا	前輪	I	-	I	15	-	6	8	I	16	20	16	12	13	10	20	8	13
Ì				(22 5cm)	後前輪	1	-	1	33	-	28	27 -	1	33	32	32	31	32	30	33	27	31
					後後輪	I	ı	ı	31	1	29	27 -	I	31	32	31	30	31	29	32	27	30
ř				н Т	前輪	-	-	-	-13	-	6-	- 1-	1	-17	-18	-17	-14	-11	6	-7	-18	-13
5;					後前輪	I	ı	ı	-27	1	-28	-25 -	I	-28	-30	-29	-29	-27	-26	-25	-30	-28
5	ŧ		ű	100.2	後後輪	I	I	I	-25	1	-23 -	-22 -	I	-26	-26	-27	-26	-24	-23	-22	-27	-25
ē -	ŧ		3	極上	前輪	I	I	I	16	I	10	- 11	I	19	20	18	14	12	9	20	6	14
; 能				(22 5cm)	後前輪	I	I	ı	31	1	29	27 -	I	32	33	30	31	31	27	8	27	30
ł				11100.22	後後輪	1	1	1	30	-	27	27 -	1	29	29	28	28	28	28	30	27	28

25 cm
cm,底面
: 表面 0
(計算値

		ļ							ピークひ)ずみ(×	10 ⁻⁶)						24 A T T T
5向) 7 10日 20日 30	1回目 2回目 3回	2回目 3回	<u>ا</u>	日 4	回目 5回	目 6回目	7回目	8回目	- 目回6	10回目 1	一回日	2回目 1	3回目 1	4回目 15	回目 愚大	<(値(+) 最小値	[(-) 平均
	-29 -33 -26	-33 -26	-29	_	-27 -	-26 -29	9 –26	-28	-26	-29	-29	-34	-29	-25	-29	-25	-34
型 後前輪 -34 -37 -34	3 -34 -37 -34	-37 -34	-34		-31	-35 -40	0 -40	-38	-30	-34	-34	-34	-30	-31	-39	-30	-40
後後輪 -29 -28 -25	3 -29 -28 -25	-28 -25	-25		-28	-26 -29	9 –28	-28	-26	-29	-24	-31	-29	-25	-30	-24	-31 -2
_ 前輪 34 27 31	34 27 31	27 31	31		33	36 37	7 32	33	36	31	31	34	37	35	37	37	27 3
^盟) 後前輪 36 29 33	3 33 39 33 33	29 33	33		36	41 40	0 40	40	37	33	33	33	38	39	42	42	29 3
後後輪 30 23 2	30 23 2	23 2	2	9	30	34 34	t 33	33	31	27	26	27	30	33	39	30	23 33
_ 前輪 -30 -30	- 30 -30	- 30	Ϋ́	31	-32 -	-33 –31	-30	-32	-36	-30	-28	-35	-33	-31	-33	-28	-36 -3
n) 後前輪 -36 -35 -3	3 -36 -35 -3	-35 -3	Ϋ́	9	-37	-39 -41	-40	-42	-45	-33	-31	-37	-38	-41	-41	-31	-45
···· 後後輪 -39 -34 -3	3 -39 -34 -3	-34 -3	ε	6	-41 -	-41 -46	3 -42	-43	-45	-36	-32	-38	-39	-43	-43	-32	-46 -4
	28 30 2	30 2	2	7	31	35 28	3 28	31	31	30	28	31	30	32	34	35	27 3
^Ⅲ 後前輪 32 32 3 ⁻	32 32 3	32 3	3.	1	35	38 35	5 37	38	36	30	29	35	34	37	38	80	29 3
後後輪 34 33 3	34 33 3	33 3	e	-	38	41 37	7 40	40	37	33	30	33	39	39	40	41	30 30
一 前 輸 −29 −31 −3	-29 -31 -3	-31 -3	،	F	-29 -	-29 -29) -24	-27	-30	-30	-34	-29	-31	-31	-27	-24	-34
5. 後前輪 -43 -38 -3	1 -43 -38 -3	-38 -3	ကို	6	-44 -	-49 -49	9 -47	-49	-46	-39	-40	-38	-45	-51	-47	-38	-51
^{\//} 後後輪 −36 −35 −3	3 -35 -35 -3	-35 -3	ဂို	4	-37 -	-41 -47	7 -46	-43	-38	-34	-34	-35	-38	-43	-43	-34	-47 -3
● 前輪 33 35 3	33 35 3	35 3	3	5	33	28 27	1 22	25	30	37	36	34	31	27	25	37	22 3
^出) 後前輪 43 41 ²	3 41 4	41 4	7	11	44	43 43	3 43	40	43	42	41	42	43	41	43	44	40 4
····/ 後後輪 40 37 3	40 37 3	37 3	3	7	40	39 41	41	38	40	36	37	38	41	38	39	욕1	36 36
を 10 10 10 10 10 10 10 10 10 10 10 10 10	1	1	ī		-21 -	-17	7 -15	T	I	-25	-27	-24	-21	-18	-15	-15	-27 -2
a) 後前輪	 	1	I		-49 -	-45	5 -40	I	ı	-50	-51	-49	-50	-49	-43	-40	-51
(1) 後後輪	1	1	Т		-49 -	-44	t -40	I	ī	-47	-47	-47	-48	-44	-42	-40	-49
a 前輪	1 1 1	1	Т		16 -	12	11	I	ı	23	23	18	18	13	13	23	11
m) 後前輪	 	1			42 -	35	5 31	I	ı	46	45	42	43	39	35	46	31 📣
···· 後後輪			1	_	42 -	36	32	I	I	46	44	42	42	38	37	46	32 4
s 前輪	1	-	'		-18 -	-12	6- 6	T	ı	-19	-24	-20	-17	-13	-13	6-	-24 -1
a) 後前輪	' 	' 1	1		-37 -	-31	-27	T	I	-40	-41	-41	-38	-31	-31	-27	-41
" 後後輪		1	'	-	-38	-27	7 –26	I	ı	-42	-39	-41	-38	-32	-27	-26	-42
∽ 前輪 -	1	1	1		19 -	=	10	I	ı	20	25	20	15	16	13	25	10
盟、後前輪	 	-	I		41 -	35	5 33	I	I	41	40	40	39	39	37	속1	33 33
····/ 後後輪	 	1	T		39 -	35	5 33	I	I	39	40	39	38	38	35	40	33
ݘ	-		I	L	-17 -	- 11	6-	I	I	-22	-23	-21	-18	-14	-11	6-	-23
い 後前輪	 	1	1	\vdash	-34 -	-35	5 -32	I	-	-36	-38	-36	-37	-34	-33	-32	-38
" 後後輪	 	1	1		-32 -	-29	9 -28	I	I	-33	-33	-34	-33	-31	-29	-28	-34
a 前輪	1 1 1	1	1		20 -	12	13	ı	ı	24	25	22	18	15	11	25	11
		1	1		38	36	34	I	I	40	41	37	39	38	34	41	34
/ 後後輪	 	1	T	-	37 -	33	33	ı	1	36	36	35	35	35	34	37	33

(平均值:底面 25cm)

(最大值:底面 25cm)

土圧計 P	
•	

	平均	37	14	14	27	25	10	4	22
	最大値	43	17	19	28	26	11	4	23
	15回目	43	15	16	28	25	6	4	22
	14回目	37	13	14	28	25	10	3	22
	13回目	35	14	12	28	26	10	4	22
	12回目	34	11	12	26	25	11	4	22
	11回目	29	11	6	27	25	11	3	21
a)	10回目	31	12	8	27	26	11	4	21
て土圧(kt	目回6	39	14	15	28	ı	I	ı	ı
最ノ	8回日	42	16	19	28	ı	I	ı	ı
	7回目	42	14	19	28	26	10	4	22
	6回目	41	15	17	28	25	11	4	22
	5回目	37	17	16	28	ı	I	ı	ı
	4回目	38	14	14	27	25	11	4	23
	3回目	34	14	11	27	ı	I	I	I
	2回目	33	12	12	26	ī	I	ı	ı
	1回目	37	15	12	27	ı	I	ı	ı
計 器	No.	P1	P2	P3	P7	P4	P5	P6	P8
國間中	見目上		#	ŧ			ł	Ę	
運定	位置	4	路上路	4	路床	4	路上路	1	路床
_									

6 舗装表面性状測定結果

1) 測定データ: すべり抵抗値ときめ深さ

		<u>а</u> –	49kN	滑り摩擦	ξ係数(μ)	きめ深さ
エ区	測点 1	測定 位置	換算輪数	測定速度	を(km/hr)	MPD
			(万輪)	60	80	(mm)
		a la Ind	70	0. 73	0.62	0. 88
	1	外側 非走行部	80	0.75	0. 62	_
			90	0. 74	0. 62	0. 84
		OWD	70	0. 59	0.53	0.56
	2	UWP 走行部	80	0. 59	0.53	_
			90	0.60	0.53	0. 67
0701		DWD	70	0.67	0.59	0. 77
0/31 5 T IX	3	BWP 非走行部	80	0. 67	0.59	_
아파쯔			90	0. 67	0.58	0. 73
		TWD	70	0. 59	0.53	0.63
	4	1WP 走行部	80	0. 59	0. 54	_
			90	0. 59	0.51	0.69
		由 (11)	70	0. 68	0.59	0. 74
	5	り (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	80	0. 73	0. 62	—
0731 7工区		ST SCI FIAP	90	0. 74	0.61	0.95
		रूचे /हम	70	0. 71	0. 62	0. 83
	1		80	0.76	0.64	—
		ST SCT FR	90	0. 73	0.64	1.00
		OWD	70	0. 57	0.51	0. 72
	2	UWP 走行部	80	0.59	0. 52	_
		XC13 HP	90	0. 59	0. 53	0. 59
		DWD	70	0.66	0. 58	0. 77
	3	bwP 非走行部	80	0.67	0. 59	—
			90	0. 70	0.60	0. 73
		IWD	70	0. 54	0.50	0. 75
	4	1WF 走行部	80	0.60	0. 53	—
		- A CONTRACT	90	0. 59	0. 52	0.66
		内側	70	0. 72	0. 59	1.00
	5	非走行部	80	0. 71	0.61	_
			90	0. 70	0.60	0. 78
			70	0. 57	0. 52	0. 67
	7	も行部	80	0. 59	0. 53	—
平均值			90	0. 59	0. 52	0.65
			70	0.69	0.60	0. 83
	非	走行部	80	0. 71	0. 61	_
			90	0. 71	0.61	0.84

付録2. 試験施工に使用した材料成績表

前田道路株式会社 数 平成19年11月30日 日本「菜泉格表示認定工場 第 366141 号 新県南生コン株式会社 上浦 T. 物 加速 万元(29) 811-0903 TL (029) 811-0903 T 事 名 密 実験ニンクリート 所 在 地 上木研究所内 激励 客 号 一 合 の 設 計 条 Pt び 万 福祉 上木研究所内 一 mm 調整 第 日 の 成 計 条 件 Pt び 万 福祉 上木研究所内 mm mm 離認 自力4.5 2.5 mm 2.0 N 中 び 万 福祉 一 の 成 新 条 4 -% 中 び 力 福祉 の 板 新 呼び 50歳 本セメント北の上服値 -% 水 カ 長 ひ た 公 2.5 1 -% -% 第 内部 力 炭 の 方 ホ セメント北の上服値 -% -% 第 内部 力 炭 の 方 -% -% -% -% 第 日 ク 4 1 -% -% 第 日 - - -% -% -% -% 第 1 0	レディーミクストコンクリート試験練り報告	書	No.	
ШПДДВВЕХСАН В ПАХ Г. \$\$\frac{2}{2}\$\$ \$\frac{2}{2}\$\$ \$\		<u>zh</u> z	成19年11月30	Ц (
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	前口道路获式会社 殿 日本工業規格表	示認定工場	第 366144	叧
工事名称 実験コンクリート 所在 地 上本研究所内 酸素常 日 取19年11月30日 天候日 空道名 空道15.0 C 湿皮 68 % F び方 確認による記号 呼び強度 7377 又は3777 11日 11日 15.0 C 湿皮 68 % F び方 種類による記号 呼び時間にない 空の 設計 条件 120 <	新県南生: 茨	コン株式会社 城県土浦市	土 土 浦 工 中860番地	場 2
中 山 秋田 大田 - - - - <td>工 車 名 称 字殿コンクルート</td> <td>TEL</td> <td>(029) 841-09</td> <td>03</td>	工 車 名 称 字殿コンクルート	TEL	(029) 841-09	03
武 酸 赤 弓 四(1) 整 理 金 号 要 出 15.0 C 湿 皮 68 % 所 茲 愛 欠 施 日 平成19年11月30日 茂 俠 曇 条 件 条 件 ※ 出 15.0 C 湿 皮 68 % F び方 種類(による記ら) 師び方環に記載 第び方環に記載 第 次 切 つ ト の mm 1 に 2 る 記 → 1 こ る 記 → 1 こ 2 こ 2 0 → 1 こ 2 0 → 1 □ 1 □ 1 □ 0 ∩ 1 □ 0 ∩ 1 □ 0 ∩ 1 □ 0 ∩ 1 □ 0 ∩ 1 □ 0 ∩ 1 □ 0 ∩ 1 □ 0 ∩ 1 □ 0 ∩ 1 □ 0 ∩ <td< td=""><td><u> 一</u> 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一</td><td></td><td></td><td></td></td<>	<u> 一</u> 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一			
試験 変施 日 平成19年11月30日 天候 臺 室温 15.0 C 温度 68 96 FU 5 配 配 合 の 設計 条件 47 48 70<	試験番号 整理番号			
マレクリートの マレクリートの マレクリートの マレクリートの マレクリートの マレクリートの マレクリートの モンクリートの センクリートの センクリートの センクリートの センクリートの センクリートの センクリートの センクリートの ビンクリートの ビンク ビンクリートの ビンク ビ	武 験 実 施 日 平成19年11月30日 天 候 曇 室 温	1 15.0 °C	C 湿 度	68 %
呼び力 種類による記号 舗装 中び方欄に記載 四 一 四 位用材間に記載 四 便び方欄に記載 四 短いの甲位容相質量 による記号 下 <t< td=""><td></td><td>14 材の最大可注</td><td>法 セメントの</td><td>種類</td></t<>		14 材の最大可注	法 セメントの	種類
セメントの 通数 理び方欄に記載 空気 二 一% 指 一枚の 植 使用材欄に記載 軽型207+0甲位容相質量 -kc/m 指 一水カッシリカ反応 不 小ホセメント比の 三 -% 第 所材の10単位の10単位 一次 小セメントの 三 -% 第 竹放の10単位の10単位の10単位の10単位の10単位の10単位の10単位の10単位	呼び方 種類による記号 #装 曲げ4.5 2.5	 20	による N	記号
町 村 0 他 世の月間 世の月間 世の月間 一日 10 <t< td=""><td></td><td></td><td></td><td>- %</td></t<>				- %
11 アルカリシリカ反応 A ホセメント比の上限値 -% 注却 創 菜 索の方法 万 中位 水 豆の上原価 一% 事件材め7/M9/3020341に3.58%分 使用材料欄に記載 甲位 水 豆の上原価 一% 選和材料の補加及び使用量 使用材料欄に記載 甲位 水 豆の上原価 一% 進和材料の補加及び使用量 使用材料欄に記載 甲位 水 豆の上原価 一 -% 進化物 介 右 藍 0.30 ks/m 20 F 10 F -	日本100 位 須 使用材料欄に記載 軽量3200-100単位 出 骨 材 の 最 人 寸 法 呼び方欄に記載 コンクリート	谷積貨重 の温度		$-\frac{\text{kg/m}}{-\text{°C}}$
事件約07040/30203/HによるK公 使用材料機能記載 単位水量の下時値以は比較位 ke/m 項 ke/m 選和材料の積面及び使用強度的材料板(CRAA Agal) ke/m 運 ke/m 運 ke/m ke/m 運 ke/m ke/m 運 ke/m ke/m 運 ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/m ke/	アルカリシリカ反応 A 定 抑 制 対 策 の 方 法	上限值		- %
項 通和材料の補充及び使用 使用材料及び配合表欄に記載 進和化物 不 一 順び強度を保証する材齢 0.30 ks/m 以下 71 - <	事 骨材のアルカリシカ及応性による区分 使用材料欄に記載 単位水量の	上、限 値 (は上限値		$- \text{kg/m}^3$
評び強度を保証する材齢 1121 配合表kg/m 和 配合表kg/m セメント 混和材 水 細合材 相合材 和 利 368 149 508 174 1151 3.94 3.94 パッチ容量 45 ℓ 水セメント比 40.5 % 細骨材率 38.1 % 配合強度 5.5 N/m セメント 1 6.705 6.705 6.705 0.667 7.372 細骨材1 1 2.2 7.830 7.830 1.170 9.000 2 7.830 7.830 1.170 9.000 1.407 21.407 2 7.830 7.830 7.830 1.170 9.000 1.407 21.407 2 7.830 7.730 20.000 1.407 21.407 21.407 2 7.830 7.730 20.000 1.407 21.407 3 0.177 0.177 0.000 165cc 3 1 0.177 0.177 0.0	⁴ 混和材料の種類及び使用量 使用材料及び配合表欄に記載流動化後のスラン	プ増大量		— cm
肥 合 変 kg/m セメント ① ② 小 ② ③ ① ② ③ ① ② ③ ① ② ③ ③ ① ② ③ ③ ① ② ③ ③ ① ② ③ ③ ① ② ③ ③ ① ② ③ ③ ① ② ③ ③ ① ② ③ ③ ① ② ③ ③ ① ③ ③ ③ ① ③ ③ ① ③ ③ ① ② ③ ③ ① ③ ③ ① ③ <td< td=""><td>「 <td></td><td></td><td></td></td></td<>	「 <td></td> <td></td> <td></td>			
セメント ① ② 水 ① ② ③ ① ② ③ ① ② ③ ③ ① ② ③ ③ ① ② ③ ③ ① ② ③ ③ ① ② ③ ③ ① ② ③ ③ ④ ① ② ③ ③ ④ ① ② ③ ④ ① ② ③ ④ ① ② ③ ④ ① ③ ④ ⑦ </td <td></td> <td>材</td> <td>混 和</td> <td>刮</td>		材	混 和	刮
368 149 508 174 1151 3.94 パッチ容量 45 ℓ 水セメント比 40.5 % 細骨材率 38.1 % 配合強度 5.5 % N/m² セメント1 1 6.705 6.705 6.705 0.649 17.209 水 1 6.705 6.705 0.667 7.372 細骨材1 1 22.860 7.830 1.170 24.030 3 7.830 7.830 1.170 24.030 3 7.830 7.830 1.170 24.030 3 1.170 22.860 7.830 1.170 24.030 2 7.830 7.830 1.170 24.030 1.170 24.030 2 7.830 1.170 24.030 7.830 1.170 24.030 3 1 51.795 31.795 1.407 33.202 2 0.0177 0.177 0.000 1.65cc 1.407 2 3 1		4	0 2	3
パッチ容量 45 ℓ 水セメント比 40.5 %(細骨材率) 38.1 %(配合理度) 5.5 N/m² No. 表面水率吸水率 バッチ量 表面水補圧 補 正価 正 後容器質量計量 値 セメント 1 16.560 16.560 0.649 17.209 水 1 6.705 6.705 0.667 7.372 細骨材 1 22.860 22.860 1.170 24.030 2 7.830 7.830 1.170 9.000 粗骨材 1 51.795 31.795 1.407 33.202 2 0.177 0.000 1.407 21.407 3 0.177 0.177 0.000 165cc 2 2 2 3 31.795 1.407 33.202 3 0.177 0.177 0.000 165cc 31.407 1.407 21.407 2 2 2 3 3 2 3 3 3 3 3 <td>368 149 508 174 1151</td> <td>3</td> <td>. 94</td> <td></td>	368 149 508 174 1151	3	. 94	
セメント1 1 1 16.560 16.560 16.560 0.649 17.209 水1 1 6.705 6.705 6.705 0.667 7.372 細骨材1 1 22.860 7.830 7.830 1.170 24.030 2 2 7.830 7.830 1.170 9.000 粗骨材1 1 51.795 31.795 1.407 33.202 2 7.830 7.830 1.170 9.000 粗骨材1 1 0.177 0.000 1.407 21.407 3 1 0.177 0.177 0.000 165cc 3 1 0.177 0.177 0.000 165cc 3 1 1 0.177 0.000 165cc 3 1 1 0.177 0.000 165cc 3 1 1 1 1 1 90秒 6.0 × 4.9 17.0 1 1 1<	バッチ容量 45 ℓ 水セメント比 40.5 % 細骨材率 38.1 No 表面水 率 バッチ 量表面水補正 補 正 値 補	紀合	強度 5.5 素 器 質 量 計	N/mm² 昰 値
水 1 6.705 6.705 0.667 7.372 細 骨 材 1 1 22.860 7.830 7.830 7.830 1.170 24.030 粗 骨 材 1 1 22.860 7.830 7.830 7.830 1.170 9.000 粗 骨 材 1 1 51.795 31.795 1.407 33.202 2 7 0.177 0.000 1.407 21.407 3 1 0.177 0.177 0.000 165cc 3 2 2 2 2 1.407 1.407 混 和 剤 1 1 0.177 0.177 0.000 165cc 3 2 2 2 2 2 1.407 1.407 2 2 2 2 2 2 2 1.407 1.407 2 2 2 2 2 2 2 2 1.407 2 2 2 2 3 2 2 2 2 2 2 1.407 3 3 2 2 <	セメント111 16.560 品の人間に 16.560	16.560	0.649	17.209
細 骨 材 1 1 2 2 7.830 22.860 1.170 24.030 粗 骨 材 1 1 51.795 31.795 1.407 33.202 2 3 0.177 0.000 1.407 21.407 混 和 剤 1 1 0.177 0.177 0.000 165cc 3 2 2 2 2 2 2 混 和 剤 1 1 0.177 0.177 0.000 165cc 3 2 2 2 2 2 2 液 酸 3 2 2 2 2 2 溜 0.177 0.000 165cc 2 2 2 2 2 酸 混ぜ時間 ス ランプ フ ロー値 空 気 量 2<	水 1 1 2 6.705	6. 705	0.667	7.372
1 1	細骨材1 1 22.860 7.830	22.860	1.170	24.030
位 宵 树 1 1		21 705	1. 1.10	22,000
混和剤1 1 0.177 0.177 0.000 165cc 混和材1 1 0.177 0.000 165cc 混和材1 2 1 1 0.177 0.000 165cc 混和材1 2 1 1 1 165cc 165cc 混和材1 2 1 1 165cc 165cc 2 1 1 165cc 165cc 2 1 1 10 165cc 2 1 10 10 10 10 90秒 6.0 × 4.9 17.0 10 10 90秒 6.0 × 4.9 17.0 11 11 1 1 1 1 11 11 11 1 1 1 1 11 11 11 1 1 1 1 11 11 11 1 1 1 1 11 11 11 11 1 1 1 1 11 11		20.000	1. 407	21. 407
混和剤1 1 0.177 0.000 165cc 混和材1 2 一 一 0.177 0.000 165cc 混和材1 2 一 一 1 1 1 1 2 二 三 三 1 165cc 165cc 2 二 三 三 165cc 165cc 2 二 三 三 165cc 165cc 2 二 三 三 165cc 165cc 2 二 二 165cc 165cc 165cc 3 2 10 10 10 10 90秒 6.0 × 4.9 17.0 10 10 1 1 1 1 1 1 10 11 1 1 1 1 1 11 11 11 1 1 1 1 11 11 11 11 11 1 1 1 1 11 11 11 11 11				
3 3 4 混 和 材 1 2 ご 就 験 結 果 練り混ぜ時間 スランプ フロー値 空 気 量 コンクリート温度 単位容積質量 塩化物含有量 (cm) (cm×cm) (%) (°C) (kg/m³) (kg/m³) 90秒 6.0 ※ 4.9 17.0 強 度 試 験 結 果 (N/m²) 材 節 4 材 節 7 日 3 日 6 平均 値 平均 値	混和剤1 1 0.177	0.177	0.000	165cc
点 加 月 2 試 験 結 果 練り混ぜ時間 スランプ フロー値<空気量	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
読 験 粘 未 練り混ぜ時間 $\square \neg \vee \neg$ $\neg \Box - \acute{le}$ 空気量 $\square \vee \neg \neg$ $\square \vee \neg \neg$ $\square \vee \neg \neg$ 90秒 6.0 × 4.9 17.0 (kg/m^3) (kg/m^3) 90秒 6.0 × 4.9 17.0 小前節 1 月 6 日 1 小前節 1 月 6 日 10 平均 佰 9 月 11 平均 佰 平均 6 平均 11 (備者 平均 佰 平均 11	2	F#		
小菜 9 位 2 [lif] (cm) (cm × cm) (%) (°C) (kg/m³) (kg/m³) 90秒 6.0 × 4.9 17.0 (kg/m³) (kg/m³) 一 強度 試験 結果 (N/m²) 材節 1 5 材節 7 日 5 月 6 11 平均 値 平均 値 平均	調 <u>験</u> 船 塗り泡が時間 スランプフロー値 空気量コンクリート温度 単	<u>来</u> 位容積質	〔量 塩化物	含有量
強度 該験結果(N/m²) 材節 1 2 1 5 1 1 5 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(kg/m^3)	(kg/	mi)
材 節 1 材 節 4 材 節 7 材 節 10 日 3 日 6 日 9 11 平<均	<u>強度</u> 試験結	果 (N/mm²)		
日3 日6 日9 日12 平均値 平均値 平均値 平均値	*1 町 1 材 節 4 材 節 7 8	材断	p 10 11	
備考	日3 日6 日9 平均値 平均値 平均値	平	H 12 均 値	
	備考			

コンクリート強度試験成績報告書

Ì	中放19中12月 3日 前田道路株式会社 殿 日本工業規格表示認定工場 第 366144 号 新県南生コン 株)、土浦工場 茨城県土浦市中8 50番地2 TEL (0298) 41-0903 工 東 実験コンクリート														
工名		事称	実	「験コ	ンクリー	- ト									A Constant of the second
打	込借	訴													
			: 	コンク	リート(トス和	の	呼び引	歯度	スランプ 又	はスランプ	°7¤-	7ロー 粗骨材の最大寸法			キャントの種類
呼	び	方	1	里我」(~	よる記7 	5	11.5.18			cm			mm		による記号
				子 日 	申設		曲げ	4.5		2.5			20		H
指事	作 た 呼び強度を保証する材齢7日 事 項														
採月	取日	試 月	験日	材齢 (日)	番号	スランフ [°] (cm)	空気量 (%)	質量 (kg)	最大荷重 (kN)	強度 (N/㎜2)	平均引 (N/m	▲度 ㎡)		摘	要
					1			28.175	40.4	5.39					
11,	/30	12/	3	3	2	6.0	4.9	28.312	42.2	5.63	5.6	60			
					3	-		28.422	43.4	5.79			標準養生	-	
備	備 考 供試体寸法 15×15×45 試験練り														
<u>17</u>	숲	者										担	当者	公原 注	库━ 月_

付録3. 全国での温度計測データ

付録3. 全国の温度計測データ

		版厚(cm)								
		15	20	23	25	28	30	45		
	20~	0.000		0.000	0.000	0.000	0.000	0.000		
	19(18~19.9)	0.000		0.000	0.000	0.001	0.002	0.000		
	17(16~17.9)	0.000		0.001	0.001	0.005	0.011	0.002		
	15(14~15.9)	0.000		0.007	0.013	0.025	0.031	0.006		
	13(12~13.9)	0.009		0.030	0.040	0.045	0.049	0.026		
	11(10~11.9)	0.036		0.060	0.065	0.067	0.067	0.058		
	9(8~9.9)	0.068		0.081	0.084	0.083	0.076	0.083		
迴使羊	7(6~7.9)	0.110		0.109	0.103	0.106	0.104	0.099		
/////////////////////////////////////	5(4~5.9)	0.122	解析不能	0.138	0.129	0.122	0.124	0.143		
	3(2~3.9)	0.218		0.206	0.208	0.201	0.197	0.220		
	1(0~1.9)	0.436		0.368	0.357	0.343	0.338	0.362		
	-1(0.1~2.0)	0.536		0.447	0.462	0.410	0.392	0.397		
	-3(2.1~4.0)	0.359		0.344	0.334	0.345	0.338	0.339		
	-5(4.1~6.0)	0.103		0.170	0.162	0.174	0.179	0.166		
	-7(6.1~8.0)	0.002		0.037	0.039	0.066	0.078	0.075		
	-9(8.1~10.0)	0.000		0.001	0.002	0.005	0.014	0.022		
	-10.1~	0.000		0.000	0.000	0.000	0.000	0.001		
※15cm 約2	ヶ月間データ欠損									
20cm 8月	月中旬以降解析不能	(下の温度)	が異常)							
45cm 中	45cm 中の温度異常 上下を表面とみなして解析									

北海道の温度差とその発生頻度

宮城県の温度差とその発生頻度

				ļ	版厚(cm)			
		15	20	23	25	28	30	45
	20~	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	19(18~19.9)	0.000	0.000	0.000	0.000	0.010	0.000	0.000
	17(16~17.9)	0.000	0.001	0.000	0.010	0.029	0.008	0.004
	15(14~15.9)	0.000	0.025	0.010	0.030	0.043	0.030	0.028
	13(12~13.9)	0.023	0.050	0.031	0.044	0.056	0.049	0.047
	11(10~11.9)	0.069	0.068	0.057	0.060	0.064	0.074	0.069
	9(8~9.9)	0.086	0.085	0.074	0.089	0.086	0.085	0.082
泪座羊	7(6~7.9)	0.102	0.112	0.121	0.124	0.114	0.116	0.110
/□反左	5(4~5.9)	0.139	0.163	0.161	0.160	0.154	0.160	0.152
	3(2~3.9)	0.217	0.197	0.206	0.198	0.177	0.191	0.203
	1(0~1.9)	0.365	0.299	0.340	0.286	0.268	0.287	0.305
	-1(0.1~2.0)	0.361	0.388	0.514	0.330	0.317	0.329	0.292
	-3(2.1~4.0)	0.448	0.507	0.420	0.448	0.459	0.439	0.408
	-5(4.1~6.0)	0.177	0.105	0.066	0.214	0.211	0.216	0.229
	-7(6.1~8.0)	0.013	0.001	0.000	0.007	0.012	0.016	0.067
	-9(8.1~10.0)	0.000	0.000	0.000	0.000	0.000	0.000	0.004
	-10.1~	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		版厚(cm)								
		15 20 23 25 28 30 45								
	20~	0.000	0.000	0.000	0.000	0.002	0.001	0.000		
	19(18~19.9)	0.000	0.000	0.000	0.000	0.017	0.015	0.000		
	17(16~17.9)	0.000	0.000	0.001	0.000	0.034	0.030	0.003		
	15(14~15.9)	0.000	0.009	0.021	0.016	0.055	0.056	0.025		
	13(12~13.9)	0.016	0.036	0.043	0.038	0.058	0.065	0.046		
	11(10~11.9)	0.061	0.078	0.085	0.082	0.075	0.075	0.077		
	9(8~9.9)	0.103	0.101	0.092	0.101	0.087	0.094	0.096		
汨中王	7(6~7.9)	0.131	0.130	0.132	0.127	0.139	0.136	0.137		
////////////////////////////////////	5(4~5.9)	0.190	0.180	0.173	0.164	0.144	0.143	0.154		
	3(2~3.9)	0.196	0.195	0.193	0.194	0.157	0.152	0.202		
	1(0~1.9)	0.303	0.270	0.261	0.279	0.232	0.233	0.262		
	-1(0.1~2.0)	0.462	0.245	0.261	0.344	0.253	0.222	0.242		
	-3(2.1~4.0)	0.515	0.450	0.450	0.444	0.411	0.404	0.379		
	-5(4.1~6.0)	0.022	0.281	0.259	0.206	0.268	0.286	0.261		
	-7(6.1~8.0)	0.001	0.023	0.028	0.005	0.068	0.086	0.107		
	-9(8.1~10.0)	0.000	0.000	0.002	0.000	0.000	0.002	0.011		
	-10.1~	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

茨城県の温度差とその発生頻度

愛知県の温度差とその発生頻度

		版厚(cm)							
		15	20	23	25	28	30	45	
	20~	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	19(18~19.9)	0.000	0.000	0.000	0.000	0.001	0.008	0.000	
	17(16~17.9)	0.000	0.000	0.012	0.014	0.023	0.033	0.004	
	15(14~15.9)	0.002	0.025	0.046	0.042	0.044	0.048	0.031	
	13(12~13.9)	0.045	0.055	0.063	0.054	0.052	0.068	0.048	
	11(10~11.9)	0.075	0.083	0.088	0.085	0.082	0.080	0.080	
	9(8~9.9)	0.101	0.102	0.103	0.093	0.085	0.096	0.090	
泪中夫	7(6~7.9)	0.146	0.142	0.136	0.135	0.131	0.130	0.125	
////////////////////////////////////	5(4~5.9)	0.162	0.158	0.150	0.147	0.155	0.145	0.156	
	3(2~3.9)	0.194	0.173	0.164	0.177	0.171	0.154	0.200	
	1(0~1.9)	0.275	0.263	0.239	0.251	0.256	0.238	0.267	
	-1(0.1~2.0)	0.413	0.382	0.313	0.321	0.267	0.255	0.303	
	-3(2.1~4.0)	0.539	0.484	0.472	0.446	0.420	0.407	0.393	
	$-5(4.1 \sim 6.0)$	0.048	0.133	0.205	0.217	0.249	0.258	0.215	
	-7(6.1~8.0)	0.000	0.001	0.009	0.015	0.064	0.077	0.082	
	-9(8.1~10.0)	0.000	0.000	0.000	0.000	0.001	0.002	0.006	
	-10.1~	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

		版厚(cm)									
		15	15 20 23 25 28 30 45								
	20~	0.000		0.000	0.005		0.009	0.001			
	19(18~19.9)	0.000		0.003	0.029		0.035	0.014			
	17(16~17.9)	0.000		0.022	0.051		0.039	0.044			
	15(14~15.9)	0.012		0.033	0.046		0.046	0.046			
	13(12~13.9)	0.061		0.036	0.053		0.047	0.047			
	11(10~11.9)	0.062		0.043	0.061		0.060	0.059			
	9(8~9.9)	0.083		0.119	0.071		0.067	0.069			
泪中美	7(6~7.9)	0.100		0.131	0.093		0.086	0.095			
/□反左 (℃)	5(4~5.9)	0.108	解析不能	0.111	0.128	解析不能	0.129	0.129			
	3(2~3.9)	0.224		0.226	0.168		0.177	0.173			
	1(0~1.9)	0.351		0.276	0.294		0.305	0.325			
	-1(0.1~2.0)	0.616		0.500	0.518		0.468	0.406			
	-3(2.1~4.0)	0.364		0.389	0.364		0.401	0.428			
	-5(4.1~6.0)	0.020		0.075	0.110		0.122	0.142			
	-7(6.1~8.0)	0.000		0.019	0.008		0.010	0.025			
	-9(8.1~10.0)	0.000		0.015	0.000]	0.000	0.000			
	-10.1~	0.000		0.002	0.000		0.000	0.000			

石川県の温度差とその発生頻度

広島県の温度差とその発生頻度

		版厚(cm)							
		15 20 23 25 28 30							
	20~	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	19(18~19.9)	0.000	0.000	0.000	0.000	0.001	0.007	0.002	
	17(16~17.9)	0.000	0.008	0.007	0.005	0.017	0.031	0.009	
	15(14~15.9)	0.000	0.039	0.038	0.033	0.042	0.043	0.028	
	13(12~13.9)	0.031	0.055	0.060	0.056	0.066	0.072	0.051	
	11(10~11.9)	0.063	0.091	0.090	0.089	0.085	0.085	0.075	
	9(8~9.9)	0.116	0.103	0.098	0.098	0.104	0.099	0.100	
泪広关	7(6~7.9)	0.148	0.132	0.131	0.125	0.128	0.122	0.121	
	5(4~5.9)	0.172	0.148	0.149	0.149	0.145	0.145	0.151	
	3(2~3.9)	0.207	0.176	0.171	0.179	0.166	0.155	0.193	
	1(0~1.9)	0.263	0.248	0.255	0.265	0.246	0.242	0.270	
	-1(0.1~2.0)	0.299	0.280	0.269	0.276	0.239	0.231	0.234	
	-3(2.1~4.0)	0.538	0.437	0.393	0.405	0.340	0.328	0.313	
	-5(4.1~6.0)	0.163	0.266	0.289	0.276	0.300	0.319	0.260	
	-7(6.1~8.0)	0.000	0.017	0.050	0.044	0.117	0.118	0.149	
	-9(8.1~10.0)	0.000	0.000	0.000	0.000	0.003	0.004	0.042	
	-10.1~	0.000	0.000	0.000	0.000	0.000	0.000	0.002	

		版厚(cm)									
		15	15 20 23 25 28 30 45								
	20~	0.000	0.000	0.000	0.003	0.001	0.000	0.000			
	19(18~19.9)	0.000	0.000	0.000	0.016	0.012	0.012	0.001			
	17(16~17.9)	0.000	0.001	0.013	0.033	0.028	0.026	0.008			
	15(14~15.9)	0.000	0.021	0.041	0.050	0.056	0.051	0.031			
	13(12~13.9)	0.010	0.057	0.059	0.063	0.066	0.068	0.049			
	11(10~11.9)	0.054	0.081	0.085	0.082	0.083	0.081	0.081			
	9(8~9.9)	0.097	0.113	0.103	0.098	0.101	0.096	0.088			
泪中天	7(6~7.9)	0.131	0.133	0.123	0.116	0.116	0.115	0.120			
/□反左 (℃)	5(4~5.9)	0.185	0.152	0.144	0.127	0.135	0.134	0.148			
	3(2~3.9)	0.206	0.166	0.160	0.155	0.160	0.160	0.187			
	1(0~1.9)	0.316	0.276	0.271	0.255	0.243	0.257	0.287			
	-1(0.1~2.0)	0.281	0.264	0.269	0.270	0.214	0.243	0.258			
	-3(2.1~4.0)	0.509	0.431	0.407	0.386	0.327	0.354	0.333			
	-5(4.1~6.0)	0.208	0.268	0.263	0.257	0.289	0.278	0.246			
	-7(6.1~8.0)	0.001	0.037	0.061	0.086	0.149	0.115	0.126			
	$-9(\overline{8.1 \sim 10.0})$	0.000	0.001	0.000	0.001	0.021	0.009	0.034			
	-10.1~	0.000	0.000	0.000	0.000	0.000	0.000	0.003			

福岡県の温度差とその発生頻度

鹿児島県の温度差とその発生頻度

		版厚(cm)									
		15	15 20 23 25 28 30 45								
	20~	0.000	0.000	0.000	0.000	0.002	0.001	0.000			
	19(18~19.9)	0.000	0.002	0.002	0.001	0.019	0.018	0.000			
	17(16~17.9)	0.000	0.018	0.029	0.021	0.038	0.039	0.004			
	15(14~15.9)	0.001	0.052	0.057	0.048	0.063	0.058	0.027			
	13(12~13.9)	0.039	0.067	0.067	0.065	0.062	0.062	0.053			
	11(10~11.9)	0.082	0.085	0.087	0.073	0.084	0.085	0.074			
	9(8~9.9)	0.112	0.093	0.088	0.101	0.083	0.083	0.083			
泪中夫	7(6~7.9)	0.120	0.107	0.107	0.106	0.117	0.105	0.124			
	5(4~5.9)	0.141	0.127	0.124	0.128	0.121	0.125	0.139			
	3(2~3.9)	0.194	0.177	0.164	0.167	0.149	0.161	0.189			
	1(0~1.9)	0.311	0.273	0.274	0.291	0.263	0.264	0.307			
	-1(0.1~2.0)	0.413	0.336	0.322	0.333	0.270	0.296	0.308			
	-3(2.1~4.0)	0.504	0.437	0.429	0.420	0.350	0.371	0.329			
	-5(4.1~6.0)	0.082	0.215	0.228	0.220	0.292	0.267	0.252			
	-7(6.1~8.0)	0.001	0.012	0.021	0.028	0.088	0.066	0.097			
	-9(8.1~10.0)	0.000	0.001	0.000	0.000	0.000	0.000	0.014			
	-10.1~	0.000	0.000	0.000	0.000	0.000	0.000	0.000			

		版厚(cm)									
		15	15 20 23 25 28 30 45								
	20~	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
	19(18~19.9)	0.000	0.000	0.002	0.000	0.000	0.000	0.000			
	17(16~17.9)	0.000	0.000	0.018	0.005	0.007	0.007	0.001			
	15(14~15.9)	0.000	0.020	0.059	0.032	0.042	0.039	0.022			
	13(12~13.9)	0.021	0.058	0.070	0.071	0.073	0.079	0.062			
	11(10~11.9)	0.070	0.084	0.084	0.079	0.080	0.080	0.089			
	9(8~9.9)	0.110	0.094	0.107	0.098	0.110	0.104	0.096			
泪中关	7(6~7.9)	0.137	0.135	0.122	0.118	0.126	0.123	0.123			
[温浸左	5(4~5.9)	0.171	0.147	0.136	0.136	0.137	0.132	0.141			
	3(2~3.9)	0.213	0.181	0.164	0.186	0.177	0.188	0.185			
	1(0~1.9)	0.277	0.281	0.238	0.273	0.249	0.247	0.281			
	-1(0.1~2.0)	0.439	0.561	0.377	0.470	0.355	0.356	0.335			
	-3(2.1~4.0)	0.526	0.411	0.499	0.458	0.476	0.478	0.445			
	-5(4.1~6.0)	0.035	0.028	0.119	0.071	0.156	0.155	0.192			
	-7(6.1~8.0)	0.001	0.000	0.004	0.000	0.013	0.011	0.029			
	-9(8.1~10.0)	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
	-10.1~	0.000	0.000	0.000	0.000	0.000	0.000	0.000			

沖縄県の温度差とその発生頻度

付録4. 路盤の構造設計の検討に使用した材料成績表

付録 4-3

試験名 粗骨材の密度及び	ブ吸水量	試験	JIS	A 1110
試料名 C-40	試驗在	戶月 日	平成 21年	7月 28日
	武 摄	険 者	石橋	明橋
<u> </u>	- 骨材の揖	曼大寸法	131	nm
試料採取場所 ストックヤード	試験時	の水温	20	°C
測 定 番 号	1	2	3	4
① 表 乾 試 料 + 容 器 質 量 (g)				
② 容 器 質 量 (g)	<u> </u>			
③ 表乾試料質量①-② (g)	2,093.4	2,006.8		
④ (かご+試料)水 中 質 量 (g)		•		
⑤かごの水中質量 (g)				
⑥ 試料の水中質量④-⑤ (g)	1,309.6	1,255.5		
⑦ 表 乾 密 度 — <u>③</u> (g/cnl)	2.67	2.67		
平 均 值	2.6	57		
⑧ 乾燥後の試料質量 (g)	2,080.7	1,993.8		
⑨かさ密度 <u>⑧</u> (g/cml)	2.65	2.65		
平 均 值	2.6	35		
⑩見掛密度 <u>⑧</u> (g/cml)	2.70	2.70		
平 均 值	2.7	70		
①吸水率 <u>(③-③)×100</u> (%)	0.61	0.65		
平 均 値	0.6	63		
備考				

試 驗 名		土の液性限界・塑性限				 験				Τ	J	IS	F		A 1 A 1	.205 20f	5
試験年	月日	平)	式21年7月	29日										_			
調查	名	衣	上内品質管	理					落	-	F	日	米支	汝			
試 料	名		C40			8	 9 1(15	20		25	1111 30	Ш	111 40	50
武験	者		石橋	ME)	10												
1	液性限	界 試 ; 2	験	1個/	1 18						\prod				Ш		
落下回数 8回	落下回数	12回	落下回数		17				<u> </u> -				╞╫╋		₩		
Wa 39.93 Wb 36.26	Wa 40.85	Wb 37.3	3 Wa	Wb	16			\square	$\left \cdot \right $		$\left \right $		╎		╫	╫	
Wb 36.26 Wc 11.13 Ww 3.67 Ws 25.13	Wb 37.33 Ww 3.52	Wc 12.2 Ws 25.1	2 Wb 1 Ww	Wc Ws	15	╟			$\left \right $	╢	+				╉		
W = 14.6%	W =	14.0%	W =		14	Ļ								Ш		Ш.	
4		5		6	12					N	P						
洛下回数	<u> 落下回数</u>		落下回数	8回													
Wa Wb	Wa	Wb	Wa	Wb	12		\parallel		\parallel							Ħ	
Ww Ws	Ww	Ws	Ww	Ws	11				┼┼		╈					╫	
	塑性限	界試!	 験		-			$\left \right $	╟┼					╟┼	┼┼╎	╶╫╢╴	
<u>蒋下回数</u>	落下回数		落下回数		1		\square		\square		++				$\left \right $		
				L											Ш		
Wa Wb Wb Wc	Wa Wb	Wb	Wa Wb	Wb Wc													
Ww Ws	Ww W =	Ws	Ww W=	Ws							Π						
									\square		††					ŤĦ.	
袹	反性限界 L	L = 1	N•P						╞┼╴		++			╫╂╋	╉		
									\square	┼┼┤				╢┼	╟		
	目性限界 P	$\Gamma = 1$	N•P							┼┼┤							
د.																	
<u></u>	2[[[]][[]][[]][[]][[]][[]][[]][[]][[]][$\gamma' = 1$	N•₽									,					
							Π								Ħ		
						\parallel	╞┼╴								Ħ		
						+	┼┼										
備要																Ш	
加力																	

試験	名	口力	ナンセ・ルス試験	険機!	こよる	すり・	へり試	験	JIS	A 1121
試験年月	E			平成	21年	7月	29 E	1		
試験日の別	台館		≤温(℃)	湿度	E (%)	小	<温(℃)	乾煤	湟温度(℃)
HE WARK HI & D AN	< 1 <u>0</u> 5		28	3	5		20			105
試料名	, 1		C-40		Ĩ	試験者	ž.		石橋	雨
とどまるフルイ	通る	フルイ	各種の質量	各種0 百分)質量 }率	粒度	区分	鋼球 及び	の数 質量	回転数
(mm)	(m	m)	(g)	(%	6)			(٤	g)	
										:
4.75	13	3.2	5,000	10	00	(0	8個3	331g	500
合計	1		5,000	1(00					
② 試験	後1.7	mm7)	レイに残った	試料質	f量	(g)		3	,834	
③ すり~	り損失	生量	<u>(</u>)–	2		(g)		1	,166	
④ すり~	り減量		3÷1)>	<100	(%)			23.3	

独立行政法人土木研究所道路技術研 殿 究グループ舗装チーム 県南技管試第 2935 号 平成 21 年 8月 6日 殿 財団法人 茨城県建設技術管理センタ (注)社印・割印の押印なき試験表は無効です。 建設工事 材 料 試験結果通知書 御依頼の建設工事 材 料 試験結果は別紙のとおりで ありますので御通知いたします。 工事名 実大路盤の強度に関する試験業務 工事 県内外工事 RC-40 工事場所 茨城県つくば市南原 地内 試料採取箇所 土浦市 地内 試料採取日 平成 21 年 07 月 16 日 試験項目 1件 1) 骨材のふるい分け試験 1 件 1 件 3) 骨材の突固めによる土の締固め試験 1 件 4) 修正CBR試験 5) ロサンセ、ルス 試験機による粗骨材すりへり試験 1件 G) コンクリート再生砕石の異物混入割合試験 1 件 受付番号: 02714

付録 4-11

JIS A 1210 JGS T 711	突固めによ	定)		0	2714 - 1/3			
調查件名				試驗4	月日	판)	成 21 年	07月30日
試料番号(深さ)				試長	余 者		益子	保則(孳)
試 驗 方 法	<u>E-b</u>	土質名称	RC-4	0				
試料の準備方法	乾燥法	ランマー質量 kg	4.	5	E	内	径	15.0
試料の使用方法	非繰り返し法	落下高さ cm	4	5	1	高	さ 1) cm	12.5
含 試料分取後 ₩0 %		突固め回数 回/層	9	2	ド	容	量 Y cm3	2209
小 比 乾燥処理後 W1 %	5.0	突固め層数 層		3	<u> </u>	質	量 m12)g	3966
測 定 No.	1	2			3			4
(試料+モールド)質量 12	8278	8528			8731	~		8815
湿潤密度 ptg/cm	1.952	2.065	_	2	. 157			2.195
平均含水比 ₩	5.0	6.5			7.9			9.7
乾燥密度 pdg/cm	1.859	1.939		1	. 999			2.001
容器 No.								
mag	5195	5383			5602			<u> </u>
a nb g	4992	5107			5257			5364
nc g	926	867			885			988 .
76 8	5.0	6.5			7.9			9.7
容器 No.								
the na g								
mb g				·		•		
mc g	· · · · · · · · · · · ·							
W %								
測 定 Na	5	6			7			8
(試料+モールド)質量 🔤	g8798							
湿潤密度 otg/cm	32.187							
平均含水比 ₩	11.1							
乾燥密度 odg/cm	1.968							
容 器 No.								
ma g	5722							
含mbg	5244							
mcg	938						_ ·	
7K 17 %	11.1							
容_器No								
tt. ma g	· · · · · · · · · · · · · · · · · · ·							
mb g								
mc g								
W %		-						
特記事項					1)	1径150	mのモール ディスク(ルトの場合はスペ の高さを差し引く
					2) T	ニール	ドの質量	は底板を含む。
					o d	=	ρt·	
					10 M	1+	wZ100	

									受付番号	0271	4	2/3
			修]	Ξ (СВ	R	試	験				
受付年月日	3	平成 21 年	07月	21 日		試験	年月日	3	平成 21 年	08月0	4 日	
.試料名又M RC-40	よ試料状態)	2025				武料	の含水	北		8.7	e e e e e e e e e e e e e e e e e e e	
試料番号						最適	含水比 乾燥密	度	2.	8.8	% g/ci	13
試験条件3 水浸	又は養生多	条件				最大尊	乞燥密度 (₯%%修፤	ECBR	104	%	
供試体作製					ŀ							
突固め回数	溜 糯+t		モールド	質量 g	湿潤供師	(体質量 g	モール	ド体積 cm ³	湿 潤 泡 ot	f 度 g/cm3	乾燥	密度 dg/cm3
92回3層	8	769	39	6 5	48	304	2	209	2. 1	75	2. (001
42回3層	8	8546 3966		4 5	580	2	209	2.0	73	1. 9	907	
17回3層	8	264	39	44	4 3	320	2	209	1. 9	5.6	1.'	799
回3層				_					1			
含水比測定	ma	5586	mb	5199	. EIC	730	₩=	8.7	% %	均含水比		8.7 %
貫入量 コ	nine.	0.5	1.0		1.5	2.0		2.5	5.0	7.5		
	92回	5.83	12.0	4	18.33	24.3	0, (30.00	54.12			
** *	42回	1.86	3.7	3	5.69	7.8	1	9.97	19.94			
10 里 kN	17回	0.75	1.5	0	2.30	3.2	0	4.11	8.22	- - - -		
	亘								· ·			
CBR		92回3篇	<u>}</u>		۸ ۱2013	景华何 <u>里</u>	19.	9 KA	。 屠		回3	層
CBR %		272	%		10(0%		41.	3 %			×
備考								式験者		益子	保則	掌
								は団法ノ	、 茨城県殖	也設技術	管理も	シター

財団法人 茨城県建設技術管理センター

				ł	受付番号	02714	1/
JIS A 11	21 ロサンゼル	ス試験機	絵によ	るすりへり	試験	-	
受付年月日	平成 21 年 07 月 21	E	試験年	三月日 平,	成 21 年 ()7月29日	
試料名 又は 試料状能	RC-40		試料者	6号			
粒度の区分	注1		鋼球0	D数	8	1	固
回転数	500	回	鋼球0	D質量	3327		g
試験前の)粒度						
	粒 径 ㎜	残留率	ж	加積通過率,	6		
	75						
*	53						
	37.5	÷ # +					
	19						
	16	0		100 0			
	9.5	0.		100.0			
	4.75	100.	0	0.0			
	2. 30	0.	0				
		100					
すりへり試	験結果						
				1		2	
①試験前の	D試料質量	g		5000			
② 1.7㎜ふるい残	留物の水洗い後の質量	g		3366			
③すりへり)損失質量(D—② g		1634			
@ すり ^	ヽ り 減 量 ③÷①)×100 %		32.7		,	
⑤ 平	均 值	Ж.,			32.7		
備考 注1	試料の粒度は、JIS A	5001だより	13~5mm අ	:用いた。			
				試験者		鈴木 政幸	(A)
				財団法人	茨城県建	設技術管理セ	エンタ・

	· ·	· .	I
コン	クリート再生砕石中の異	物とアスファルト塊の	混入量試験
受付年月日	平成 21 年 07 月 21 日	試驗年月日 平成 21 名	F07月24日
試料名 又は 試料状態	RC-40	試料番号	
		-	
	異物の種類	混入割合%	
	鉄 類	0	
	ガラス	. 0	
	木 片	0	-
	レンガ	0	
	陶器	. 0	
	プラスチック	0	
			-
	思妙很入刻会会計	0	-
	77.77阶坡混入割合	1.8	-
]
	※読作者4.70111116人上と9	2 °	
			·

財団法人 茨城県建設技術管理センター

JIS A	1211		CBR	試験(〔乱した	ミ土の	室内試験) 報告用紙							
試験日		<u>.</u>	区成21年	-7月27日	3		試験の	含水比				%		
調査名	目的		社内品	質管理			最適為	含水比		<u> </u>	4.7	0/		
工事番・							最大勤	燥密度			2 294	a/cm ³		
工事箇〕	 所						67回	3層乾傾	· 密度					
路線名							17回	3層乾燉	熱度					
採取箇〕	 所						67回3	層CBR						
骨材種	引		M-	-30			17回3	層CBR						
試験者			石橋	 i 明	夏		最大乾	最大乾燥密度の95%修正CBR 92.1 %						
							最大乾	 最大乾燥密度の %修正CBR						
供試体の作	製飯浸) 非	水浸					<u> </u>						
突固め 回数	湿潤() +モー 量(ははははははははははははははははははははははははははははははははははははははは	モール (g	ド質量 g)	湿潤(質量	共試体 (g)	÷∽ル V(ド体積 cm ⁱ)	湿潤 ot(密度 (g/cn³)	桑密度 (g/cm³)			
92回3層		9,615		4,385		5,230		2,209		2.368		2.268		
42回3層		9,451	4,412 5,039					2,209		2.281		2.185		
17回3層		9,091		4,285		4,806		2,209		2.176		2.084		
67回3層														
含水比測量	2					-								
					• •									
		Wa	. =	4,755			Wb		4,593					
		Ww		4,593			Ws		3,681		-			
						W=		4.4%						
 貫入量	L 試験									-]		
貫入	量mm	0.5	1.0	1.5	2.0	2.5	5.0	7.5	10.0	12.5	修正 2.5貫入			
	92回	1.57	3.41	6.28	11.05	16.86	33.83	67.61			bio șt șt			
荷	42回	0.88	1.63	3.19	6.28	10.69	18.85	38.97		-				
	17回	0.45	0.87	1.70	3.36	6.42	10.19	21.83						
KN	67回]		
C	CBR						標準荷重 19.9kN							
	92回3層 42回3層					いちゃう 「「「」」	17回3層 67回3層					層		
CBR		170			94.7			51.2						

付録 4-19

周杏日的 补内品質管理	2			計驗	在日日	1	亚成		78	24 日	1210
				- L #A		4		21- 	·/J	24 H	••••••
育材種別 M−30				試験	者		石	橋	明論	<u>₹)</u>	
				呼び	名:試	験方	法	E−b		<i>y</i>	
				材料	準備:	(乾	燥法)	・非	乾燥	去	
试料の使用別 : 繰返し法	• (非繰返し	法)	含水	比: 卓	乾燥如	の理前		%	乾燥	処理後
測 定 番 号	1	1				2				3	
湿澗試料質量+モールド質量g		9,442	2		9.	570			9.674		
モールド質量 g		4,412	2	4.412					4.	412	
湿潤試料質量 g	<u> </u>	5,030	4,412 4,412 5,030 5,158					5.	262		
湿澗密度 Pt 1/cm	2.277			2,335					2.	382	
乾燥密度 Pd 1/cm		2.232	2		2.	265			2	288	
含水比 w%		2 (ງ			31				4 1	
		NO.1			NC	$\frac{0.1}{2}$			NC) 3	
	Wa	4,441 W	b 4,372	Wa	4,791	Wb	4,675	Wa	4,952	Wb	4,793
含 水 比 測 定	Wb	4,372 W	c 916	Wb	4,675	Wc	926	Wb	4,793	Wc	912
	Ww	69 W.	<u>s 3,456</u>	Ww	116	Ws	3,749	Ww	159	Ws	3,88
	W	2.	.0 %	W		3.1	%	W		4.1	%_
測 定 番 号	Г	4		[5				3	
湿潤試料質量+モールド質量。		9.73	1			729					
チールド質量 σ		4 41	2		4	412					
		5 310	a		5	317	1.1.0000				
温潤宓庄 Pt 1/m		2 409	2			407					
世間田及 It I/m 乾燥恋府 Dd 1/m	<u> </u>	2.100	2			264					
44/米田及 10 1/ 011 合水田					۷.	6.0					
占/N.LL W/0		NO 4	J		NC	0.0					
	Wa	4.901 W	b 4.710	Wa	5.088	1.0 Wb	4.841	W/a		Wb	
含水比 測 定	Wb	4,710 W	c 896	Wb	4,841	Wc	924	Wb		Wc	
	Ww	191 W.	s 3,814	Ww	247	Ws	3,917	Ww		Ws	
	W	5.	.0 %	W		6.3	_%	Ŵ			%
测定来是	<u> </u>	7				2				2	
<u></u>		1			(<i></i>				<i>"</i>	
王一ルド質量 。	-										
				<u> </u>							
11/01 会北ル								<u> </u>			
百八儿 W%											
	Wa	127		We		W.P.	110 a	Wa		Wh	
含水比測定	Wb	W	с	Wb		Wc		Wb		Wc	
	Ww	W	S	Ww		Ws		Ww		Ws	
	W		%	w			%	W			%
その他の突固め方法:ラン	j	質量 4.5K	【g 落下高	5 45c	m g	突固め	回数	92回 /	/層(3層)	
			*******							*********	

試験名 粗骨材の密	度及て	び吸水量	試験	JIS	A 1110		
試料名 M-30		試驗名	戶月 日	平成 21年	7月 24日		
	_	調 焉	灸 者	石橋	屬		
調查名·目的 社内品質管地	里	骨材の最	是大寸法	13r	nm		
試料採取場所 ストックヤート	*/	試驗時	の水温	20°C			
御守来早		1	0	2	A		
		1	4	J	4		
	(g)						
② 容 器 質 量	(g)			:			
③表乾試料質量①-②	(g)	2,164.6	2,151.8				
④ (かご+試料)水 中 質 量	(g)	—	a taranga				
⑤ かごの水中質量	(g)						
⑥ 試料の水中質量④-⑤	(g)	1,354.2	1,346.2				
⑦表乾密度 — ③ (g⁄cnì)	2.67	2.67				
平 均 値		2.0	67				
⑧ 乾燥後の試料質量	(g)	2,151.9	2,139.4				
⑨かさ密度()	g∕cnǚ)	2.66	2.66				
平 均 値		2.0	66				
10 見掛密度()()	g∕cıı̇́)	2.70	2.70				
平 均 値		2.	70				
① 吸 水 率 (③-⑧)×100 ⑧	(%)	0.59	0.58				
平 均 值		0.1	59				
備考		a l e e e e e e e e e e e e e e e e e e e					

試 験 名	=	上の液性限界・塑性限	界試験		JIS	A 1205 A 1206			
試験年月F	H 平成	21年7月24日							
調査名	社	内品質管理]	落	下回	数			
試 料 名		M-30	8 9 10	15	20 25	30 40 50			
試 驗 者	石	橋馬	10						
液性	生限界試験 2		- 10						
落下回数 8回 落 7 NO 1	下回数 12回 NO 2	落下回数							
Wa 38.39 Wb 34.81 Wa	37.84 Wb 34.69	Wa Wb							
Ww 3.58 Ws 23.68 Ww	34.69 WC 12.22 3.15 Ws 22.47	Ww Ws	15						
<u>W = 15.1%</u>	W = 14.0%	W =			NP				
4 落下回数 落つ	5 下回数	6 落下回数 8回	- 13						
Wa Wh Wa	Wh	Wa Wh	12						
Wb Wc Wb	We	Wb Wc	- 11						
W =		W =							
	生胶外武颜		╡╎╎┤						
落下回数 落	下回数	溶下回数	-						
Wa Wb Wa Wb Wc Wb	Wb	Wa Wb Wb Wc							
Ww Ws Ww	W =	Ww Ws							
液性的	限界 L、L = N	•P							
塑性系	限界 P、L = N	•P							
塑性	指数 P、I = N·	·P							
備考									

試験	名	μţ	ナンセ・ルス試験	験機は	こよる	すり・	しり試	験	JIS	A 1121		
試験年月	日			平成	21年	7月	24 E	1				
試験日のお	日能		፪温(℃)	湿度	ŧ(%)	水	:温(℃)	乾燥	濕度(℃)		
H- 100 (H- 10-10	·		28	3	5		20			105		
試料名	, 1		M-30		Ē	試験者	<u>e.</u> I		石橋			
とどまるフルイ	通る	フルイ	各種の質量	各種0 百分	⊃質量 }率	粒度	区分	鋼球 及び	の数 質量	回転数		
(mm)	(m	m)	(g)	(%	6)			(٤	g)			
							_					
								5				
4.75	13	5.2	5,000	10	00	(0	8個3	331g	500		
合計	1		5,000	10	00							
② 試験	いに残った	試料質	量	(g)		3	,966					
3 th~	<u>(</u>)-	2		(g) 1,034								
④ すりへ	り減量		3÷1>	<100	(%)	.		20.7			

1/5

再生路盤材の試験報告書

受	付番	号	工試第 U-2009041323-200909005039							
受	付	Ħ	平成21年 8月25日							
発	行	B	平成21年 9月10日							

双葉商事株式会社 殿

財団法人	建材試験	センタ	財団術で 満株試験 あいター5事
浦和試験室	春川	真一	就料試驗

〒338-0822 埼玉県さいたま市橋	桜区
---------------------	----

• .	中島2丁目1	12番8-	号	
	電話番号	048	(858)	2790
	試験監督者	高橋	大 祐	ī

1. 試 料

種		類	RM-40					
採	取	日	平成21年	8月25日				
用		途	路盤材等				 	

2. 試 験 内 容

試	験	方	法	JIS A 5001 道路用砕石 5.2 粒度試験	
				JIS A 5001 道路用砕石 5.3 絶乾密度及び吸水率試験	
				JIS A 5001 道路用砕石 5.4 すりへり減量試験	
				JIS A 5001 道路用砕石 5.5 塑性指数	
				(社)日本道路協会"舗装調査・試験法便覧" E001 ①修正CBR試験方法	
試	験	期	間	平成21年 8月25日~ 9月 8日	
試	験	場	所	浦和試驗室	
試	験	担 当	者	高館明裕・岡田玲子	

.

3. 試 験 結 果

.

粒	度	試	験							
×1					通過	質量	置百 2	分 率	%	
ふるい目の寸法 100		法	53 (50)	37.5 ,(40)	19 (20)	4.75 (5)	2.36 (2.5)	0.425 (0.4)	0.075	
測	測 定 値		値	100	100	74	47	3 2	17	5
規	※ 格	2 範	囲	100	95~100	60~90	$30 \sim 65$	20~50	10~30	$2 \sim 10$
備			考	 ※1 () ※2 RM- 粒度試験約 	内は各ふるい - 4 0 の規格総 詰果 (粒度曲線	3目の公称寸泊 位度範囲。 泉)を図-11	た。 こ示す。			
WWW Conner -+******<u>-</u> ~ 1 X V ~ 2.5 ~ -----..... . . . 1

<u>5/5</u> 工試第 U--2009041323-200909005039

-2 乾燥密度-台水比曲線及20乾燥密度-CBR曲線

 \mathbb{X}

共同研究報告書 Cooperative Research Report of PWRI No.432 February 2012

編集·発行 ©独立行政法人土木研究所

本資料の転載・複写の問い合わせは

独立行政法人土木研究所 企画部 業務課 〒305-8516 茨城県つくば市南原1-6 電話029-879-6754