共同研究報告書 整理番号第 491 号

高エネルギー吸収型落石防護工等の 性能照査手法に関する研究

共同研究報告書

平成29年3月

国立研究開発法人土木研究所 国立大学法人室蘭工業大学 神鋼建材工業株式会社 東京製綱株式会社 日本サミコン株式会社 株式会社ビーセーフ 一般財団法人土木研究センター 株式会社シビル 株式会社第一コンサルタンツ 日本プロテクト株式会社 株式会社アイビック 国土防災技術株式会社 東亜グラウト工業株式会社 東興ジオテック株式会社 日特建設株式会社

Copyright © (2017) by P.W.R.I.

All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I.

この報告書は、国立研究開発法人土木研究所理事長の承認を得て刊 行したものである。したがって、本報告書の全部又は一部の転載、複 製は、国立研究開発法人土木研究所理事長の文書による承認を得ずし てこれを行ってはならない。

共	同	研	究	報	告	書
第	491	号	平成	29	年:	3月

高エネルギー吸収型落石防護工等の 性能照査手法に関する研究

国立研究開発法人土木研究所		
寒地土木研究所		
寒地基礎技術研究グループ 寒地構造チーム 上席研究員	員 西	弘明
総括主任研究員	〕 今野	久志
元研究員	1 山口	悟 ^{※1}
研究員	〕 荒木	恒也
つくば中央研究所		
地質・地盤研究グループ 土質・振動チーム 上席研究員	貞 佐々木	:哲也
主任研究員	〕 加藤	俊二
国立大学法人室蘭工業大学大学院		
工学研究科くらし環境系領域社会基盤ユニット 准教技	爱 小室	雅人
講師	币 栗橋	祐介
神鋼建材工業株式会社 製造本部 取締役副本部長兼技術部長	長 仲岡	重治
防災事業総括部 担当次長	長 郷戸	健二
製造本部 技術部設計室担当課長	長 掃部	孝博
東京製綱株式会社 エンジニアリング事業部 技術開発部 部長	長 高森	潔
マネージャー	- 橋口	寛史
日本サミコン株式会社 技術部 部長	 渡部	敏
次長	ē 佐藤	彰
課長	長 高野	芳弘
研究所 所長	ē 中村佐	:智夫
札幌支店 次長	長 佐竹比	因志
株式会社ビーセーフ 会長	- 吉田	博
代表取締役社長	长 松嶋	秀士
開発設計部長	ē 小島	明徳
一般財団法人土木研究センター 常務理事	₮ 苗村	正三*2
技術研究所 地盤・施工研究部 部長	長 了戒	公利
部付部長	長 石塚与	志雄
次長	長 堀内	晴生*3
	土橋	聖賢

株式会社シビル	代表取締	役社長	窪田	潤平
	技	術顧問	勘田	益男
	創造技術部	次長	近藤	智裕
	創造技術部	課長	中村倭	赴太郎
落石対策技術研究会				
株式会社第一コンサルタンツ	代表取締	役社長	右城	猛
日本プロテクト株式会社	代表取締	役社長	加賀山	」肇
	テクニカルリ	ーダー	有木	岡川
	テクニカル	チーフ	高市	圭三
柔構造物工法研究会				
株式会社アイビック 秋田支店	技術営	業部長	北嶋	智哉
	元	支店長	市川	寿人
国土防災技術株式会社	営業本部 営	業課長	杉本	知広
東亜グラウト工業株式会社	技	術顧問	村石	尚
斜面防災グループ 耳	反締役・技術開	発室長	木村	佳嗣
	技術開	発部長	梅沢	広幸
東興ジオテック株式会社 技術本部 技術				
兼 環境技術	 「「「「「」」 「「」」 「」」 「」」	当課長	濱田	誠
日特建設株式会社	技術開発第	一部長	三上	登

※1:現 国土交通省北海道開発局带広開発建設部道路計画課

- ※2:現 一般財団法人土木研究センター 参与
- ※3:現 一般財団法人土木研究センター 主幹研究員

要旨

近年、高エネルギー吸収型といわれるような様々な落石防護工(落石防護網・柵)が開発 され、採用事例も増えてきているが、我が国においてはそれらの性能評価に関する統一的な 指標がないのが現状である。本報告書では、「本編」、「実験による性能照査手法編」、「資料編」 の3部構成としており、本編では、従来型落石防護工を含め、近年採用事例が増加している 高エネルギー吸収型落石防護工の設計法の現状と課題点の整理を行うとともに、それらに関 して実施された実験や解析事例の収集整理を行った。さらに高エネルギー吸収型落石防護工 の海外における性能照査基準について調査取りまとめを行った。また、落石防護工の落石捕 捉事例や損傷事例等について取りまとめた。実験による性能照査手法編では、落石防護工と して求められる機能と性能を示すとともに、高エネルギー吸収型落石防護網・柵に対して統 一的な実験的性能照査手法を示した。さらに現場適用にあたっての留意事項の一例を整理し た。資料編では、設計上残された課題点の解決のために参考となるような検討事例について 取りまとめを行っている。

キーワード:高エネルギー吸収型落石防護工、落石防護網、落石防護柵、実験的性能照査手法

共同研究報告書 目次

+	48
ቝ	艑

1. はじめに	·· 1
1.1 研究背景と目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	·· 1
1.2 研究対象	•• 1
1.2.1 従来型落石防護工	·· 1
1.2.2 高エネルギー吸収型落石防護工	·· 2
2. 従来型落石防護工の現行設計法とその課題	•• 4
2.1 現行設計法	•• 4
2.1.1 ポケット式落石防護網 ・・・・・	•• 4
2.1.2 落石防護柵	•• 6
2.2 課題点	•• 8
2.2.1 ポケット式落石防護網 ・・・・・	•• 8
2.2.2 落石防護柵	·· 17
2.3 関連実験・解析事例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	·· 20
2.3.1 ポケット式落石防護網の重錘衝突実験 ・・・・・・・・・・・・・・・・・・・・・・・・	·· 20
2.3.2 落石防護柵の重錘衝突実験	·· 23
3. 高エネルギー吸収型落石防護工の性能照査(設計)法の現状	•• 32
 3.1 海外における性能照査基準 	•• 32
3.1.1 米国における落石防護柵試験の概説	·· 32
3.1.2 ヨーロッパにおける落石試験の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•• 36
3.1.3 試験方法の概要と対象	•• 37
3.1.4 さまざまな試験場の特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•• 38
3.1.5 衝撃用の擬似落石・ブロック	•• 38
3.1.6 柵試験体と試験のケース	•• 44
3.1.7 まとめ ・・・・・	•• 44
3.2 我が国における性能照査(設計)法の現状と課題点 ・・・・・・・・・・・・・・・・・・・・・	•• 47
3.2.1 防護網の性能設計法の現状と課題	·· 47
3.2.2 防護柵の性能設計法の現状と課題 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	·· 54
3.2.3 防護柵の性能照査実験に関するアンケート調査結果 ・・・・・・・・・・・・・・	•• 63
3.3 部材・要素レベルの性能照査技術	•• 67
3.3.1 防護網・柵部材の実験方法・数値解析手法	•• 67
3.4 構造全体系の性能照査技術	•• 74
3.4.1 防護柵・網全体系の実験方法・数値解析手法	·· 74

4. 落	ち防護エの 落	落石捕捉・損傷事例	•••••	 	79
4. 1	調査目的		•••••	 	79
4. 2	調査方法			 	79
4. 3	調査結果			 	79
4. 4	まとめ ・			 	80

実験による性能照査手法編

1.	概要	Ę ·····	153
2.	求め	うられる性能と限界状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	153
3.	実騎	ことる性能照査手法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	155
	3. 1	重錘衝突方法(実験場)	155
	3. 2	供試体寸法	155
	3. 3	重錘形状・材料(表面)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	155
	3. 4	衝突速度	156
	3. 5	阻止面と重錘入射方向のなす角度	156
	3. 6	重錘の回転の影響・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	156
	3. 7	重錘衝突位置	157
	3. 8	計測項目	157
	3. 9	評価方法 ·····	157
4.	現場	過用と留意事項 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	158
	4. 1	設計における配慮事項 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	158
	4. 2	留意事項-実験と現地条件の違い ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	158
5.	評価	「シート(案) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	160

資料編

1. 落石跳躍量の予測方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	165
1.1 はじめに	165
1.2 基本的な方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	166
1.3 線運動の場合 (CaseA) ······	167
1.3.1 飛び出し角度が斜面勾配の場合(CaseA-1) ····································	167
1.3.2 飛び出し角度が斜面勾配と異なる場合 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	169
1.4 跳躍運動の場合 (CaseB) ······	170
1.4.1 入射角度の推定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	170
1.4.2 飛び出し位置が平均斜面勾配の場合(CaseB-1) ・・・・・・・・・・・・・・・・・・・・・	173
1.4.3 飛び出し位置が緩斜面の場合(CaseB-2) ······	175

1.5 線運動と跳躍運動の判定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 177
1.6 凹凸斜面と平坦斜面の判定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 178
1.7 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 178
2. 落石以外の荷重(積雪荷重) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 179
2.1 設計荷重 ····································	••••• 179
2.2 設計積雪深	••••• 179
2.3 積雪の単位重量 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 179
2.4 積雪地域の設計への配慮 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 180
3. 杭基礎の設計法 (柵) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 182
3.1 杭体の設計 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 182
3.2 根入れ長の決定 ······	••••• 182
4. ひし形金網の落石衝突時における回転エネルギーの影響に関する解析的検討事例 ・・・	••••• 183
4.1 概要 ·····	••••• 183
4.2 実験概要 ················	••••• 183
4.3 数值解析概要 ···········	••••• 184
4.3.1 解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 184
4.3.2 材料構成則 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 184
4.3.3 数值解析方法	••••• 185
4.4 数値解析結果および考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 185
4.4.1 金網変形性状	••••• 185
4.4.2 金網たわみ量 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 187
4.4.3 ワイヤロープ張力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 187
4.4.4 各種最大応答	••••• 189
4.5 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 189
5. 重錘のリングネットへの衝突に対するエネルギー等価条件下での解析による評価 ・・・	••••• 190
5.1 解析の背景 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 190
5.2 解析概要 ······	••••• 190
5.3 解析手法と条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 191
5.3.1 高強度ネットシステム解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 191
5. 3. 2 剛体球諸元 · · · · · · · · · · · · · · · · · · ·	••••• 193
5.4 解析結果	••••• 195
5. 4. 1 Case1 変形図 · · · · · · · · · · · · · · · · · · ·	••••• 195
5.4.2 相当塑性ひずみ分布図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••••• 197
5. 4. 3 Case2 変形図 ······	••••• 199
5.4.4 相当塑性ひずみ分布図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	201

	5. 4. 5	Case3 変形図 ······	••••••	203
	5. 4. 6	相当塑性ひずみ分布図・・	••••••	205
	5. 4. 7	フレームドロープ張力 ・・	••••••	207
	5. 4. 8	重錘加速度一時間関係 ··	••••••	209
	5. 4. 9	ネット変位量時刻歴 ・・・・	••••••	210
	5.5 まと	:め ·····	••••••	211
6.	. 関連論文	5	••••••	212
	6.1 落石	防護網に関する既往の研究	••••••	213
	6.2 落石	防護柵に関する既往の研究		223

本編

1. はじめに

1.1 研究背景と目的

近年、高エネルギー吸収型といわれるような様々な落石防護工 (落石防護網・柵) が開発され、従来のロッ クシェッド等の適用範囲と同様な落石エネルギーでの採用事例も増えてきている。これら落石防護工の性能 (安全性)は、道路交通や人命に直接的に関わるものであることから、想定される落石作用に対して要求され る性能が確保されていなければならない。しかしながら、我が国においてはそれらの性能評価に関する統一 的な指標がないことから、海外等の事例を参考に開発者独自の実験や解析に委ねられているのが現状であり、 要求性能を満足しなくなるような終局限界状態に至るまでの安全余裕度も不明確である。このことから、落 石防護工として求められる機能と性能を明らかにするとともに、その性能照査手法を確立し、具備すべき安 全性の確保が求められている。

そこで、本共同研究では、落石防護工に求められる機能と性能を明らかにするとともに、性能照査手法を 確立し、技術資料として取りまとめることを目的とする。

本報告書では、「本編」、「実験による性能照査手法編」、「資料編」の3部構成としている。

本編では、従来型落石防護工を含め、近年採用事例が増加している高エネルギー吸収型落石防護工の設計 法の現状と課題点の整理を行うとともに、それらに関して実施された実験や解析事例の収集整理を行った。 さらに高エネルギー吸収型落石防護工の海外における性能照査基準について調査取りまとめを行った。また、 落石防護工の落石捕捉事例や損傷事例等について取りまとめた。

実験による性能照査手法編では、落石防護工として求められる機能と性能を示すとともに、高エネルギー 吸収型落石防護網・柵に対して統一的な実験的性能照査手法を示した。さらに現場適用にあたっての留意事 項の一例を整理した。

資料編では、設計上残された課題点の解決のために参考となるような検討事例について取りまとめを行っ ている。

1.2 研究対象

本共同研究において対象とする落石防護工は以下のと おりである。ただし、各種防護工の厳密な定義は難しく、 工法によっては下記の分類に当てはまらないものや2種 類の工法の中間的なものも存在するものと思われる。そ れらについても本報告書に示した性能照査手法を参考に することができるが、現場における落石の作用状況等の 実態を十分に考慮して検討することが重要である。

1.2.1 従来型落石防護工

ポケット式落石防護網

従来型のポケット式落石防護網は、阻止面がひし形金 網とワイヤロープ、支持部材がH形鋼支柱、ワイヤロー プおよび基礎から構成され、形状寸法もほぼ定型化して 写真1.2.1 従来型ポケット式落石防護網の例

いる構造のものである。3m~4m間隔に設けた支柱により落石の入り口となる開口部を設け、金網に落石が 衝突することで落石の持つエネルギーを吸収する。写真1.2.1に従来型ポケット式落石防護網の一例を示す。

(2)落石防護柵

従来型落石防護柵は、比較的小規模な落石対策として有効であり、斜面の状況に応じてその種類や寸法が決定されている。

現在市販されている従来型落石防護柵には、H鋼を支柱として、それにワイヤロープ、金網を取り付けた ワイヤロープ金網式と呼ばれるものと、H鋼を支柱として、H鋼の横構およびエキスパンドメタルを取り付 け、古タイヤあるいは砂を緩衝材として用いるH鋼式と呼ばれるものがある。写真 1.2.2、写真 1.2.3 にワ イヤロープ金網式落石防護柵の一例を示す。

写真1.2.2 従来型落石防護柵の例

1.2.2 高エネルギー吸収型落石防護工

(1) 高エネルギー吸収型ポケット式落石防護網

緩衝装置や緩衝機構を組み込んだり、支柱間隔を大 きくとって構造全体系で落石エネルギーを吸収するこ となどにより、従来型タイプの適用範囲を超える大き な落石エネルギーに対応するものである。写真 1.2.4 にその一例を示す。

写真1.2.3 従来型落石防護柵の例

写真1.2.4 高エネルギー吸収型落石防護網の例

(2) 高エネルギー吸収型落石防護柵(支柱強化型柵)

支柱がコンクリート基礎や直接地盤に根入れされ、 自立する構造である。支柱には鋼管等が用いられ、鋼 管内部には鉄筋やPC 鋼線を配置しコンクリートを充 填するなどして曲げ耐力を高めたものもある。阻止面 は、金網等の網状部材とワイヤロープを用いるもの や、高強度網状部材を用いるもの等がある。落石エネ ルギーを阻止面、ワイヤロープに組み込まれた緩衝装 置、支柱の曲げ変形等により吸収するものである。支 柱強化型柵の一例を**写真1.2.5**に示す。

(3)高エネルギー吸収型落石防護柵(ネット強化型柵)

支柱頭部を山側に設けたアンカーとワイヤロープで 結び、落石荷重を山側地盤の抵抗で支えるものである。 支柱下端はヒンジ構造等とし、小規模な基礎とするこ とができる。阻止面には変形性能に優れた網状部材が 用いられ、ワイヤロープには緩衝装置が組み込まれる。 落石エネルギーを緩衝装置や阻止面の大変形により吸 収するとともに、衝突体の接触時間を延ばすことによ りロープ張力を低下させることが大きな特徴である。 ネット強化型柵の一例を**写真 1.2.6** に示す。

写真1.2.5 支柱強化型柵の例

写真1.2.6 ネット強化型柵の例

- 2. 従来型落石防護工の現行設計法とその課題
- 2.1 現行設計法
- 2.1.1 ポケット式落石防護網
- (1)基本構造

従来型のポケット式落石防護網は、阻止面がひし形金網とワイヤロープ、支持部材がH形鋼支柱、ワイヤ ロープおよび基礎から構成され、形状寸法もほぼ定型化している構造のものである。3m~4m間隔に設けた 支柱により落石の入り口となる開口部を設け、金網に落石が衝突することで落石の持つエネルギーを吸収す る。

ポケット式落石防護網の概要図を図2.1.1に、一例を写真2.1.1に示す。

図 2.1.1 ポケット式落石防護網

写真2.1.1 ポケット式落石防護網の例

(2) 設計の考え方と適用範囲

従来型ポケット式落石防護網における可能吸収エネルギーの考え方は、主部材の弾性変形による吸収エネ ルギーの他、その他部材の吸収エネルギーおよび残存する振動等によるそれ以外の吸収エネルギーを落石の 衝突前後のエネルギー差 *E*_Lにより便宜的に代表させ、これらを合算するものである。本設計法は、この可能 吸収エネルギーが、落石の持ち込む運動エネルギーを上回ることを確認することで、安全性を照査するもの である。

設計法の適用対象・範囲および落石の衝突前後のエネルギー差 *E*_Lの算出における防護網の有効範囲は、以下の通りとされている¹⁾。

- ・適用対象は、従来型ポケット式落石防護網。
- ・可能吸収エネルギー E_T は、150kJ以下。
- ・落石の衝突前後のエネルギー差 ELの算出に用いる落石防護網の質量として有効とする範囲は、幅 12m 以下×高さ 12m 以下。

(3)安全性の照査

安全性の照査は、従来型ポケット式落石防護網の可能吸収エネルギーErが落石エネルギーEwを上回るこ

とを確認することとされている。

すなわち、

ここに、

Er: 落石防護網の可能吸収エネルギー(式(2.1.2)による)

Ew: 落石エネルギー

 $E_W = (1 - \mu / \tan \theta) m \cdot g \cdot H \cdot \sin^2 \theta_0$

ここに、

Ew: 落石エネルギー

- μ:等価摩擦係数
- θ₀:ネットの傾斜角
- θ : 斜面傾斜角
- m:落石質量
- g:重力加速度
- H: 落石の落下高さ

(4) 落石の作用位置および作用方向

落石の作用位置は、図2.1.2 に示すとおりとされており²⁾、高さ方向には上端横ロープと2 段目の横ロープのネット中央とし、縦ロープ方向については、支柱間隔中央としている。

一方、落石の衝突方向は斜面と平行に近いが、ジャンプによる影響を考慮して水平としている。この場合、 落石防護網に作用する落石エネルギーは、落石防護網の傾斜を考慮して金網に直角の分力について算出する こととされている。

図2.1.2 落石の作用位置および作用方向

(5)可能吸収エネルギー

落石防護網の可能吸収エネルギーErの算定は次式によることとしている。

ここに、E_N:金網の吸収エネルギー

ER:上端横ロープおよび2段目の横ロープの吸収エネルギー

Ep:支柱の吸収エネルギー

EHR: 吊ロープの吸収エネルギー

*E*_L: 衝突の前後におけるエネルギー差

なお、各部材の吸収エネルギーの算定の詳細は、落石対策便覧²(日本道路協会、平成12年6月)を参照 のこととしここでは割愛する。

(6) その他部材等の強度計算について

アンカーの強度、ワイヤロープ、支柱および構造細目については割愛する。詳細は落石対策便覧²⁰(日本 道路協会、平成12年6月)を参照のこと。

2.1.2 落石防護柵

(1)基本構造

落石防護柵は、比較的小規模な落石対策として有効 であり、斜面の状況に応じてその種類や寸法が決定さ れている。

現在市販されている落石防護柵には、H鋼を支柱と して、それにワイヤロープ、金網を取り付けたワイヤ ロープ金網式と呼ばれるものと、H鋼を支柱として、H 鋼の横構およびエキスパンドメタルを取り付け、古タ イヤあるいは砂を緩衝材として用いるH鋼式と呼ばれ るものがある²。

落石防護柵の一例を写真2.1.2に示す。

(2) 設計の考え方

落石防護柵は、金網、ワイヤロープおよび支柱の弾塑性変形により落石の運動エネルギーを吸収する。本 設計法は、これら部材の可能吸収エネルギーの総和で与えられる防護柵の可能吸収エネルギーが、落石の持 ち込む運動エネルギーを上回ることを確認することで、安全性の照査としている。

ワイヤロープと支柱強度の組合せにより、支柱が先に塑性変形する場合とワイヤロープが先に塑性変形す る場合がある。設計においては、支柱の許容最大変位角は 15 度としている。また、ワイヤロープについて は、万一破損した場合には落石が防護柵を突き破ることにつながるので、弾性限界以内にとどめるのが望ま しいとしている。ただし、落石荷重が明確で、かつワイヤロープが伸びることにより落石がすり抜けるおそ れが少ないと判断される場合には、2~4%程度の許容伸び率を設定してもよいものとされている。

(3)荷重

設計における落石の衝突位置は、支柱間の中央で柵高の 2/3 の位置とし、落石の衝突方向は柵に直角とされている。

(4)安全性の照査

落石防護柵の可能吸収エネルギー E_T が落石エネルギー E_W を上回ることを確認するものとされている。 すなわち、

ここに、

(5) 落石防護柵の可能吸収エネルギーの算定

落石防護柵の可能吸収エネルギーErは、次式により計算するものとされている。

ここに、*E_R*: ワイヤロープの吸収エネルギー

E_P: 支柱の吸収エネルギー

E_N:金網の吸収エネルギー

ここで、金網の可能吸収エネルギーは、計算で求めることは不可能なので、 E_N=25kJ とされている。

ワイヤロープの吸収エネルギー E_R および支柱の吸収エネルギー E_P の算定の詳細は、落石対策便覧²(日本 道路協会、平成12年6月)を参照のこととしここでは割愛する。

(6)構造細目、基礎の設計等

構造細目、基礎の設計については割愛する。詳細は落石対策便覧²⁰(日本道路協会、平成12年6月)を参照のこと。

参考文献

日本道路協会:日本道路協会ホームページ,「ポケット式落石防護網の設計の考え方について」,2013.12
 日本道路協会:落石対策便覧,2000.6

2.2 課題点

従来型落石防護工の代表的な工法には、ポケット式落石防護網と落石防護柵とがある。本節では、この2つの防護工について、損傷事例や実験結果から得られた知見により浮きぼりになってきた課題点について述べる。

2.2.1 ポケット式落石防護網

(1) 損傷事例

1) 損傷の形態

ポケット式落石防護網の損傷事例からその形態を整理すると図2.2.1のようになる。

図2.2.1 ポケット式落石防護網の損傷形態

2)金網

落石によってひし形金網の素線が破断し、**写真 2.2.1**のように金網に穴が空いた現場をときどき見かける。 現地調査の不備や想定外の落石による金網の強度不足などが原因と考えられる。適正な現地調査を行い、想 定される落石の運動エネルギーに見合った強度の金網を使用する必要がある。

一般に落石防護網の裾部は、金網の背後に溜まった落石の除去を容易にするため、路面から 50 cm 程浮か して設置することが多い。このように施工すると、**写真 2.2.2**のように落石が道路に転がり出して建築限界 を侵すことがある。特に幅員の狭い道路においては、裾部からの落石の転がり出しなどにも配慮する必要が ある。

写真 2.2.1 金網の破網

写真2.2.2 裾部からの転がり出し

3) アンカーボルト

ワイヤロープはアンカーボルトによって地山に固定しているが、地山が土砂の場合には**写真2.2.3**のよう に引き抜けている場合がある。地山が岩盤の場合でも定着剤の充填が十分でない場合や、埋め込み長が不足 している場合には**写真2.2.3**のように引き抜けることがある。アンカーボルトには設置状況によって、せん 断力以外に引張力や曲げモーメントが作用する可能性がある。これらの作用に対しても安全な設計が必要で ある。

地山が岩盤の場合には、落石を金網で受け止めたときに生じる衝撃によって、アンカーボルトが写真 2.2.4 のように破断したり、アンカーボルトへの取り付け金具が写真 2.2.5 のように破断したりすることがある。 アンカーを設計する際のせん断力は、ワイヤロープの降伏力を作用させているが、アンカーを破断させない 設計をするのであれば、ワイヤロープの破断力を用いる必要がある。

アンカーボルトを設置する岩盤の強度が不足していると、衝撃力によって岩盤が**写真2.2.6**のように破壊 することがある。このことにも留意しておく必要がある。

写真2.2.3 アンカーの引き抜け

写真2.2.4 アンカーボルトの破断

写真2.2.5 ターンバックル取り付け金具の破断(アンカー部)

写真2.2.6 アンカー埋め込み部の岩盤の破壊

4) ワイヤロープの端末処理

写真 2.2.7は長支間型ポケット式落石防護網の性能確認実験を行ったときのものである。横ロープを継ぎ 足す目的で使用していた巻き付けグリップが落石の衝撃力を受けて引き抜けた。

以前は、ワイヤロープ端末を止めるには、ワイヤクリップ止めが一般に採用されていたが、近年では巻き 付けグリップが一般的になっている。

巻き付けグリップとは、**写真2.2.8**のようにスパイラル状に成形した鋼線を数本撚り合わせ、素線がばら けないように素線相互を接着剤で密着させて、その内面に人造研削材を塗布させたもので、これを鋼より線 の上に巻き付けて掌握保持するようになっている。

巻き付けグリップの製品に規定されている引張強度は静的試験によるもので、衝撃を受けると緩み、その 強度は低下することがある。そのため、構造主体となるワイヤロープの端末処理は、落石の衝撃で引張強度 が減少しないような方法を採用する必要がある。考えられる処理方法としては、ワイヤクリップ止め、巻き 付けグリップとワイヤクリップ止めの併用などがある。

写真2.2.7 巻き付けグリップの引き抜け

写真2.2.8 ワイヤロープと巻き付けグリップ

5) 支柱吊りロープ

ポケット式落石防護網は、支柱を3m間隔で地山から張り出し、支柱の先端から防護ネットを吊り下げる ことで、地山と防護ネット上部の間にポケットを構築し、そこで落石を阻止する構造となっている。支柱は、 防護ネット上方斜面に設置したアンカーに繋いだ吊りロープで固定しているが、写真2.2.9に見られるよう に落石が支柱の吊りロープを直撃して破断させることがある。そのため、1本の吊りロープが破断しても機 能を損なわない余裕を持った構造としておくか、落石が通過すると予想される谷部を避けた場所に支柱を設 置することが望ましい。

写真2.2.9 支柱吊りロープの破断

6)構成部材の強度の大小関係

現行設計法¹⁾では、構成部材の強度が「 金網 < ロープ < アンカー 」となるようにされているが、こ のようにすると落石が金網を貫通して道路に飛び出す恐れがある。そのため、アンカーボルトが破断したと しても金網で阻止した落石を裾部まで誘導できるように「 金網 > ロープ > アンカー 」となるように設 計することが望ましい。

(2)現行設計法の課題点

1)金網の変形と可能吸収エネルギー

現行設計法¹⁾では、落石衝突時の金網の最大変形量は、図 2.2.2 に示すように落石直径の 1.5 倍の幅の金 網が横ロープ間隔の 1/4 と考えている。しかし、金網の変形はこのように局所的ではなく、図 2.2.3、写真 2.2.10 のように全体的に変形することが実物実験で確認されている。

金網の面内方向の伸びxと張力Pの関係を図2.2.4(a)に示すようなばね定数Kの弾性体とすれば、金網の面外方向の落石荷重Fと金網の変位量 δ の関係は図2.2.5(a)となり、金網の吸収エネルギー E_N は式(2.2.1)で表される。

$$E_N = \int F d\delta = 4K \int_0^\delta \left\{ 1 - \frac{h}{\sqrt{4\delta^2 + h^2}} \right\} \delta d\delta - \texttt{T}(2.2.1)$$

図 2.2.4(b) に示すような完全塑性体と仮定すれば、金網の面外方向の落石荷重 F と金網の変位量 δ の関係 は図 2.2.5(b) となり、金網の吸収エネルギー E_N は式(2.2.2) で表される。

現行設計法¹では、金網の吸収エネルギーENを式(2.2.3)で算出することにしている。

落石荷重 F と金網の変位量 δ の関係で示せば図 2.2.5(c) となる。金網の変位量 δ は tan θ (θ は金網の変形 角)に比例し、落石荷重 F は sin θ に比例すると仮定しているにも関わらず、式(2.2.3) では F が金網の変位量 δ に依存しないとして金網の吸収エネルギーを算出しており、力学的な矛盾がある。

現行設計法¹¹は、安全側の簡便設計法であるが、今後は実物実験の結果などを踏まえ、より合理的で精度の高い吸収エネルギーの算定手法を確立する必要がある。

図 2.2.2 金網の変形モデル(現行設計法)

図 2.2.3 金網の変形(実験結果)

写真2.2.10 全体的に変形する金網

図 2.2.4 金網の変形特性

2) 衝突前後のエネルギー差

現行設計法¹において、衝突前後のエネルギー差を算出する式は、質量 m1の落石と質量 m2の落石防護網 が完全非弾性衝突するときのエネルギーロスを算定する式そのものである。

衝突前の落石の速度を v_1 、金網の速度を $v_2=0$ 、衝突後には落石と金網が一体となって速度vで運動するものとすれば、運動量保存則より

エネルギー保存則より、

$$\frac{1}{2}m_1v_1^2 + 0 = \frac{1}{2}(m_1 + m_2)v'^2 + E_L - \texttt{I}(2.2.6)$$

図2.2.6 衝突後の金網の変形と運動

式(2.2.5)と式(2.2.6)より衝突時のエネルギーロス ELを求める式が得られる。この式は図 2.2.6(a)に示 すように質量 m1の落石が速度 v1 で静止している質量 m2の防護網に衝突すると、防護網は変形せずに剛体的 に落石に接触したまま速度 v7 で運動を続けることを意味している。

実際には防護網は図2.2.6(b)のように変形し落石を捕捉する。つまり、落石の運動を停止させる。このことから、落石と防護網の衝突を2つの質点の完全非弾性衝突問題と見なすことには無理がある。

3) 衝突時のエネルギー収支

落石がポケット式落石防護網に衝突している間、つまり落石が金網と接触している間における落石の速度 変化、エネルギー収支の変化は図2.2.7のようになると推定される。

図2.2.7(a)はポケット式落石防護網の可能吸収エネルギーが落石の運動エネルギーよりも大きくて、落石を阻止できる場合である。質量m1の落石が速度v1で運動しているときの運動エネルギーは(1/2)m1v1²である。

ポケット式落石防護網が落石を受け止めると防護網全体が写真 2.2.10 のように前方へ大きくたわむが、 この時に金網は振動している。つまり、落石の運動エネルギーは金網の歪みと振動のエネルギー、ロープの 歪みと振動のエネルギー、地盤の歪みエネルギーなどへと徐々に変化し、落石を阻止した時点で落石の運動 エネルギーはゼロとなる。その後、金網などの振動は減衰し、歪みエネルギーの一部は落石の運動エネルギー (1/2)m₁v'₁²として回復するが、残りのエネルギーは熱や音などとして消散する。このため、金網やワイヤロー プの歪みは残留したままになる。

力学的エネルギーは保存されないが、消散も考慮した全エネルギーは一定であるので、衝突時間における時刻 *t* では**式(2.2.7)** が成立する。

$$E_N(t) + E_R(t) + E_O(t) + \frac{1}{2}m_1v(t)^2 = \frac{1}{2}m_1v_1^2 - \text{if } (2.2.7)$$

ここに、

E_N(t):時刻tにおける金網の歪みと振動によるエネルギー(kJ)

 $E_R(t)$:時刻tにおけるロープの歪みと振動によるエネルギー (kJ)

Eo(t):時刻tにおけるその他の部材及び地盤の歪みと振動によるエネルギー(kJ)

v(t):時刻tにおける落石の速度 (m/s)

v1: 衝突前の落石の速度 (m/s)

衝突終了時、すなわち落石が金網から離脱する時点(==b)では、次式となる。

$$\frac{1}{2}m_1v'_1{}^2 + E_L = \frac{1}{2}m_1v_1{}^2 - \pm t$$
 $\ddagger (2.2.8)$

ここに、

v'1: 落石が防護網から離脱する時の速度 (m/s)

EL: 落石が防護網から離脱するまでに消散したエネルギーと防護網の振動エネルギー (kJ)

図2.2.7(b)は落石防護網の可能吸収エネルギーよりも落石の運動エネルギーが大きくて、落石が防護網を 突破する場合である。

このことから、現行設計法¹によるポケット式落石防護網の安全性照査は、式(2.2.9)によって行うのが現 実的であると考えられる。

 $E_T = E_N + E_R + E_O \ge \frac{1}{2} m_1 v_1^2 - \pi (2.2.9)$

ここに、

 $E_T: ポケット式落石防護網の可能吸収エネルギー (kJ)$ $E_N: 金網の歪みによる吸収エネルギー (kJ)$ $E_R: ロープの歪みによる吸収エネルギー (kJ)$ $E_{o}: その他の部材の歪みによる吸収エネルギー及び金網などの振動時の運動エネルギー (kJ) <math>m_{1}:$ 落石の質量 (t)

v1: 衝突前の落石の速度 (m/s)

2.2.2 落石防護柵

(1)損傷事例

写真 2.2.11~写真 2.2.14 は、落石が防護柵を直撃した事例である。ワイヤロープの破断、金網の破網、防護柵の中間支柱が座屈で大きく折れ曲がるなどの変状が見られる。支柱の変形は、根元から折れ曲がった もの、中間から「くの字」形に折れ曲がったもの、ねじれたものなど様々である。落石の衝突位置やワイヤ ロープによる拘束力が影響を及ぼしていると考えられる。支柱の根入れ部のコンクリートがせん断破壊した ものはあったが、擁壁が傾斜や滑動したものは見当たらない。

写真 2.2.12 に見られる防護柵の基礎は、土中に埋まった独立基礎であるが、基礎が動いた形跡はまったくなかった。

写真 2.2.14 は端末支柱付近で見られた変状である。写真左は、ワイヤロープを端末支柱に固定する索端金 具が外れている。原因は、索端金具ロットのねじ部が破断したことによる。写真右は端末支柱を補強する斜 材が座屈変形している。いずれも落石の衝突でワイヤロープに大きな張力が発生したことが原因であると考 えられる。

写真2.2.11 落石による防護柵の損傷その1

写真2.2.12 落石による防護柵の損傷その2

写真 2.2.13 落石による防護柵の損傷その3

写真2.2.14 落石による防護柵の損傷その4

図2.2.8 鳴門市北灘の落石事故

図2.2.8は、1990年10月8日に徳島県鳴門市北灘で発生した落石事故である。一般国道11号を高松方面 に向かって走行中の観光バス(乗客乗員49名)を質量1.43tの落石が直撃し、運転手とバスガイドおよび乗 客1名の計3名が死亡、乗客14名が負傷した。

落石の運動エネルギーは100kJと推測されている。防護柵は8本のワイヤロープのうち、下段の4本のワ イヤロープに塑性変形が見られた。塑性変形による伸び量は特に 2~4 段目が大きかった。支柱へのワイヤ ロープ留め金具5個と、2段目のワイヤロープ索端金具が破損した。金網には楕円形状の穴が開いており、 落石の通過状況を示している。

(2)現行設計法の課題点

現行設計法¹⁾では、落石防護柵の安全性は、可能吸収エネルギーが落石の運動エネルギー以上であること を照査することにしている。

防護柵の可能吸収エネルギーは、ワイヤロープの吸収エネルギー、支柱の吸収エネルギー,金網の吸収エ ネルギーの和として求めるものとしている。

- また、各部材の可能吸収エネルギーは、下記の5つの仮説が成立することを前提として算定している。
 - ① 金網は25 kJ のエネルギーを吸収する。
 - ② 落石を2本のワイヤロープで均等に支持する。
 - ③ ワイヤロープの歪みは全長にわたって一定である。
 - ④ 中間支柱は下端固定の片持梁として変形し、15度傾斜するまで降伏強度を保つ。
 - ⑤ 落石エネルギーが可能吸収エネルギー以下であれば、端末支柱や索端金具、金網は破損しない。

ところが、落石の現場では、下記のような損傷が見られることから、上記の仮説については実験等による 検証が必要である。

- ① 落石が金網を貫通して道路に落下するケースがある。
- ② 落石がワイヤロープの間をすり抜けて道路に飛び出すケースがある。
- ③ ワイヤロープは中間支柱や金網との摩擦抵抗の影響で、ワイヤロープの歪みは落石衝突箇所付近に 集中することが考えられる。
- ④ 中間支柱は、ワイヤロープによって拘束されており、片持梁にはならない。
- ⑤ ワイヤロープが降伏する以前に索端金具や端末支柱が破損するケースがある。

参考文献

1) (社)日本道路協会: 落石対策便覧, 2000.6

2.3 関連実験·解析事例

2.3.1 ポケット式落石防護網の重錘衝突実験

土木研究所寒地土木研究所では、2013年にポケット式落石防護網の耐衝撃挙動やエネルギー吸収機構等を 詳細に検討するための基礎資料を得ることを目的として、従来型落石防護網の実規模重錘衝突実験を実施し ている。

図2.3.1に供試体の正面図および側面図を、表2.3.1に供試体の設計条件を示す。

図2.3.1 ポケット式落石防護網供試体の正面図および側面図

	(kJ)	諸元	部材耐力 [ミルシートより]	安全率
落石持込エネルギー: Ew	150.10	W = 1 t, H = 17 m, $\theta = 45^{\circ}$, $\mu = 0.1$		-
吸収可能エネルギー: ET	151.26	$E_N + E_R + E_P + E_{ER} + E_L$		$E_T > E_W$
・菱形金網: E _N	61.49	$5.0 \phi \times 50 \times 50 \text{ mm}$	有効張力:41.1 kN/m	2.24 > 1.0
・横ロープ: ER	14.78	$18 \phi 3 \times 7 \text{ G/O}$, L=27 m	設計破断荷重:157.0 [190] kN	<u>1.88 < 2.0</u>
・支柱(ピン構造): Ep	0.00	$H100\times100\times6\times8$, L=3.5m		-
・吊りロープ: E _{ER}	0.71	$18 \phi 3 \times 7 G / O, L = 8 m$	設計破断荷重:157.0 [190] kN	4.68>3.0
・縦ロープ	-	$18 \phi 3 \times 7 \text{ G} / \text{O}, \text{ L} = 10 \text{ m}$	設計破断荷重:157.0 [190] kN	5.25>2.0
・エネルギー差: EL	74.28	-		-
横ロープ端部アンカー		D32 (M30) × 1000	設計せん断耐力:111.0 kN	1.33>1.0

表 2.3.1 供試体の設計条件

落石防護網を構成する部材の諸元は、表に示すように、落石対策便覧における設計法を参考に落石の衝突 前後のエネルギー差 *E*_L を考慮し決定した。供試体の形状寸法は、従来型のポケット式落石防護網で標準的 な支柱間隔 3 m を基本として、金網全幅を 5 スパン分の 15 m とし、実験施設規模から金網高さを 10 m に、支柱高さを 3.5 m に設定している。

従来型における金網としては、一般にひし形金網 φ3.2~5.0×50×50 mm が用いられているようである

ケース 名	H(m)	<i>Ewd</i> (kJ) (設計*)	<i>E_{TTe}</i> (kJ) (計測 ^{※※})	損傷状況の概要	備考
No.1-1	6.0	53	50	重錘衝突部の金網の塑性変形	新材金網
No.1-2	12.0	106	95	3 段目横ロープ左側の取付け金具の破断・右 側アンカーボルト周辺の岩盤の局部破壊・巻 付グリップの緩み	金網再利用
No.1-3	6.0	53	49	3段目横ロープ左側のアンカーボルトの破断	金網再利用,実験開始前に 取付金具撤去(以降未使用)
No.2-1	6.0	53	45	最下段(4 段目)横ロープ右側のアンカーボル トの破断・横ロープの緩み	新材金網(実験開始前に交換)
No.2-2	18.0	159	142	3段目横ロープ右側のアンカーボルトの引抜	金網再利用

表2.3.2 実験ケースと損傷状況の概要

落石持込エネルギー算出時の重錘速度 ※:理論速度, ※※:二次元高速度カメラ計測結果より

が、本実験では φ5.0mm のものを選定している。なお、金網は幅 3.3m のものを重ね代 0.3m でラップさ せて設置している。吊りロープ及び縦・横ロープには φ18 mm を、アンカーボルトにはD 32 (M30)×1000 を用いている。なお、縦ロープの間隔は 1.5m、横ロープの間隔は 5.0m を基本に考えたが、重錘衝突の設 定位置と重錘滑落装置の高さの関係から、横ロープは図に示すように変則的な配置としている。ワイヤロー プの各交点にはクロスクリップを、ワイヤロープと金網の結合にはφ4.0mm の結合コイルを縦ロープには5 mに8個、同じく横ロープには3mに4個を使用している。横ロープの端部処理には、一般に採用されてい る巻付グリップを用いているが、巻付グリップの引き抜けを防止するためワイヤクリップを併用した。また、 巻付グリップとアンカーボルトの連結には、ターンバックルおよび取付け金具を使用している。

実験は図2.3.1に示すように、実験施設内の傾斜角度約45°の法面に固定された重錘滑落装置に、所定の高さで設置した重錘を滑落させて、供試体に衝突させることにより実施した。写真2.3.1に実験状況を示す。

落石対策便覧における設計上の落石の作用位置は、上端横ロープと2段目の横ロープの中央、縦ロープ方向については支柱間隔中央とされている。しかしながら、本実験においては、重錘滑落装置との位置関係から前述のように2段目と3段目横ロープの中央位置に重錘を衝突させている。

重錘の質量は1.0 t、形状は幅 80 cm×高さ 75 cm×長さ 95 cm であり、衝突部が球面形状となっている。 本実験における測定項目は、ロープ端部のターンバックルに貼付した歪ゲージによるロープ張力、支柱 H 形鋼の基部に貼付した歪ゲージによる軸力、高速度カメラによる金網の二次元及び三次元変位等である。実 験時のロープ張力等の応答波形は、サンプリングタイム 0.1 ms でデータレコーダにて一括収録を行ってい る。

表 2.3.2 に実験ケースの一覧を示す。落下条件は落石持込みエネルギー E_W が、エネルギー差 E_L を除く 可能吸収エネルギーを下回る落下高さ H=6 m を基準として、整数倍で設定したものである。実験ケース No.2-2 については、設計条件を若干上回る落下高さである。なお、重錘衝突により金網およびワイヤロープ の一部には塑性変形が生じることになるが、金網の交換を行ったのは実験ケース No.1-3 の終了後のみであ り、No.1- と No.2- では、それぞれ同一の金網を使用している。

表2.3.2 に損傷状況の概要を、写真2.3.2 に実験後の横ワイヤ端部及びアンカー破断部の状況を、また、 表2.3.3 に全実験ケースにおけるワイヤロープの最大張力の一覧を示す。

写真 2.3.1 実験状況 写真 2.3.2 重錘・巻付グリップ・アンカー破断状況 表 2.3.3 ワイヤロープの最大張カー覧

ケース (落下高さ)	横ロープ張力(kN)				吊りロープ張力(kN)					
	L-1	L-2	L-3	L-4	T-1	T-2	T-3	T-4	T-5	T-6
	R-1	R-2	R-3	R-4			L-5	R-5		
No.1-1 (H= 6m)	14.2	14.2	38.3	<u>39.1</u>	6.1	5.3	16.9	12.7	5.3	18.8
	20.0	14.1	35.3	<u>38.1</u>			16.8	12.3		
No.1-2 (H=12m)	24.5	25.2	111.2	94.0	13.7	8.8	27.1	19.6	9.4	16.4
	35.6	16.6	101.3	_			27.7	20.3		
No.1-3 (H= 6m)	17.7	14.5	-	51.5	7.3	6.8	23.0	19.9	4.8	11.8
	26.3	7.6	83.8	46.7			23.3	20.9		
No.2-1 (H= 6m)	18.4	16.3	92.6	48.0	6.7	7.4	20.9	10.7	3.0	11.6
	25.5	17.1	96.6	42.2			20.8	10.6		
No.2-2	34.4	_	56.1	89.8	14.2	10.9	28.3	22.6	6.8	29.3
(H=18m)	41.3	28.3	-	92.7			28.3	22.9		

※赤字は部材破断箇所、下線はレンジオーバー、- は異常値により評価から除外

各実験ケースとも、重錘は想定どおり2段目と3段目横ロープのほぼ中間位置に衝突した後、落下しな がら最大変位に達し、金網に誘導されて地盤面まで到達している。損傷状況としては、最初の実験ケース No.1 -1(H=6m)では、重錘衝突部近傍の金網に若干の塑性変形が生じている程度であったが、このケースを除 き、横ロープ端部の取付け金具やアンカーボルト部で破断等が生じている(表2.3.3の赤字箇所)。実験ケー スNo.1-3では、落下高さH=6mの条件にもかかわらず、アンカーボルトの破断が生じているが、これは 直前の実験ケース No.1-2において当該アンカーボルトのネジ部に何らかの損傷が生じていたことが原因と 考えられる。本実験で使用したワイヤロープ φ18mmのミルシートによる破断荷重は190kNであるのに対 し、アンカーボルトD32(M30)の設計せん断耐力は111kNであることから、ロープの破断には至らずに アンカーボルト部での損傷が生じたものである。これは上述のとおり、重錘は最初に横ロープ間の金網に衝 突しているが、その後跳ね返されることなく、落下しながら衝突点直下の横ロープに接触したことにより、 横ロープに想定以上の張力が作用したことによるものと推察される。なお、各ケースにおいて、特に下段横 ロープ端部の巻付グリップには緩み(抜け出し)が確認されている。

2.3.2 落石防護柵の重錘衝突実験

(1) 落石対策技術研究会による実験¹⁾

この実験は、従来型落石防護柵の性能を確認する目的で落石対策技術研究会(代表: 堀地幹夫)が2009年7月に実施したものである。

落石実験施設と防護柵を図2.3.2に示す。高さ1.5mの落石防護柵を延長9mにわたり設置し、質量2.0tのコンクリート塊を速度9.4m/sで衝突させた。運動エネルギーは88kJであった。

図2.3.2 実験に用いた落石防護柵と基礎

写真2.3.3 第1回目の検証実験結果

実験の結果を**写真2.3.3**に示す。左側の端末支柱と斜材(溝形鋼)を連結していた2本のボルトのうち、 前面に使用していた六角ボルトM30が破断した。ナットは数メートル先に飛んでいた。背面側には高力ボル ト M16 (F10T) を使用していたので破断することはなかったが、溝形鋼のボルト孔が破損した。これによって、端末支柱は内側に根元から倒れた。なお、右側の端末支柱と斜材の連結には、前後ともに高力ボルト M16 (F10T) を使用していたので損傷しなかった。

下から2段目の索端金具のロット (φ25、SS490) は、ネジ部で破断した。なお、ロットの座金には、ウェ ブプレートに加わる圧力を減ずるために通常の座金より面積が大きい 120 mm×6 mm×150 mm の鋼板 (SS400)を使用していた。

写真2.3.4は、落石防護柵がコンクリート塊を受け止めた時にワイヤロープが大きくたわんだ状況である。 写真右を見ると、ワイヤロープが中間支柱を押しつけ、その力でフランジプレートを変形させている。

この状態を見ると、中間支柱の接触部に大きな摩擦力が発生し、ここでワイヤロープの変形を拘束してい るものと推測される。現行設計法²で仮定しているようにワイヤロープの歪みが全長にわたり一様になると は考えられない。

写真2.3.4 中間支柱のフランジがロープの変形を拘束

現行設計法²⁰では、中間支柱には強軸方向の力のみが作用し、支柱は耐力を維持したまま変位角15°まで強軸方向へ変位するとして支柱の可能吸収エネルギーを算定するとなっている。

落石が防護柵に衝突すると、ワイヤロープは写真 2.3.4、図 2.3.3 のように変形する。この影響で中間支 柱には強軸方向の力 R_aと弱軸方向の力 R_aが同時に作用する。弱軸方向は強軸方向に比べて断面性能が約 1/7

図2.3.3 ワイヤロープと中間支柱の変形

であるため、曲げねじれ座屈を起こす。このため、中間支柱では現行設計法²⁰のようなエネルギーを吸収することができないと考えられる。

実験に使用した落石防護柵は市販の製品であるが、端末支柱が十分な強度を有していたかどうかの照査を 行ってみた。

現行設計法²では、索端金具や端末支柱の強度の照査方法は明記されていない。このため、索端部の仕様 は統一されておらず、メーカー毎にそれぞれ異なった規格になっている。

ここでは落石を受け止めた時に上端の2本のワイヤロープが降伏すると仮定し、降伏荷重T,を作用させて 断面力と応力度を算出した。その結果を図2.3.4に示す。端末支柱および斜材を連結するボルトには、許容 応力度をはるかに超過する応力が発生する結果となった。

図 2.3.4 端末支柱の強度計算

端末支柱の根元の破断箇所、および端末支柱と斜材の連結部を溶接接合すると共に、H形鋼の斜材を追加 して図2.3.5、写真2.3.5のように補強し、再度実験を行った。

速度10 m/s、運動エネルギー100 kJ で 2.0 t のコンクリート塊を衝突させたところ、写真 2.3.5 のように防 護柵を突き破って前方へ転がり出した。索端金具は、写真 2.3.5 にあるようなワイヤチャックと呼ばれる楔 を使用した金具とロットと呼ばれる棒で構成されている。ワイヤロープを引っ張れば引っ張るほど楔が チャックの中に食い込んでロープを締め付けるため、ロープが抜け出すことはない。

ところが、ワイヤロープの破断荷重よりも小さい力でワイヤロープがワイヤチャックから外れた。3本の ストランドが引き抜けるケースと、1本あるいは2本のストランドだけが引き抜けるケースが見られた。ワ イヤロープはチャックの中で3本のストランドに分けられて、その中に楔を撃ち込むことで固定している。 3本のストランドに力が均等に伝達されないのではないかと思われる。ワイヤチャックは、衝撃により楔が 緩み、ワイヤロープがはずれる場合があるので施工時に注意する必要がある。

参考までに、ワイヤロープの索端部に写真2.3.6のような緩衝金具を装着すれば、防護柵が落石を受け止めるときに緩衝金具の中をワイヤロープがスリップしてエネルギーを吸収する。写真2.3.7は、質量2.0t、 運動エネルギー100kJのコンクリート塊を受け止めた状況である。

写真2.3.5 落石防護柵を補強した後の実験

写真2.3.6 索端に緩衝金具を装着した落石防護柵

写真2.3.7 ワイヤロープが緩衝金具の中をスリップして落石エネルギーを吸収

(2) 四国技術事務所による実験³⁾

国土交通省四国地方整備局四国技術事務所では、2002年に既存の落石防護柵の性能を明らかにするために 写真2.3.8に示す実験を実施している。

実験に用いた落石防護柵は柵高 1.5 m で、基礎はプレキャストコンクリートで製作している(図 2.3.6)。 防護柵の設置延長は、3 m(=3 m×1 スパン)、6 m(=3 m×2 スパン)、9 m(=3 m×3 スパン)の3 種類であ る。基礎は高さ1 m、厚さ0.6 m の等厚であり、基礎の長さは4.5 m、7.5 m、10.5 m の3 種類である。

写真2.3.8 四国技術事務所の実験

図2.3.6 実験に使用した防護柵と基礎

実験では、質量0.47tの重錘を、速度を変えて衝突させている。L=3mの防護柵の実験結果を図2.3.7に示す。この防護柵の可能吸収エネルギーを現行設計法²⁰で算定すると31.7kJである。ところが、重錘の衝突速度が4m/s、運動エネルギー4.6kJにおいて、端末支柱のウェブプレートが索端金具の取り付け部で局所変形し、ボルトナットが緩んだ。衝突速度7m/s、運動エネルギー11.5kJにおいて端末支柱の局所変形していた箇所でウェブプレートに亀裂が入った。以後の実験は、索端金具の座金を大きなプレートに取り替えて実験を継続している。

運動エネルギー13.8kJ で金網の素線が破断し局所的に穴があいた。18.4kJ でワイヤロープが破損し、23kJ でワイヤロープが完全に破断し、重錘が金網を突き破った。

図2.3.8は、索端金具のロッド部で歪みを測定したものである。重錘を衝突させた3段目のワイヤロープ に大きな歪みが発生している。金網のはらみ出しに伴い、2段目のワイヤロープは上方に、4段目のワイヤ ロープは下方にずれ、3段目のように大きな張力は発生しないことがわかる。

現行設計法²では2本のワイヤロープで落石を受け止め、2本のワイヤロープの歪みが同一になると仮定 してワイヤロープの可能吸収エネルギーを算定しているが、実験では異なる結果となった。

この実験における落石防護柵の吸収エネルギーは、現行設計法²で算定される値よりもはるかに小さい値 であった。

図 2.3.7 実験結果

図2.3.8 ワイヤロープ張力

(3)神戸大学による実験4)

神戸大学では、神鋼型落石防護柵を使用して昭和41年~42年に図2.3.9に示す実験を行っている。

図 2.3.10 は、報告書に記載されている W = 600 kg の重錘を落下させたときの実験結果を用いて運動エネ ルギー収支を右城が図化したものである。運動エネルギー収支 118kJ のうち、11kJ は落石、金網、地盤など が吸収している。報告書では、「金網の存在理由は土砂を含む落石を柵面で受け止め、衝撃力を分散させて ロープに伝達させること」と明記している。

図2.3.9 神戸大学の実験

W=600kgの実験の場合

図2.3.10 神戸大学の実験による運動エネルギーの収支(右城による)

参考文献

- 加賀山肇,右城猛,筒井秀樹,田中登志夫:落石防護柵用柵端金具の研究開発,平成21年度技術研究発 表会,地盤工学会四国支部,2009.11
- 2) (社)日本道路協会: 落石対策便覧, 2000.6
- 右城猛,篠原昌二,松山哲也:落石防護柵の重錘衝突実験,第26回日本道路会議,日本道路協会,論文 番号13014,2005.10
- 4) 神戸大学,(株)神戸製鋼所:神鋼型落石防止柵実地試験報告書, 1967.4

3. 高エネルギー吸収型落石防護工の性能照査(設計)法の現状

3.1 海外における性能照査基準

3.1.1 米国における落石防護柵試験の概説

現在、米国では落石防護柵に関して NCHRP 2003 にまとめられた落石試験法ガイドラインがある。しかし、これは、TRB 委員会活動の研究成果としてまとめられたものであり、国または州が定めた強制力のある基準ではない。したがって、このガイドラインを仕様書に盛り込むかどうかは、あくまで利用する側の判断に依っている。

米国での落石防護柵の性能評価の流れは、欧州での性能評価基準の構築に多大な影響を与えたと言えることから、ここで少し、米国における落石防護柵の性能評価の歴史についてまとめておきたい。

米国での落石防護柵の性能評価はカルフォルニア州交通局 J.D.Duffy 氏等が行った実大試験にはじまる。 彼は、当時カリフォルニア交通局(CALTRAN)の職員として実大の落石防護柵受託試験を多数実施、

一方、TRB 落石対策委員会委員長として活動した人物で、その実績を1999年にスイス・ダボスで開催 された国際会議において北米における落石防護柵試験状況と題して発表している。以下はそのときの発 表を要約したものである。

1986年に Golder とブリティッシュコロンビア州バンクーバーの技術者が実施した実大試験の解析結果から、落石防護柵設計における岩の大きさと衝突速度の重要性を示すものであった。

その後、1988年の初め、カリフオルニア州交通局はヨーロッパで使用されている柔構造防護工^{*1}の試験と評価を行う研究¹¹に着手した。また、その翌年、コロラド州交通局は、防護柵「フレックスポストフェンス」、「落石アッテネーター」など様々な柵に対し、落石衝突試験を始めている。このように、90年代半ばまで、多くの落石防護工のタイプに対し衝突試験が実施されている(写真 3.1.1、図 3.1.1)。 衝突試験の対象となった主な防護工は、ケーブルネット、リングネット、ダブルツイストワイヤフェンス、シングルツイストワイヤフェンス(チェーンリンク)、木柵、さらに、補強盛土、そしてゴムタイヤバリアなどである。

また、この頃から落石防護柵工の評価基準として落石エネルギーが着目されることになった。一連の 実大落石試験を数多く手掛ける過程のなかで性能に関する統一された基準がないことから、同等の性能 表示のものでも、実際には、大きく差があることが判明した。こうした経緯から米国の多くの州では落 石防護柵の発注に際し、性能規定を使用し始めたのである。例えば性能は防護工性能チャート図として 柵ダメージと衝突エネルギーとで表示されるようになる(図3.1.2、図3.1.3)²⁰。

この様な流れのなかで、落石防護柵の実大落石試験とその性能の実験的証明が応札の条件となって いった。また、その後間もなく落石防護柵の新しいシステムが次々開発されるようになり、それに伴っ て性能を証明するための実験(試験)のガイドラインが必要となったことから、カリフオルニア州交通 局では、実施する試験ガイドライン(案)³⁾を準備するに至った。試験内容の基本部分はその後のEOTA 等の精緻な衝撃試験法の流れに通じるものを含むと考えられるのでここに書きとめる。

^{*1} Flexible Barrier を意訳して柔構造防護工とここでは記述した。

落石柵試験ガイドライン(CALTRAN)³⁾

- 1. 最少 20 個の岩を柵へ転がし、低いエネルギーでスタートさせ柵の設計破壊負荷(load を「負荷」と 訳した、以後同様)まで次第に増加させる。
- 2. 岩が柵に止まっている状態で岩を落下させ、蓄積させる、これで、システム上の蓄積効果を観察する。
- 3. メーカ/設計者は、試験に先立って柵の図面と設計図書を予め準備する。
- 4. 性能は衝撃負荷、保守と効果の関係を比較することによって評価される。
 - a. 衝撃負荷は柵に当たるエネルギーの総和に等しい。運動エネルギーは作用する衝撃エネルギーを活 用する。
 - b.保守は様々な衝撃負荷において必要な修繕内容を意味する。設計負荷以内での保守は、ネットをす ぐに修繕するといったことをしなくとも繰り返される落石を止めることが出来るということを意 味する。
 - c. 効果は衝撃位置の重要性を表す。衝撃負荷が設計負荷を越えた時、柵の性能や保守修繕内容は衝撃 位置に依存する。柵のしなやかさは、柵の中心から外へ行くにつれ減少する。効果はこの特性を評 価することでもある。
 - d. 性能評価; 図3.1.2、図3.1.3の図中の黒い部分は設計負荷限界を表す。この範囲内では柵は小さ な衝撃か無傷で止めるだろう。黒い部分の右側の網掛け範囲内の衝撃時には落石を止めるであろう が、重大な損傷があるかもしれない。網掛け範囲の外側の範囲では、柵は設計目的の効果は無い。
- 5. 報告はこれまでの報告と同様のフォーマットに従う(フォーマットの例示)。
- 6. 私たちは結果を推奨しない。私たちはただ試験結果を報告するだけである。
- レポートの完成の時間は約3ヶ月である。試験中に収集したデータはメーカ/設計者が利用できる。
 レポートの段階で進展した解析やその結果はカリフオルニア交通局だけが利用できる。
 というものである。以上、ここまでが当日のJ.D.Duffy氏の発表内容の紹介である。

前出のカリフォルニア州交通局の落石防護柵の要求仕様が性能規定を使用し始めた仕様書の最初の例といえる。 なお、CALTRAN で始まった実大試験でたくさん落石を落下させる試験の方法は、柵耐力が小さい小型柵に対しては合理的、現実的だが、防護の対象とする落石規模が大きくなるとたくさん試験落石を落下させるという手段は現実的でない。そのような状況から米国においても欧州の試験手法に近い方法を採用し始めたものと思われる。

すなわち落石防護柵仕様書の中では、実大試験がきちんと適正に行われていて応札時に実験状況、結果 が提出できればよいのであり、後述する近年のきちっと基準化した試験法の成果は、旧来方法にかわる 代替としての試験証明になるであろう。

写真 3.1.1 CALTRAN で行われた斜面落石試験¹⁾

図 3.1.2 落石防護柵の性能チャートの例²⁾

図3.1.3 いろいろな落石防護工の性能チャートによる表記²⁾

3.1.2 ヨーロッパにおける落石試験の概要4)

前節の米国の多くの落石試験は相対的に緩やかで適度に滑らかな斜面で行われていたのだが、1991 年、スイスの Oberbuchsiten において包括的な試験プログラムが急峻な硬岩斜面で達成された。最終的 に非常に高いレベルの衝突エネルギーを得るには質量を大きくすることではなく、速度を増加させるこ とによって得られた。

ヨーロッパではアルプス周辺の国々、フランス、イタリア、スイスなどで落石防護柵の開発が盛んで、 また、索道を衝撃岩塊の落下誘導に使う落石試験方法が主になるにつれ、大きい落石エネルギーを対象 とする防護柵開発と、それに付帯する試験が頻繁に行われるようになった。

図 3.1.4 イタリアでの落石防護柵実験の概略図

当時、落石防護柵の性能を確かめる性能試験は、欧州の国々で数多く行われている。ここでは、その 一例として図 3.1.4 にイタリアで行われた試験の概要を示す⁵⁰。

それまでの落石衝突による防護柵の挙動を確認する試験は、自然斜面を使う転動試験であったため、 衝撃エネルギーと柵に対する衝突の方向が試験の度ごとに安定せず、試験結果の評価が難しかった。索 道クレーンを使う誘導衝突による防護柵衝突試験が一般化すると、今までになく精度の高い衝突試験が 行えるようになり、しかも、衝撃エネルギーが一段と大きくなった。図の試験装置を用いて、D.Peila 等は実際の落石防護柵の衝撃挙動とエネルギー吸収能を正確に確認する試験を行った。

採石場に設置した防護柵に、コンクリートのブロックを誘導ケーブルで落下誘導し衝突させている。 試験では6種類の防護柵が用いられ、同じ落石エネルギーを止めたことが報告され、この種の試験の有 用性を述べている。また、防護柵の各構造要素の性能は慣性などの影響により静的な結果とは異なるこ と、ワイヤロープの繋ぎ目が弱点であること、なども報告されている。

こうした防護柵衝突試験は、いずれも柵開発メーカ主導の試験であったが、スイスにおいては、やや 状況を異にしていた。スイスではベッケンリード実験場等3か所にメーカ所有の落石試験場があったが、 これらで行われる落石防護柵実大試験に内務省の一研究機関である WSL 研究者等が試験に立ち会い、 実施されていた。 90 年代後半のスイスにおける試験遂行上の問題は、前述のメーカ試験場の設備状況が少しずつ違う ため試験条件が同一にならず、各メーカ製品の正確な性能比較が困難になっていた。また、高エネルギー の落石に対応する防護柵では柔軟性のあるネットが落石衝突の伸長時に地盤接触する状況も発生、衝突 エネルギーの性能比較はますます現実の問題として難しい状況が生じていた。

そこで、統一して防護柵試験ができる試験場を国家が主導して建設する機運が高まったのである。こ のような状況から完成したのが、ヴァーレンシュタットの落石試験場であり、重錘の鉛直落下試験方法 を衝突方法に採用した理由も、こうした国内ででてきた問題の解決からであった。唯一国として性能照 査の方法が定められているのは、落石防護柵に限定されるが、スイスだけというのは、国の機関のWSL が個々のメーカ試験に立ち会う試験を行っていたからと考える。

一方、ヨーロッパ全域では自由貿易の枠組みの中で国をまたがる貿易にあって、建設製品の品質証明の必要性から、EOTAを中心に製品性能検査が決められることになった。このような背景からスイスの基準の完成に続き、ETAG 27 が制定されることになる。

これらの技術規範を正式に表記すると次のようになる。

2001 年にスイスで環境・森林・景観に関する機関(Swiss Agency for the Environment, Forests and Landscape (SAEFL))と連邦森林・雪・景観研究所(WSL: Eidg. Forschungsanstalt für Wald, Schnee und Landschaft)により Guideline for the Approval of Rockfall Protection Kits が制定され⁶⁰、2006 年に一部修正 されている⁷⁰。また、EU 諸国の共通指針として European Organization for Technical Approvals から Guideline for European Technical Approval of falling rock protection kits が 2006 年に ETAG 27 (European Technical Approval Guideline) として公表されている^{8,9}。

なお、関連するのだが、米国では輸送調査委員会(Transportation Research Board)が上記の2つに類 似し、特にスイスの認証基準に準ずる防護ネットの性能を示すガイドライン Recommended Procedures for the Testing of Rock-Fall Barriers を完成させている¹⁰⁾。

3.1.3 試験方法の概要と対象⁴⁾

斜面試験(ローリング試験)、索道試験(誘導ケーブル試験)では、試験対象に自然落下方向または 斜め方向から衝突させることができるので、対象物は落石防護柵に限らない。土堰堤や補強盛土など一 般の土木構造であれば、衝突試験が可能である。

スイス・SAEFL の試験では鉛直衝突のため、対象は防護柵に限られよう。本稿で扱う対象は、試験 方法として現在世界的な意味で規格化されつつある、防護柵のそれに限定して記述するものとする。

それ以外の防護構造の場合、形式が一般化できず、基準化、規格化がまだであり、試験はさまざま行 われるものの、研究者の扱うレベルの内容と考える。

試験の対象物が一般化、規格化され、欧州の EOTA では建設製品(kit)の扱いが可能となっているのは、落石防護柵だけであることからその状況がわかる。ここでは、様々な国で試験方法が基準化されている構造の代表として、落石防護柵を例とし述べる。

表3.1.1はEUの試験方法、スイスの試験方法そして米国の試験方法の概要について示したものである。

37

スイスが 2001 年に世界で最初に落石防護柵の性能試験方法を規定し公表している。その後 EU で類 似した試験方法が規定されている。どちらの試験においても支柱、防止面(ネット)よりなる防護柵を 対象としている。米国では、スイスにおける試験方法を紹介し、それにほぼ従った方法で性能照査を行 えばよいとしている。表 3.1.2 は性能の承認のための各試験における試験ケースを示したものであり、 表 3.1.3 は判定基準を示したものである。米国はスイスの方法を推奨しているため、スイスと同じ扱い として EOTA と SAEFL の 2 つの方法として示した。なお、図 3.1.5 は EOTA の試験で重要である落石 防護柵の最大張出量と残留柵高さを示したものである。SAEFL の試験は鉛直落下試験のため、鉛直方 向の制動距離が EOTA の最大張出量に概ね対応している。なお、SAEFL の試験の「鉛直方向の制動距 離」を試験後に最大張出量として補正する方法が 2006 年の改訂時に修正された。

3.1.4 さまざまな試験場の特徴⁴⁾

落石防護柵の試験方法としては、実際の斜面を使って岩石を転動・落下させる方法、斜面に索道を設置し、そのトロリーに懸垂した岩またはコンクリート・ブロックを試験体の防護柵へ衝突直前に離脱さ せ衝突させる方法、防護柵をほぼ水平に張り、岩またはコンクリート・ブロックを鉛直に落下させる方 法などがある。

EOTA では試験方法の基準化にあたり、衝突ブロックの運動軌跡を「水平」から「鉛直」までの範囲 を認めており、衝突手段を寛容なものとしている。そのため、スイスのような鉛直落下から、ケーブル 誘導方式まで使うことができる(写真3.1.2¹¹⁾、写真3.1.3、写真3.1.4、および、写真3.1.5)。写真 3.1.2 はフランスにおいて性能試験の制度化に伴い IFSTTAR(交通・開発・ネットワークのフランス科 学技術研究機構)所管の公式試験施設が設けられた。なお、スイスでは鉛直落下方式に衝突方法を限定 している。一方、米国ではスイスのように鉛直落下衝突を基本とするものの、斜面での落石試験も可能 としている。

表3.1.1 で示したように、EOTA では試験後の残留高さを重視していることから、重力方向が実際の 状態に近い試験状態を推奨している。一方、スイスでは最大張出し量に達する以前にブロックが地面に 接触、エネルギーが消費されることを極力避けるために、鉛直落下を推奨している。

しかし、双方の衝撃試験方法とも、落石の回転運動を表現できないことから、防護柵に衝突後の"か け上り現象"を評価できないため、実際の斜面を転がして衝突させる試験方法を主張する学識経験者も いるようである。今後、落石の回転運動の影響についての検討も必要であろう。

3.1.5 衝撃用の擬似落石・ブロック

海外で基準化された試験の擬似落石は**表 3.1.1**に示したように、エッジ(角)を持つ鉄筋コンクリート製 擬似落石を用いている。また、自然石を用いる場合、類似の形状のものを使用するように定めている。

ヨーロッパの場合、古くは落石試験には自然落石を用いていたが、試験精度を追及する過程でこのように同じ規格の衝突用の擬似落石を使うようになってきた。

衝突落下速度については25m/sec を標準としている。

	ガイドライ	落石防護キット欧州技術承認ガイドライン: Guideline for European Technical Approval of Falling Rock Protection Kits 発行:欧州技術承認機構 European	落石防護キット承認ガイ ドライン (スイス) : Guideline for the Approval of Rock-fall Protection kits 発行:環境・森林・景観に 間オるスイス機関	落石バリア試験の推奨 手順(米国): Recommended Procedures for the Testing of Rock-Fall Barriers
		(EOTA)	Swiss Agency for Environment, Forests and Landscape (SAEFL)	発行:輸送調査委員会 (Transportation Research Board)
	承認団体	欧州技術承認機構 European Organization for Technical Approvals (EOTA)	環境・森林・景観に関する スイス機関-スイス連邦 森林・雪・景観研究所 Swiss Agency for Environment, Forests and Landscape (SAEFL) Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)	試験結果を判断できる 行政機関
構造		支柱,阻止面 (ネット),連結部材からな る落石防護柵.	支柱,阻止面(ネット), 連結部材からなる落石防 護柵.	支柱, 阻止面 (ネット), 連結部材からなる落石 防護柵.
体	供試	支柱4本,阻止面3面よりなる防護柵.	一般に支柱4本,阻止面3 面よりなる防護柵.	一般に支柱 4 本,阻止 面 3 面よりなる防護柵.
試験の方	側面図	斜面に設置しケーブルを用いた投てきを 前提. 横方向 「様方向 「緑ロープ 谷川斜面 「ジス 500° の20° 5 β 5 α+20° hy:柵高さ	鉛直落下を前提.	鉛直落下を基本とする (落石軌道とネット面 のなす角は 70~90°)
7法	ブロック	材質:鉄筋コンクリート L _{ext} は柵高さの 1/3 衝突速度 25m/sec 以上	材質:鉄筋コンクリート 寸法はカテゴリーごとに 指定(後述) 衝突速度 25m/sec	材質:鉄筋コンクリー トまたは自然の石 寸法はカテゴリーごと に指定 衝突速度 25m/sec

表3.1.1 落石防護柵試験方法の概要4	表 3.1.1	落石防護柵試験方法の概要4)	
----------------------	---------	----------------	--

	落石防護キット欧州技術承認ガイドライン:	落石	防護	 善 キッ	ト承認	認ガィ	イドラ	イン・	(スイ	ス)	:
ガイ	Guideline for European Technical Approval of	Guid	lelin	e for t	he Ap	prova	l of R	ock-fal	l Prote	ection	kits
ド	Falling Rock Protection Kits	およ	び								
ラ		落石バリア試験の推奨手順(米国):									
イン		Reco	mm	ended	Proce	edures	s for th	ne Testi	ng of	Rock-	Fall
		Barriers									
	SEL (service energy level)	予備試験 a)									
	同一運動エネルギーにより 2 回連続して試	小エネルギーを端スパンに載荷.									
	験.	・10cm 角のブロック5 個(計12kg, E=3.8kJ)									
	1回目の衝突位置:中央スパンの中心	・20cm 角のブロック 3 個(計 59kg, E=18kJ)									
	i/2	・50cm 角のブロック1 個(計 300kg, E=94kJ) 後述のカテゴリー1,2 の防護柵では行わない.									
	h _N /2										
	↓ ↓ ↑	予備試験 b)									
	h _N	最	大の	> 50%	6相当	jエネ	ルギー	ーを中ら	央スパ	ンの「	中心に
	Territoria (1997) (1997	載	荷.								
	ポスト間隔 i	本試	巅(c)						مليل حامات	
		最	大ユ	ニネル	ギーン	を中り	モスパ	ンの中	いしに	載荷.	
	2 回目の衝突位置:1 回目の試験後の残留高										
	さ内			. 1.		<u>и</u> п	4				
	i/2			カ	アコ	リー方	りの武	颗仜悿	č		
		力	ネ	試	験(b) (50	1%)		試驗	≷(c) (100	%)	
		テゴリ	ット宣	Ŧ	ブ	ブ	Ŧ	ブ	ブ	制	残
	h _R	Ĩ	恒(m)	ネルゼ	ロック	ロック	ネルボ	ロック	ロック	動距離	留高さ
	-17 vs 1 000000 :			+(k	質量	シオ法	+(k	質量	シオ法	ff(m)	0 (m
試				J	(kg)	(m)	5	(kg)	i(m)		Ŭ
験ケ	MEL (Maximum Energy Level)										
ĺ	SEL の 3 倍以上のエネルギーで試験.	1	1.5	50	160	0.41	100	320	0.52	4.0	0.75
ス	MEL 試験の衝突位置	2	2.0	125	400	0.56	250	800	0.70	5.0	1.0
	i/2	3	3.0	250	800	0.70	500	1600	0.88	6.0	1.5
	← → /h _N /2	4	3.0	375	1200	0.80	750	2400	1.01	7.0	1.5
	±+ 1	5	4.0	500	1600	0.88	1000	3200	1.11	8.0	2.0
	h _N	6	4.0	750	2400	1.01	1500	4800	1.27	9.0	2.0
	¥	7	5.0	1000	3200	1.11	2000	6400	1.40	10.0	2.5
	ポスト間隔 i	8	5.0	1500	4800	1.27	3000	9600	1.60	12.0	2.5
		9	6.0	2500	8000	1.51	5000	16000	1.90	15.0	3.0
				1		1				1	
	エネルギークラス										
	Class 0 1 2 3 4 5 6 7 8										
	SEL - 85 170 330 500 660 1000 1500 >1500										
	MEL≥ 100 250 500 1000 1500 2000 3000 4500 >4500										
	ブロック性状										
	ブロックの形状、寸法が試験柵高さ1/3 未満、ブ										
	ロック密度(2000kg/m ³ ~3000kg/m ³)の指定あり										
1											

表 3.1.2 落石防護柵の試験ケース 4)

	落石防護キット欧州技術承認ガイドライン:	落石防護キット承認ガイドライン(スイス):
	Guideline for European Technical Approval of	Guideline for the Approval of Rock-fall Protection
ガイ	Falling Rock Protection Kits	kits
ド		および
ラ		落石バリア試験の推奨手順(米国):
イン		Recommended Procedures for the Testing of
		Rock-Fall Barriers
	1st.SEL	予備試験 a)
	 支柱やロープが完全に破断しないこと. 	 ブロック速度が防護柵により減速すること.
	・ ネットの網目が2 倍以上に変形しないこ	• 穴が開かないこと.
	と.	・ 修復の必要がないこと.
	 ・柵高さが試験前の70%以上あること。 	予備試験 b)
	• ブロックは最大張出し量に達するまで地	・ ブロックを止めること.
	面に接触しないこと.	• 穴が開かないこと.
	2nd.SEL	・ 最小限度の修復は許容される.
判	・ ブロックを止めること.	本試験 c)
定	・ ブロックは最大張出し量に達するまで地	・ ブロックを止めること.
- 11 -	面に接触しないこと.	• 穴が開かないこと.
奉	MEL	 ・制動距離がカテゴリー別試験仕様未満である
準	・ ブロックを止めること.	こと.
	• ブロックは最大張出し量に達するまで地	 残留高さがカテゴリー別試験仕様以上あるこ
	面に接触しないこと.	と.
	MEL 試験後の残留高さによりさらに以下	
	のカテゴリーに分類される.	
	カテゴリーA : 残留高さ≧初期値 50%	
	カテゴリーB:初期値 30%<残留高さ<初期	
	值 50%	
	カテゴリーC:残留高さ≦初期値 30%	

表 3.1.3 落石防護柵試験の判定基準 4)

(b)残留柵高さ

図 3.1.5 落石防護柵の最大張出量と残留柵高さ⁴⁾

写真 3.1.2 鉛直落下による試験 (フランス) IFSTTAR の試験場

写真 3.1.3 鉛直落下による試験(スイス)

写真 3.1.4 ケーブル誘導による試験(オーストリア)

写真3.1.5 鉛直落下による試験(イタリア)

3.1.6 柵試験体と試験のケース

主要な試験で用いる柵試験体は、3 スパンの防護柵が用いられている。共通する内容 となる主な試験では、この 3 スパンの中央位置で衝突が行われる。この衝突位置は、 EOTA および SAEFL 双方のガイドラインとも共通している。

試験柵が3スパンという形式は柵の最少構成として考えられたもので、EOTAの記載 によれば、3つのモジュール(機能単位)で試験を行うと明瞭に書かれている。柵の1 スパンが、機能の最小構造であって、その3つを使って試験する。言い方として3機能 モジュール(3FM)と英語表記されており説明がわかりやすい。

一方、スイスガイドラインでは最初に3スパンの構造ありきで試験を命じていて、その点、EOTAのほうが丁寧な説明になっている。

しかし、スイスと米国では端スパンに小規模で複数のブロックを落下させる予備試験 a)も行われるが、これは予備的な位置づけであり、防護柵性能照査はやはり中央スパン を重視しているようだ。

試験エネルギーは最大エネルギーに対して 33%あるいは 50%の試験も行い、複数段階のエネルギーレベルで性能を照査している。EOTA では MEL (Maximum Energy Level) に対して SEL (Service Energy Level)と明確に表現しているように、MEL の 1/3 以下の落石エネルギーに対しては連続して落石を止める性能を照査していると考えられる。一方、スイスでは、最大エネルギーレベルでの試験後の残留高さおよび制動距離が判定基準になっているが、予備試験 b) では 50%エネルギーでの載荷を行っていることから、EOTA 同様、2 段階設計の性能照査試験を意図しているものと思われる。

これらの中間段階での衝突テストの意味あいは、米国で最初のころから性能の表示方法として考えられていた最大値以外の性能、すなわち、繰り返し(継続使用; repeatability)性能が意味づけられたものと考える。

財産管理で設備を維持する側の立場からすると、次の保守をすぐせねばならぬものか、 多少余裕みて補修に入るかは重要な判断要素となるからだ。いろいろな見方もあるが、 ここでは、スイスも EOTA も複数段のエネルギーレベルでの衝突試験を組み込んでいる 点が重要な着眼点である。

3.1.7 まとめ

落石防護柵の性能を評価するための世界的な基準類を整理した。ここで実際の試験手 法が違っていることを示したが、それはそれぞれの基準の使途が違うからにほかならな い。特徴的な項目事例をあげ、その意味を述べる。

EOTA は、EU(正確には EFTA 内)での建設製品の貿易を行う際、製品に品質証明を つける手段として、製品認証を各国で行う根拠となる基準を設けた。したがって、さま ざまな国でそれぞれの認証機関が製品として認めることは交易に際して障害にならな いための手段である。しかし、製品として受認したとしても、ある使用目的に適合して いるかは実際には別問題である。

例えば、EOTA では落石エネルギーの同じクラスでも(落石衝突後の)残留柵高さの 大小によって、カテゴリーA(50%以上)から、カテゴリーC(30%以下)の3クラス

44

の区分けを認めている。したがって、試験の結果、どちらかのクラス製品かが仕分けさ れることになる。

したがってユーザからみれば使用箇所と目的に応じ、どのクラスの製品を用いるかは、 それぞれの承認結果と見比べ、目的にあう製品を選定することになる。製品の性能認証 と利用する場合の適合判断は"別"という意味である。

これに対して、スイスの基準の下ではスイス国が使用する建設資材に補助金をつける。 つまり、そのような製品として「認証」が与えられている。その意味では、支柱間隔 10mの試験で残留柵高が予め決めたそれぞれの落石エネルギークラスに対し、ある特定 の値以上の柵形式を製品(kit として)合格としている;残留柵高のどのようなもので も自由に利用はできない仕組みなのだ。国家が介入して使用できる製品に制限を設けて

「補助金」を出し、特定の適合範囲に性能を誘導している。すなわち、ルールは国家の 決める基準であり、(国家事業として)使用する立場から定めた制限数値である。

この点が、製品の品質証明となる EOTA とスイス基準には決定的目的の違いがある。 今後、我が国として製品性能証明をしていく場合、どちらの立場で考えるかは、重要な 着眼点といえる。

また、ここで示した落石防護柵性能の評価と形式承認についてガイドラインで共通していることは、試験自体は全ての荷重ケースをシミュレートしたものではないことである。

EOTA の初期の原稿によれば、防護柵の様々な場所に、計16回の衝突試験を想定したものもあったが、検討を重ねていくに従い、現在ではここで示したようにシンプルな試験となっている。

更に、SAEFL および EOTA どちらにおいても、適切な防護柵のメンテナンスが特に 落石時には必要であるとしている。

参考文献

- Duane D. Smith & John D. Duffy; FIELD TESTS AND EVALUATION OF ROCKFALL RESTRAINING NETS, California Department Of Transportation, Transportation Materials And Research, Report No. CA/TL - 90/05(Final Report), June 1990.
- National Highway Institute; Rockfall Hazard Mitigation Method, Publication No. FHWA SA-93-085, March 1994
- 3) Seminar on Rockfall Test and Standardization; 25th and 26th January 1999, Davos/Switzerland
- 4) (社) 土木学会: 防災・安全対策技術者のための衝撃作用を受ける土木構造物の性能設計
 -基準体系の指針-,構造工学シリーズ 22, 2013.1, (DVD 付録資料に採録から表および本 文の一部を引用)
- Peila, D., Pelizza, S., and Sassudelli, F., "Evaluation of Behavior of Rockfall Restraining Nets by Full Scale Tests." Rock Mechanics and Rock Engineering, 31(1), Springer-Verlag, pp. 1-24, 1998.
- 6) Werner Gerber: Guideline for the approval of rockfall protection kits, Swiss Agency for the

Environment, Forest and Landscape (SAEFL) and the Swiss Federal Research Institute (WSL), 2001.

- Federal Office for the Environment FOEN: Amendment to the Guideline for the Approval of Rockfall Protection Kits, VU-7509-E, 2006.
- 8) European Organization for Technical Approvals: Guideline for European Technical Approval of Falling Rock Protection Kits, Edition 2008 02 01, ETAG27, 2008.
- 9) D. Peila and C. Ronco: Technical Note: Design of rockfall net fences and the new ETAG 027 European guideline, Natural Hazards and Earth System Sciences, 9, 1291–1298, 2009.
- Transportation Research Board: Recommended Procedures for the Testing of Rock-Fall Barriers, Research Agency Jerry D. Higgins, National Cooperative Highway Research Program Project 20-7(138), 2002.
- Stephane Lambert (Editor), Francois Nicot (Editor); Rockfall Engineering, Wiley-ISTE, September 2011

3.2 我が国における性能照査(設計)法の現状と課題点

3.2.1 防護網の性能設計法の現状と課題

(1)はじめに

高エネルギー吸収型落石防護網は、従来型落石防護網と同様に金網、ワイヤロープおよび支柱から構成されており、種類としては、緩衝装置を設置する工法と緩衝装置を設置しない工法の2つに分けられる。

緩衝装置を設置する工法には、横ワイヤロープに緩衝装置を設置する工法と、緩衝装置を多く設置する工 法がある。

緩衝装置を多く設置する工法は、縦横ワイヤロープやその他に緩衝装置を設置するため、横ワイヤロープ に緩衝装置を設置する工法に対して約3~10倍の緩衝装置が設置されている。

高エネルギー吸収型落石防護網の設計については、現行の落石対策便覧に記述はなく、性能評価について も統一的な指標がないことから各工法で独自の性能照査を行っている。

高エネルギー吸収型落石防護網の性能設計法の現状と課題は、以下のとおりである。また、表3.2.1 に高 エネルギー吸収型落石防護網の性能設計法の現状を示す。

(2) 限界状態とメンテナンス

(現状)

高エネルギー吸収型落石防護網の限界状態は、明確にされていないのが現状である。

メンテナンス方法は、各工法で定めており緩衝装置の有無により異なっている。

緩衝装置を設置する工法は、落石衝突時にワイヤロープが緩み、張り直しや交換などのメンテナンスが必要となる。

緩衝装置を設置しない工法は、従来型落石防護網と同様に主部材の弾性変形により落石エネルギーを吸収 するため、メンテナンスは容易とされているが、金網やワイヤロープなどが降伏荷重を超える場合には交換 などのメンテナンスが必要となる。

(課題)

各工法で使用限界状態・修復限界状態・終局限界状態の各限界状態を明確にする必要がある。

各限界状態が、タイプ・設置面積などにより変化する場合は、その関係性を明確にすることが望ましい。 メンテナンス方法が、各限界状態により異なる場合は、明確にすることが望ましい。

(3)作用

1) 落石作用

(現状)

落石作用の大きさに関して、落石対策便覧式または落石シミュレーションなどで最大落石エネルギーとなる条件を設定している。

落石対策便覧式で落石エネルギーを算出する場合に、回転エネルギーやネットの傾斜角を考慮する工法と 考慮しない工法がある。

(課題)

落石エネルギーの算出方法は、工法により異なるため統一することが望ましい。

最大落石エネルギーとなる落石条件は、落石重量と速度の組み合わせにより高エネルギー吸収型落石防護 網の応答が異なる場合もあるため、留意する必要がある。

2)作用位置·方向

(現状)

落石の作用位置は、全ての工法がポケット部(第1衝突点)としており、延長方向に対してネット中央、 高さ方向に対しては、各工法で任意に決定している。

作用方向は、従来型落石防護網と同様にジャンプによる影響を考慮し水平方向とする場合と実際の落石運動を考慮して斜面接線方向とする場合がある。

高エネルギー吸収型落石防護網の多くは、作用方向を水平方向としているが、緩衝装置を多く設置する工 法では、作用方向を水平方向または斜面接線方向としている。

緩衝装置を多く設置する工法は、ネットの変形量が大きく図3.2.1のように道路空間からの距離が小さくなる場合を想定し斜面接線方向で検討を行っている。

(課題)

高さ方向に対しての作用位置は、実際の落石作用位置と設計時の作用位置とが異なる場合があり課題である。設計時の作用位置は、実際の落石作用位置との整合が図れるように、阻止面となるポケット部(第1衝 突点)の配置と落石の跳躍に対して留意する必要がある。

落石の作用方向は、統一することが望ましいが、高エネルギー吸収型落石防護網の各部材に対して不利な 作用方向と道路空間の安全性に対して不利となる作用方向が異なる場合があるため、留意する必要がある。

(4) 設計の考え方

(現状)

高エネルギー吸収型落石防護網の設計の考え方は、作用方向の考え方により異なっている。

高エネルギー吸収型落石防護網の多くは、ポケット部(第1衝突点)において落石エネルギーの水平成分

全てを吸収するものである。

緩衝装置を多く設置する工法では、動的応答解析により落石の運動を確認し、図3.2.2のような複数の衝 突点を考慮して落石エネルギーを減衰させ、ネット下端で停止を確認している。

図3.2.2 緩衝装置を多く設置する工法 斜面接線方向での衝突の考え方

(課題)

高エネルギー吸収型落石防護網の設計は、2 つの考え方があり統一されていないことが課題であるが、各 部材に対して安全側となる方法で検討を行う必要がある。

また、緩衝装置を設置する工法は、ネットの変形に伴う道路空間への影響に留意する必要がある。

(5)設計照査

(現状)

高エネルギー吸収型落石防護網の設計法は、下記のように大きく3つの方法に分けられる。

1) 従来型ポケット式落石防護網の設計に準じた方法

従来型ポケット式落石防護網と同様に各部材の吸収エネルギーと衝突前後のエネルギー差より可能吸収エ ネルギーを算出する方法であり、可能吸収エネルギーが落石エネルギーを上回ることを確認する。

2) 実規模実験結果を基にした簡易設計法

実規模実験で重錘エネルギーを与えて防護可能であった場合に吸収エネルギーとして評価し、実規模実験の吸収エネルギーが落石エネルギーを上回ることを確認する。

3) 動的応答解析による設計法

実規模実験結果を反映した動的応答解析により、各部材の張力と緩衝装置の滑り量を算出する方法であり、 動的応答解析より算出した各部材の張力、緩衝装置の滑り量が許容値を下回ることを確認する。 (課題)

高エネルギー吸収型落石防護網の設計法を統一することは困難と考えられるが、実規模実験結果を各工法の最大性能とする必要がある。

1) 従来型ポケット式落石防護網の設計に準じた方法

高エネルギー吸収型落石防護網で衝突前後のエネルギー差を考慮する場合は、実規模実験などにより影響 範囲を確認する必要がある。

2) 実規模実験結果を基にした簡易設計法

実規模実験結果を基にした簡易設計法は、実規模実験と各現場の落石エネルギーで落石重量と速度の組み 合わせが異なることがあり、高エネルギー吸収型落石防護網の応答が異なる可能性もあるため留意する必要 がある。作用位置、方向についても同様に実規模実験と異なれば、高エネルギー吸収型落石防護網の応答が 異なる可能性もあるため留意する必要がある。

3) 動的応答解析による設計法

動的応答解析による設計法は、実規模実験と動的応答解析を併せて行い、動的応答解析の妥当性を確認す る必要がある。

(6)構造

(現状)

高エネルギー吸収型落石防護網の構造は、様々であるが、部材の安全率が 2.0 以上であることやアンカー において引抜方向とせん断方向で照査されていることは、共通している。

支柱は、従来型ポケット式落石防護網よりも間隔が大きいため落石が衝突する可能性が低いことや開口部 を設けるだけの工法もあり、支柱の検討や吸収エネルギーを考慮しない工法が多い。

(課題)

高エネルギー吸収型落石防護網の照査位置は、ポケット部(第1衝突点)のみであるが、ポケット部(第 1 衝突点)周辺以外の構造を脆弱にすることやワイヤロープを減少したりすることは、多様な落石運動を考 慮していないため、留意する必要がある。

よって、高エネルギー吸収型落石防護網の構造は、ネット上端から下端までの部材規格を統一し、ワイヤ ロープの間隔や数量を均等にすることが望ましい。

支柱は、落石が衝突する可能性に対して破損してもネット全体を保持できるような構造とする必要がある。

(7)性能照查項目

(現状)

高エネルギー吸収型落石防護網の性能照査項目は、落石の飛び越え、ネット下端からの抜け出し、ネット のはらみ出しなどがある。落石の飛び越えは、落石の跳躍量を考慮し設計を行うが、阻止面となるポケット 部の位置決定は明確ではない。

ネット下端に到達した落石の撤去を容易にするために、ネット下端を 50cm 程度開口して設置している工 法が多いが、落石時にネット下端から抜け出す可能性に対して、抜け出し防止ネットを設置する工法や下端 部を袋にする工法もある。

<i>b</i> 7 - 11		緩衝對	麦置	住田前社	4	ネット	作用			
石 柳	有無	量	配置	"	<i><i>уутуу</i></i>	高さ	落石作用計算式	作用 位置	作用 方向	
ポケット式落石防護網	無	_	-	ひし形金網 50×50 <i>φ</i> 2.6~5.0 ワイヤロープ3×7 <i>φ</i> 12~18 支柱 H100×100×6×8	補修が容易	制限なし	落石エネルギー E=(1-μ/tanθ)・W・H・sin ² θ。	ネット 中央	水平 方向	
					-					
カーテンネットエ (CN工法) SK-980029-VE	無	_	-	ひし形金網 50×50 ¢4.0, ¢5.0 ワイヤローブ3×7¢12~18 ワイヤローブ7×7¢24~30 支柱 H175×175, H200×200	- - ほとんど 必要なし -	カーテン高 6m 12m 18m 24m	落石エネルギー E=(1+β)(1-μ/tanθ)・W・H	^{ネット} 中央	水平 方向	
ハンガーネット工法 NETIS掲載終了技術	有	少ない	横ワイヤロープ のみ 2.5m間隔 (3本以上)	高強度ネット <i>φ</i> 3.0, <i>φ</i> 4.0 ワイヤローブ3 × 7 <i>φ</i> 18 ワイヤローブ7 × 7 <i>φ</i> 18, 24 支柱H200 × 200 HGNブレーキ	ブレーキ装置の交換が必要	最低高さ 7.5m	落石エネルギー E=(1-μ/tanθ)・W・H・sin ² θ ₀	^{ネット} 中央	水平 方向	
ロングスパン・ ポケット式落石防護網 NETIS掲載終了技術	有	少ない	横ワイヤロープ のみ 2~5m間隔 (最下端なし)	ひし形金網 50×50 ¢4.0, 5.0 ワイヤローブ3×7¢18 ワイヤローブ7×7¢18, 20, 24 支柱 H175×175, H200×200 緩衝金具	ワイヤロープの張 り直し、緩衝装置 の締め直しが必 要	最低高さ 10m	落石エネルギー E=(1+β)(1-μ/tanθ)・W・H	^衣 小 中央	水平 方向	
RCネット工法 HR-990117-VE	有	多い	縦ワイヤロープ 2m間隔 横ワイヤロープ 1m間隔 ワイヤロープ 交点	ひし形金網 50×50 φ4.0 ワイヤローブ3×7φ18 支柱口125×125 端末緩衝金具 連結緩衝金具	ワイヤローブの張 り直し, 緩衝装置 の締め直しが必 要	最低横口—7 [°] 本数 15本	落石速度 $V = \sqrt{2g(1 - \frac{\mu}{\tan\theta})}H$ 落石重量:W 衝突角度: θ ※落石重量と速度の組合せ	补小 中央	斜面 接線 方向	
ネットワン NETIS掲載終了技術	有	多い	縦ワイヤロープ 5~10m間隔 ネット内 5~10m間隔	 ワイヤひし形金網φ2.3×3 硬厚金網φ4.0, φ5.0 ワイヤローブ3×7φ12, 18 支柱φ101.6, φ190.7 端末緩衝金具 連結緩衝金具 	ワイヤローブの張 り直し, 緩衝装置 の締め直しが必 要	最低高さ 10m or 15m	落石速度 $V = \sqrt{2g(1 - \frac{\mu}{\tan\theta})}H$ 落石重量:W 衝突角度: θ ※落石重量と速度の組合せ	补外 中央	斜面 接線 方向	

					设計照查			構造		性能照査項目	
		設計法	照査項目		照查方法	照査結果	支柱 高さ	部材 安全 率	アンカー 照査 方法	下端部 の 検討	はらみ 出し
			金網	0							
			ワイヤロープ	0	-						
			支柱	0	一吸収エネルキーの算出	落石エネルギー			司抜		
	ボケット部(第1衝突点)に 衝突し、落石エネルギー	-	吊ロープ	0	-	く 可能吸収エネルギー	記載なし	2	せん断	-	-
	の水平成分を吸収		衝突前後のエネルギー差	0	ェネルキーロスの算出						
		緩衝具	-								
	第1衝突点		金網	0	吸収エネルキーの算出						
	▲ Ø 7		ワイヤロープ	0	吸収エネルキーの算出						
		従来型ポケット式		_		落石エネルギー	開口部 最低 高さ 25m~20m		21++		
	/ /	落石防護網の設計 に準じた方法	吊ロープ	_		ー < 可能吸収エネルギー		2	り扱せん断	-	-
		 衝突前後のエネルギ−差	0	ェネルギーロスの算出		2.5m~3.0m					
			_								
1 //		金網	0	実験を反映し規格を選定							
			ワイヤロープ	0	実験を反映し規格を選定						
		実規模実験結果を		_			最大			抜け出し防止	
		基にした簡易設計 法	吊ロープ	0	実験を反映し規格を選定	落石エネルキーより 防護網タイプを決定	跳躍量 + ホテッパタ		り抜 せん断	効果を高めるキャッチ	_
			衝突前後のエネルギー差	_			洛白丰佺			ネットあり	
			經衛具	0	実験を反映し損格を選定						
-			金網	0	引張力の算出		最大 跳躍量 + 落石径× 1.5 (推奨)			抜け出し防止	
			ワイヤロープ	0	張力の筧出						
		宇相横宇路結里を		_		笛山 た冬部材の建力		2			
		基にした簡易設計法	<u>∧™</u> 吊ロープ	0	張力の質出	第四した日部内の派力 く 許容荷重			引抜 せん断	るセーフ ティーネットあ	
		4	御空前後の14にも一美	_	Жлууунд	I L ME				ティーネットの り	
			經濟目	0	宇殿時の吸収すれた。大海田						
			金網		~☆ペルリマン 7スコス ∸ ↑/ルイ で 旭田						
	ポケット部(第1衝突点) に衝突後も複数の衝突		<u>~</u> ポッ ワイヤロープ	0	実験を反映した動的応答解析						
	点を考慮し最終的にネッ ト下端で落石を停止させ		**	0	より張力を算出	我的古体知道라고 꼬니를	最大			斜面中腹で	
	৯ .	動的応答解析 による設計法				期的心合解析時の7月9重 く 計応深り早	跳躍量 十	2	引抜 せん断	停止させる キャッチ式あ	動的応答解 析より確認
	\sim			_		計谷消り重	落石半径			IJ	
	第1衝突点		(町突前後の1ネルキー差)	-	実験を反映した動的応答解析						
_			阪 国共 <u> </u> <u> </u>	0	より滑り長を算出 実験を反映した動的応答解析						
	第2衝突点		立相	0	より張力を算出 実験を反映した動的応答解析						
	<u>[</u>]		-7470-7	0	より張力を算出	動的応答解析より	最大				
	第3衝突点	動的応答解析 による設計法	文任	-	実験を反映した動的応答解析	算出した各部材の張力 <	》 跳躍量 十	2	引抜 せん断	-	動的応答解 析より確認
	最終衝突点 /		市ローブ	0	より張力を算出	許容荷重	落石半径				
			衝突前後のエネルギー差	-	宇殿た反映した動かさ文句を						
			緩衝具	0	大歌で以広しに到的心台所付 より滑り長を算出						

ネットのはらみ出しは、実規模実験結果でのはらみ出し量を考慮している工法が多く、動的応答解析で設計を行う工法は、各現場で個々にはらみ出し量の確認を行っている。

(課題)

落石の飛び越えは、跳躍量の適切な予測とポケット部位置決定において地形的な要素を考慮した落石運動 の予測が必要である。

落石のネット下端からの抜け出しを最小限に抑え、落石の撤去も容易にするために、ネット長さやネット 下端の位置などを調整し、下端部の地形や道路敷きに配慮する必要がある。

抜け出し防止ネットや下端部を袋にする工法の性能を確認するためには、ネット下端に設計落石エネル ギー相当の負荷を与える実規模実験が必要と考えられる。

ネットのはらみ出しは、各工法の特徴を踏まえて、各現場でのはらみ出し量を明確にすることが望ましい。

3.2.2 防護柵の性能設計法の現状と課題

(1)はじめに

我が国では、平成に入ってから高エネルギー吸収型落石防護柵が普及し始め、表 3.2.2 に示すように 現在では多くの工法が各地で使用されている。

しかしながら、落石対策便覧¹¹に高エネルギー吸収型落石防護柵に関する記述が少ないこともあり、 その性能照査手法は様々であり、各工法の性能の比較が困難な状態である。

ここでは、我が国における高エネルギー吸収型落石防護柵の性能照査法の現状と課題について示す。 (2) 作用

1) 落石作用

(現状)

作用の大きさに関して、落石対策便覧¹⁾の式またはシミュレーションで最大落石エネルギーとなる落 石条件を設定している。

また、作用位置に関しては、平面的には落石の落下軌跡が 45° 程度であるという実験結果を参考に 現場の斜面条件に合わせて経験的に決めている。作用高さの上限は、凹凸の影響の少ない斜面では、落 石の跳躍量(ここでは斜面と落石の重心の距離)が2m以内に収まる確率が80~85%程度であるという 実験結果を基に、それ以外の斜面ではシミュレーションを行って決定することになっている。前者の場 合、高エネルギー吸収型落石防護柵では対象とする落石が実験時に比べ大きいので、危険側の想定であ る可能性もある。

このようにして想定した落石の到達範囲から、柵高や延長を決めているが、安全性の照査を行う作用 位置は限定的である。

また、構造物の破壊モードや落石の捕捉状況に大きな影響がある作用方向は、ほとんどが水平方向で、 かつ平面的には構造物直角方向のみを考慮している。

(課題)

高エネルギー吸収型落石防護柵の性能設計を行うに当たり、落石作用に関して以下の課題がある。

a) 落石作用の大きさと頻度

不確実性の高い落石作用ではあるが、性能設計を進めるにあたり、要求性能をはっきりさせることが 重要であり、各落石作用レベルを設定するために、落石作用の大きさと頻度の関係を明らかにする必要 がある。

また、現場によっては、単体の落石ではなく、地震などによって複数の落石が連続して発生すること などを考慮する必要がある。

表3.2.2 高エネルギー落石防護柵 性能設計法の現状 (1)支柱強化型

<i>a w</i>	対応	実験の有無		緩衝装置		生田如井	12 = +2 = 7	限界			
名 伱	エネルキー (kJ)	全体	部材	有無	形式	使用部材	メンテナンス	状態	基本権	構造(m)	柵高の決め方
従来型 落石防護柵	50~100	有	有	無	_	支柱 : H-200 × 100 × 5.5 × 8 H-200 × 200 × 8 × 12 ワイヤロープ : 3 × 7G/O φ18 金網 : ひし形金網 50 × 50 φ3.2	損傷箇所の取 り替え	終局 限界	支柱間隔 最大柵高 最小延長 大ブロッ ク延長	3.0 6.0 9.0 60.0	飛跳高2.0m 最低柵高の1/2程度 の余裕高を設ける
ゼロハチフェンス HR-110025-A	~150 150~300	有	有	有	ブロック端部支柱の ズ端金具にリング式 の緩衝装置を配置 する 吸収エネルギー: 9.0kJ/箇所	支柱: φ406.4 t=12.7, 16,19 材質 STK490 緩衝装置: N−08タイプ ワイヤロープ: 3×7G/O φ18 金網: ひし形金網 50×50 φ3.2	損傷箇所の取 り替え ※支柱は、直 撃以外使用限 見交換を必要 としない	終限界	<u>支</u> 柱間隔 最 大 柵 高 最 小 延 長 プ ロッ ク 延 長	10.0 4.0 30.0 (3スパン) 60.0 (6スパン)	シミュレーションまた は飛跳高2.0m 最低柵高の1/2程度 の余裕高を設ける
イーフェンス NETIS 2014年10月 掲載終了技術	100~500	有	有	有	スパン上下のワイヤ ローブをルーブ形状 とし、そのワイヤ ローブに滑り型の高 性能緩衝金具を設 置する 滑張力:A型80kN B型40kN	支柱: ¢216.3 t=12.7 材質 STK400 緩衝装置:高性能緩衝金具 ワイヤロープ:3×7G/0 ¢18 金網:ひし形金網 3−2.6×40	損傷箇所の取 り替え だは、直 撃以外を必要 しな快を必要 としない	終局界	支柱間隔 最大柵高 最小延長 最大ブロッ ク延長	6.0 4.0 (2スパン) (2スパン) (5スパン)	シミュレーションまた は飛跳高2.0m 最低柵高の1/2程度 の余裕高を設ける
フレキシブルマイ ティーフェンス (FMF工法) NETIS 2014年10月 掲載終了技術	100~800 (落石荷重 20KNとした 場合)	有	無	無	_	各支柱(SS400) 端末:4H-300×300×10×15 4H-350×350×12×19 場所打ちコンクリートの 場合有り 中間:H-300×300×10×15 H-350×350×12×19 H-400×400×13×21 フレキシブル中間支柱 2H-100×100×6×8 ワイヤロープ:前・背面二列配置 7×7G/O ゆ16, ゆ18 7×7ZA/O ゆ16, ゆ18 金網:ひし形金網 50×50×5.0	損傷箇所の取 り替え ※支柱は、直 累内の変形と し交換を必要 としない	使用	支最 最 最 鋼 コン 株 プ 長 ガ 山 端 大 プ 長 ブ し ー 、 端 端 、 リ ー し 端 大 フ し 、 し し し し し し し し し し し し し	5.0 3.0 12.0 12.0 15.0 100.0	シミュレーションまた は飛跳高2.0m 最低柵高の1/2程度 の余裕高を設ける コンクリート基礎の 高さで調整するた め、標準仕様の柵 高は3.0mとしている
RSS CB-980032-VE	~400 ~1000 500~1500	有	有	有	 定着緩衝装置 横ワイヤロープに 滑り型緩衝装置を各 支柱に設置する 中間緩衝装置 吸収エネルギー量 が不足する場合に、 支柱間に補助の緩 衝装置を設置する 端末緩衝表設置する 端末緩新よび控え ワイヤロープのアン カー端に設置する 	 ・支柱:コンクリート充填鋼管柱 内部にアンボンドPC鋼 棒を配置 ・緩衝装置:左記の3種類 ・ワイヤローブ:3×7G/0 Ø18 ・金網:ひし形金網 ・端ストッパー ・縦チェーン ・トップ鋼管 	損傷箇所の取 り替え ローププが一定 スパン毎にな えいているた め、損傷範囲 が限られた範 囲である	終局	支柱間隔 高 最 最 元 工 プ ロ ッ ク 延 長	5.0~10.0 5.0 決めはなし 決めはなし	飛跳高2.0m 最低柵高の1/2程度 の余裕高を設ける

	設計方	5法			性能照查項目					
	落石の作用位置	落石の作 用方向	落石エネルギー の吸収項目	基码	楚の設計方法		照査項目	判定方法		
	 通常スパン 上段:2/3×柵高 	水平	 ①通常スパン ・支柱の変形 ・ワイヤロープの伸び 	杭式の場 合	-	落石時 ①通常スパン上 段	 ・支柱: 許容最大変位角15° σ y=235N/mm² (SS400) ・ワイヤロープ:破断荷重 	落石エネルギーを吸収可 能であること		
			・金網の変形	擁壁式の 提合	・「落石対策便覧」 ・「道路土エー擁壁	積雪時	・支柱:曲げモーメント ・ワイヤロープ:安全率	:許容応力度以下 :破断荷重の1/2		
①通ヴスパッ、従親スパッ			①通常スパン・端部スパン - 海際スパン・端部スパン	^{场口} 杭式の場 合	工指針」 NEXCO設計要領 「斜面上の深礎基 礎」H24改訂以前	<u>上記以外の荷重</u> 落石時 ①通常・端部 スパン上段	- ・エネルギー吸収装置: 9kJ/箇所一定 ・ワイヤロープ: 最大4%伸び ・金網:25kJ一定 ・せり出し量:建築限界をこえ	ー 落石エネルギーを吸収可 能であること		
	①通常スパン, 5000000000000000000000000000000000000	水平	*被目表直の変形 ・ワイヤロープの伸び ・金網の変形 ※下段落石:			落石時 ②通常・端部 スパン下段	*変位制限装置: 性能確認実験による	落石が抜け出さないこと		
上段:2/3×柵高 下段:地面から1/2落石径		主に変位制限装置 ②支柱直撃 ・支柱の変形	擁壁式の	_	落石時 ③支柱直撃 上・下段	・支柱の最大吸収エネル ギー: 300kJ用 30度 150kJ用 20度 F値 325N/mm ² (STK490)	支柱の最大吸収エネル ギーが落石エネルギーより 大きいこと			
				場合		積雪時	・支柱:曲げモーメント ・ワイヤロープ:張力	:応力度がF値以下 :緩衝装置に変形が生じな い範囲		
	 ①通常スパン 上段:2/3×柵高 下段:地面から1/2落石径 ②端部スパン 上段:2/3×柵高 水平 		 ①通常スパン②端部スパン③端部スパン③支柱直撃 共通 ・エネルギー吸収装置の変形 ・ワイヤロープの伸び 	杭式の場 合	・NEXCO設計要領 「斜面上の深礎基 礎」H24改訂以前 ・「杭基礎設計便覧」 H18年度改訂版	<u>上記以外の何里</u> 落石時 ①2通常・端部ス パン 上段・下段	ー ・エネルギー吸収装置: 実験解析によるエネル ギー吸収量 ・ワイヤローブ: 破断荷重の1/2 ・金網:実験解析によるエネル ギー吸収量 ・せり出し量:建築限界をこえ ないこと	ー 落石エネルギーを吸収可 能であること		
	③		・玉柄の変形 ・支柱の変形	擁壁式の	•「落石対策便覧」	落石時 ③支柱直撃 上段	・解析により支柱の変形性能 を確認 σy=300N/mm2 (STK490)	支柱の変形により, 落石が すり抜けないことを確認		
				場合	・」 道路エユー 擁壁 工指針」	積雪時	・支柱:曲げモーメント ・ワイヤロープ:張力	:許容応力度以下 :破断荷重の1/2		
 通常スパン 柵高さの全高 (フレキシブル中間支柱によ 		水平	 ①通常スパン ・ワイヤローブの伸び ・金網の変形 	杭式の場 合	_	<u>工記以外の何里</u> 落石時 ①通常スパン	- ・ワイヤロープ:許容荷重 ・金網:25kJー定 ・フレキシブル部: 1スパン分の死荷重によ るエネルギーロス ※材料の力学的特性値 鋼材 σ sa=210kN/mm ² (SS400 551増15年)	ー 落石エネルギーを吸収可 能であること		
	れる構造としている)		・フレキシブル部の変形	擁壁式の	・「落石対策便覧」 ・「道路土エー擁壁 工指針」		(33400 短柄1.5倍) ワイヤロープ 保証破断 荷重			
				場合	※高さは、 雅壁高と 柵高を合計した値と し、有効幅を高さの4 倍とする	積雪時	・支柱:曲げモーメント ・ワイヤロープ:張力 ー	:許容応力度以下 :破断荷重の1/2 ー		
	 ①上段 ②下段 ③支柱直撃 	水平	 ①上段の場合: 各緩衝装置の変形と支柱の変形 ②下段の場合: 控え緩衝装置以外の各緩 	杭式の場 合	道路橋示方書IV下 部構造偏	<u>本記以下の何里</u> 落石時	- ・各緩衝装置のエネルギー吸 収量 ・支柱の最大吸収エネルギー	ー 落石エネルギーを吸収可 能であること		
			22.22 留装置 ③支柱直撃の場合: 支柱の変形と各緩衝装置 の変形	擁壁式の	 「落石対策便覧」 「道路土工 – 擁壁 					
				场台	工指針」	積雪時	-	-		
						上記以外の荷重	-	_		

(2) ネット強化型

2 b	対応	実験の有無		緩衝装置		住田如井		限界			
名称	エネル ギー(kJ)	全体	部材	有無	形式	使用部材	メンナナンス	状態	基本構造(m)	柵高の決め方	
ハイジュールネット QS-080010-V	250 ~ 3000	有	無	有	ケーブルネットの上・ 下部に配置された 二重平行ケイブルと 支柱にケーブルと 支柱にケーブルにも、 街装置(ブレーキエ レメント)が取り付け られている。 ブレーキエレメント は、ケーブルをプ レートに縫い込んだ 形状で中央部は ループとなっており、 そのループ長がす べり長となる。	支柱(SS400) :H-100×100×6×8 H-150×150×7×10 H-175×175×7.5×11 H-200×200×8×12 各ケーブル 保持・上下部・サイドケーブル・ ブレーキエレメント: IWRC6×S(19) AZ/O ϕ 12,16,18,20,22,25 ケーブルネット: 7×7 AZ/O ϕ 9,10,12 300×300 (ϕ 9/ ϕ 10) (網部/枠部) 200×200 (ϕ 9/ ϕ 10) 150×150 (ϕ 9/ ϕ 10) 150×150 (ϕ 9/ ϕ 10) 140×140 (ϕ 10/ ϕ 12) 金網: ひし形金網 50×50×3.2,2.6 アンカー:ケーブルアンカーおよ びゲビンデスターブ	損り着いた。 傷害え ケー、ブル がいいが柱外の変が したい、 では、 市でで、 では、 市でで、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、	終限界	支柱間隔 最大柵高 最小延長 最小延長 最大ブロッ ク延長 ク延長 (3スパン) 制限無し (3スパン) 約0mとする	必要柵高: シミュレーションまた は飛跳高2.0mに1/2 落石径を加える 有効柵高: 必憂。有効柵高は、柱 高さからネットのた わみ量を減じた高さ	
リングネット NETIS 2014年10月 掲載終了技術	250 ~ 3000	有	無	有	リングネットを吊って いるサポートロープ に組み込まれたリン グ上のブレーキング (緩衝具)	支柱:H鋼 各ケーブル ・上部下部サポートローブ ・リテイニングロープ ・上部下部ラテラルロープ ・ダウンスロープロープ	損	終限界	支柱間隔 最大柵高 最小延長 乱5m 最大プロッ ク延長 り延長	必要柵高: シミュレーションまた は飛跳高2.0mとし、 衝突体の上面高さ (斜面から計る)が ネット中央の上部 ローブサグ最大位置 を上廻らない関係で 柵高を決定する	

設計7	与法			性能照査項目				
落石の作用位置	落石の作 用方向	落石エネルギー の吸収項目	基码	楚の設計方法		照査項目	判定方法	
本工法は、全体のシステムで 落石エネルギーを吸収させる もので、捕捉性能は実物大試 時により確認されている。		本工法は、全体のシステム で落石エネルギーを吸収さ せるもので、主な吸収項目 は	アンカー式 の場合	「グランドアンカー設 計・施工基準同解 説」	落石時	 落石エネルギーの確認 可能吸収エネルギー内 設置位置の確認 全対象物最大制動距 離(5m~12m)以上離れている こと ・有効柵高の確認 	落石エネルギーを吸収可 能であること	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	水平	14 1.ケーブルネットの変形 2.各ワイヤロープの伸び 3.ブレーキエレメントの滑り 4.支柱の変形	擁壁式の 場合	_		必要高さより高いこと ・アンカー長の確認 十分なアンカー長を有して いること		
					積雪時	・クレーキェレメント 斜面雪圧により算出した ケーブル張力に対する制動荷 重	制動荷重をこえないこと(滑 り出さないこと)	
					上記以外の荷重	_	-	
個々の対象現場での設計考 慮の作用位置は、跳躍落石 の補足限実高さのみを検討す	水平	中央スパンおよび端スパン によらず, 吸収部材はブ レーキング ROCCOなット	アンカー式 の場合	「グランドアンカー設 計・施工基準同解 説」	落石時	・落石エネルギーの確認 エネルギークラスに対応す る柵タイプ構成が決められて いて、これに対応する標準部 材表を作成している ・有効柵高の確認 必要高さより高いこと ・アンカー長の確認	落石エネルギーを吸収可 能であること	
3		ワイヤロープで吸収する				十分なアンカー長を有して いること		
			擁壁式の 場合	_	積雪時	・支柱応力度:240N/mm2以下 ・ワイヤ張力:緩衝装置に変 形が生じない範囲	緩衝装置が変形しないこと	
					上記以外の荷重	_	_	

b) シミュレーション

落石作用の大きさや作用範囲を決めるためにシミュレーション技術を向上させ活用する必要がある。 具体的課題として以下が挙げられる。

・設計者によるばらつきを無くし精度を高めるためのパラメータの決め方

・実際の地形を反映させるための3次元シミュレーション

c)防護柵の構造に対応した落石作用

落石の大きさ・作用位置・方向などで防護柵の吸収可能エネルギーは大きく異なる。防護柵の安全性 を照査するには、構造物に不利になるように、構造に対応した落石作用とすべきである。

以下に注意点を記す。

・作用の大きさ

個々の部材にとって、最大エネルギーとなる落石条件が一番厳しい条件というわけではない。同じエ ネルギーでも小さい質量で大きい速度が厳しい場合もあれば、大きい質量で小さい速度が厳しい場合も ある。

また金網の破壊にとっては、ワイヤロープ間隔以下の落石が問題となる場合がある。

ワイヤロープにとっても、小さい落石の方が、エネルギー吸収を分担するワイヤロープ本数が少なく なり厳しい場合がある。

・作用位置

作用高さの上限は,捕捉しなければいけない確率を要求性能として明かにした上で決定しなければならない。

また、安全性照査のための作用位置は、想定到達範囲の中で各構造部材に不利になるように載荷する。 中間支間より端部支間、阻止面中央より上下縁近傍・支柱近傍などのフレキシビリティの乏しいところ が吸収可能エネルギーの面では厳しいことが多い。

またワイヤロープ間隔が変化するなどの構造的変化点、補強材の有無などにも注意が必要である。そ の他下部・基礎設計用や最大変位照査用など照査項目ごとに適切な作用位置を設定する必要がある。

・作用方向

支柱の曲げによるエネルギー吸収を期待している防護柵の場合、斜め入射では支柱が曲がらない場合がある。

また、防護柵の谷側地面が傾斜している場合や擁壁上の防護柵の場合、阻止面の下縁と地面や擁壁天端の間から落石が抜け出しやすい。

さらに、平面的に防護柵に斜めに落石が作用する場合に、想定外の破壊モードとなる場合がある。

従って、高エネルギー吸収型落石防護柵の性能照査時の落石作用の設定に際して、作用方向にも注意 が必要である。

2) その他の作用

a)積雪荷重

(現状)

積雪地域に設置される高エネルギー落石防護柵は、せり出し防止柵や雪崩予防柵と同様、設計積雪深 に基づいた斜面雪圧を考慮している。

道路際に設置されるもののなかには、除雪車により吹き上げられた堆雪により損傷を受けるものもある。

また支柱を控えワイヤで補強しているもののなかには、想定以上の控えワイヤに対する沈降力の影響 で損傷を受けるものもある。

(課題)

除雪による堆雪荷重や控えワイヤに対する沈降力を設計荷重として適切に評価する必要がある。

(3)要求性能

(現状)

道路土工 切土工・斜面安定工指針²では、「落石防護柵は、その許容変位量内で落石エネルギーを 吸収できるように部材断面、部材配置および基礎の安定について検討しなければならない。」とあり、 その他の要求性能は明確ではない。落石対策便覧¹⁾でも、想定される作用に対して安全であること以外、 落石防護柵に対する要求性能は明確ではない。

(課題)

落石防護柵の重要度の区分に応じ、安全性・修復性・使用性に関する要求性能を明確にする必要がある。また、維持管理に関する要求性能や設計供用期間なども明確にする必要がある。

安全性に関していえば、構造物が落石で損傷することだけでなく、落石が落石防護柵を飛び越したり、 乗り越えたり、くぐり抜けたりして、道路や通行する車両や人などの防護対象に危険を及ぼさないこと が重要であり、この点は要求性能として明確にする必要がある。

また、落石を捕捉する場合でも、変位が大きくなり防護対象に危険を及ぼさないことも同様である。 維持管理に関しては、落石が作用した場合の落石の撤去や落石防護柵の修復に関するものと、落石が 作用しない状態の経時変化的なものに対する対処に分けて考える必要がある。

(4) 限界状態

(現状)

現状では、設計条件の落石を変位が防護対象を危険にさらすことなく捕捉できれば良いとしている場合が多く、限界状態としては終局限界状態に相当する。

落石が、落石防護柵を乗り越えたりくぐり抜けたりする状態については考慮されていない場合が多い。 (課題)

使用限界状態・修復限界状態・終局限界状態の各限界状態に対し、照査可能な具体的な状態を示す必要がある。

(5)性能照查

1) 落石作用に対する照査

(現状)

a)全体

現行の落石対策便覧には、高エネルギー吸収型落石防護柵の性能照査手法に関する記述が少なく各工 法で様々なやり方で性能照査を行っている。

照査方法により各工法は以下のように大別される。

・実験と設計計算を組み合わせて性能照査を行っている工法

実験で落石防護柵の挙動を確認した後、設計計算手法を構築し現場ごとに設計計算を行っている工法 で、支柱強化型落石防護柵に多い。

・主に実験により性能照査を行っている工法

性能照査を主に実験によっている工法で、ネット強化型落石防護柵に多い。

・主に設計計算により性能照査を行っている工法

構成部材の性能を部材実験などで確認した後、設計計算で性能照査を行う工法で、支柱強化型落石防 護柵に多い。

b) 実験的性能照查手法

近年は、スイスや EOTA の基準³⁰⁴を参考に性能照査実験を行う工法も増えてきたが、基本的には各 工法で重錘衝突方法・衝突速度や載荷位置などの載荷条件・評価方法は様々である。

結果的に、落石防護柵が一番エネルギーを吸収しやすい場所への載荷のみでの照査となっている場合 も少なくない。

c)設計計算による性能照査手法

支柱強化型落石防護柵が落石対策便覧¹⁾の従来型落石防護柵の設計計算方法を参考に設計計算方法を 構築している場合が多い。

各構成部材の吸収エネルギー量を積み上げる方式なので、実験的裏付けがない場合は、安全性照査の 信頼性に疑問が残る場合もある。

d) 現場への適用

実験時の条件と現場の条件は同じではない。また、設計計算で想定されている破壊モードは実際起こ りえる破壊モードの一部である。

柵高に関して、想定される衝突位置に対する必要余裕高の取り方に根拠がない場合も少なくない。 また、下部工や支柱の根入れの設計法も統一されたものがなく、各工法様々な方法によっている。

落石条件	構造物	その他
・落石形状	・材料強度	・経時変化(錆・クリープなど)
 ・ 「量 	・構造物高さ	・塩害環境
・エネルギー(速さ・角速度)	・延長	
・載荷位置	・スパン	
・載荷方向	・構造物設置角度(水平面に対す	

表 3.2.3 実験や設計と現場の違い

る角度)	
・縦断勾配	
・道路線形	
・基礎、下部工の条件	

(課題)

簡単なモデルによる吸収エネルギーの計算上の積み上げや数値解析のみでは落石防護工の吸収可能 エネルギーは解らない。性能実証実験による裏付けが必要である。

照査項目も、実際に想定される様々なモードに対応して設定されるべきである。

これらを鑑み、性能実証実験において最低限守るべきルールの策定が必要である。

また、実験時と現場の条件の違いに関し、適切な方法で安全性を照査することが必要であり、照査手 法の確立が課題である。

特に、現場における落石衝突位置と実験時の重錘衝突位置を整合させることと、基礎・下部工の設計 法の確立および緩衝装置の性能安定性の確認手法の確立などが望まれる。

2) 積雪作用に対する照査

(現状)

積雪時の支柱の許容応力度の設定が、工法により様々である。

列間斜距離が守られていない場合がある。

道路防雪便覧⁵⁰のせり出し防止柵のワイヤロープの照査法に関し、10%のサグを仮定しているが、応 力と変形のつじつまが合っていない。

(課題)

支柱の許容応力度は、一般の雪崩予防工に合わせ長期許容応力度に統一すべきである。

また、列間斜距離も守るべきである。

せり出し防止柵のワイヤロープの照査方法が、支柱間隔が通常のせり出し防止柵より広く、ワイヤ ロープの強度より小さい張力で変形するエネルギー吸収装置を持つ高エネルギー吸収型落石防護柵に 適用可能か確認する必要がある。

参考文献

- 1) (社)日本道路協会: 落石対策便覧, 2000.6
- 2) (社)日本道路協会:道路土工 切土工·斜面安定工指針, p.355, 2009.6
- 3) Werner Gerber : Guideline for the approval of rockfall protection kits, Swiss Agency for the Environment, Forest and Landscape(SFEFL) and the Swiss Federal Research Institute(WSL), 2001
- 4) European Organization for Technical Approvals(EOTA) : ETAG27, GUIDELINE FOR EUROPEAN TECHNICAL APPROVAL OF FALLING ROCK PROTECTION KITS, 2008
- 5) (社)日本道路協会:道路防雪便覧, 1990.5

3.2.3 防護柵の性能照査実験に関するアンケート調査結果

落石防護柵の構造全体を対象にした性能照査実験は、防護柵の形がシンプルであることから、外国に とどまらず国内でもかなり以前から行われていた。

しかし、欧米での実験では最終的に試験規格を統一するという流れに向かったのに対し、国内では、 実施者が製品開発や研究の過程で方法を変えていたこともあり、試験の方法も統一されていなかった。

このような社会的な状況を俯瞰的立場で調べる調査が、平成 21 年 3 月、金沢大学の前川幸二教授 (構 造工学研究室)により実施された。

(1)既存の防護柵の性能照査試験の調査結果

これは、当時我が国の市場で流通していた「エネルギー吸収型の落石防護柵」製品の性能を評価する 試験に着目した調査である。なお、本調査は、平成 20 年度日本学術振興会科学研究費補助金に採択さ れた「エネルギー吸収型落石防護柵の性能実証試験法と設計法の確立に関する研究」の一環として行わ れた。

大学人が第三者的立場で試験の実際を俯瞰してまとめたものである。

なお、高エネルギー吸収型の落石防護柵 にしぼり、表3.2.4に示す工法研究会、協 会、企業に試験手法と結果についてアン ケート調査を行い、結果を公表した。なお その結果はダイレクトに製品名が特定され ない表示になっている。

ここでは、当時の実物大試験がどういう 方法で国内で実施されているか、その実態 がわかる点にこの調査の意味がある。

表 3.2.5 は成果に掲載された一覧表であ る。ここでは日本学術振興会科学研究費の 前川教授の報告(以後、「前川報告」とよぶ)

S	RSS 協会
ープフェンス	日本ゼニスパイプ(株)
「ネット	日本ゼニスパイプ(株)
FENCE	(株)ビーセーフ
	三角フェンス協会

表3.2.4 アンケートの対象となった協会・企業

•RSS	RSS 協会
・ループフェンス	日本ゼニスパイプ(株)
・MJネット	日本ゼニスパイプ(株)
•E-FENCE	(株)ビーセーフ
・三角フェンス	三角フェンス協会
・ARC フェンス	(株)プロテックエンジニアリング
・マクロフェンス	(株)プロテックエンジニアリング
・リングネット	柔構造物工法研究会
・TXI 落石防護柵	柔構造物工法研究会
•HRF	ハイパワーフェンス工法研究会
・イージーネット	イージーネット工法研究会
・TST バリアー50 工法	TST バリアー50 工法研究会
・フレキシブルマイティーフェンス	東京製綱(株) エンジニアリング事業部
・ハイジュールネット	神鋼建材工業株式会社
・その他	前田工繊(株)
(順不同)	

のものを例示する(本稿中では掲載表の内容部分について表3.2.5として便宜的に引用、表示した。) 前川報告の中で次のように述べている〔報告を要約して内容が伝わらないと大変問題であり、あえて 研究成果の部分(下記 **** から****までの間)は原文のまま転記することとした。〕

なお、前川報告の、本文、表中に衝撃度という用語が用いられている。これは「重錘衝突工ネルギー」 と同意語で使われている。本節には前川報告本文の引用および表があり、オリジナルを加筆・修正でき ないので、混乱を避けるため衝撃度という用語で記述統一している。
研究成果

〔1〕落石防護柵の性能実証試験の現状調査

在来型の落石防護柵(落石対策便覧の設計例であるワイヤロープ金網式)にはないワイヤロープの保護・緩衝機構や異なる形式の落石防護柵を扱っているメーカーおよび協会に対して、実証試験の概要および設計手法についてアンケートをお願いした。表 3.2.5 は回答のあった製品名(A~Mの13タイプ 16件)ごとに質問項目の(1)~(17)の結果を示す。なお、13種の製品タイプは実証試験の実施年の順に並んでいる。

製品名(整理名)	A-1	A-2	A-3	B	0-1	C-2	D	E	F	G	н	I	J	к	L	м
(1) 製品性能 (kJ)	~1000	~1500	~3000	~1500	~1500	~2000	200~1000	~500	~1000	200	~3000	~100	~500	~600	250~3000	~150
(2) 実験実施主体	-	フランス	ζ	自社	ス	イス	自社	自社	自社	自社	スイス	スイス	自社	自社	スイス	自社
(3) 実験実施年		1988		1993	1996	1997	2000	2001	2001	2002	2002	2005	2006	2007	2007	2008
(4) 衝突体重量(tf)	3.0	3.9	6.0	3.0	4.1	5.3	7.0	3.1	3,0	1.6	9.6	0.32	1.46	2.0	3.2	0.9
(5) 衝突体形状		自然岩	<u>Б</u>	球底円柱 鋼殻⊐ン ¢1.3m,1.5m	自然 (概れ	*岩石 中球形)	球体 鉄球 ¢1.2m	球底円柱 鋼殻コン ¢1.3m	球底円柱 鋼数コン Ø1.3m	球底円柱 舗殻コンク ゆ0.9m	SAEFL 型 コンクリート ロ1.6m	SAEFL 型 コンクリート 口0.52m	EOTA 型 鋼殻コン 口1m	SAEFL型 RC ℃D0.95m	SAEFL型 コンクリート ロ1.11m	球体 鋼殻コン ¢0.45m
(6) 衝突方法	索	道から	難脱	自由落下	素道カ	いら離脱	滑り合	自由落下	自由落下	振り子	自由落下	自由落下	自由落下	自由落下	自由落下	振り子
(7) 衝突角度(度)		90?		90	(60	90	-	90	90	60	60	90	90	75	90
(6) 鉛直落下高(m)	-	_		17.0		_	10.0	13.0	12.0	12.5	2. –	-	15.0	29.0	32.0	16.6
(9) 衝突速度(m/s)	26.2	28.6	31.8	18.3	27.0	26.5	13.8	16.0	15,3	15.3	25.0	25.0	18.0	23.8	25.0	18.0
(10) 街撃度(kJ)	1017	1599	3018	510	1500	2040	700	395	400	196	3000	100	215	568(625)	例:1000	150
(11) 速度計測	センサ 高速周			理論值	高速度	カメラ	センサー	理論値 加速度計	理論値	高速カメラ	加速度計 高速カメラ	加速度計 高速カメラ	理鎿値 加速度計	理論値 加速度計	高速カメラ	理論値 加速度計 高速カメラ
(12) 実験形態	1	実物		実物	*	制物	実物	実物	実物	実物	実物	実物	実物	実物	実物	実物
(13) スパン数		3		3		3	3	3	3	3	3	3	3	3	3	3
(14) 設置場所		斜面」	-	鉛直壁	斜	面上	平地上	斜面上	鉛直壁	平地上	鉛直壁	鉛直壁	鉛直壁	鉛直壁	鉛直壁	平地上
(15) 衝突部位		Þ央ス /	() ()	中央スパン 端部スパン 柵の上側 柵の下側	中央ス	パン	中央スパン	中央スパン	中央スパン 端部スパン	中央スパン 端部スパン	中央スパン	中央スパン	中央スパン (上・下繰, 支柱隣接部)	中央スパン 端部スパン (エネルギー と速度を減)	中央スパン 端部スパン	中央スパン
P1807482564	穴	が開か	ない	重錘捕捉	穴が開	かない	重錘捕捉	重錘捕捉	重錘捕捉	重錘捕捉	重錘捕捉	重鏡捕捉	重錘捕捉	重錘捕捉	重錘捕捉	重鍾捕捉
(16) 性能評価 基準					橋 突後 部 の ネ・ 報告・ 音 一 ジ を 話	の柵中間 ット高さを ∮品のダメ 記録する	部材の損傷 と変形の程 度を確認	有害な損傷 や変形がな く、重錘を取 り除くと原 状回復する。	緩衝機構が 正常に機能 する	ネットに穴 が開かない こと(ネット 繊維の多少 の損傷は可)	衝突後の檣 高が規定値 内。 重麺の突出 が基準値内	衝突後の柵 富が規定値 内。 重錘の突出 が基準値内	損傷部の金 網の交換や ワイヤーの 締め直し等 で,性能を保 持できる	わが固では 「何 kJ 持 つか」で評価 されるのでな 抜け落ちな ければ O K とする	檣に穴が開 かない。 重練突出が 基準値内。 衝 突後の 場裏 が規定値内	料体材であ 料体 物体 物定 各部 が 常 の 作 用 力 が う 酸 酸 肉 の 作 用 力 が 約 歳 間 制 が が の 物 た 常 朝 都 向 常 前 初 が の む 名 割 が が の む 名 割 が が の む 作 用 力 が の う の 作 用 力 が う が の む に 朝 力 が の む て 割 一 の む 着 前 が が の む の れ う が が の む の 割 し の 彩 初 が の る 割 他 本 書 し の 彩 の れ の た 、 ろ 割 の で し の 割 一 の 記 一 の 書 し の 彩 の れ の の る 割 他 本 二 の 日 力 が が う の る 割 他 本 二 の 日 力 が が う の る 割 他 本 二 の る 割 一 本 一 の る 割 一 本 二 の る 日 か が う の る 割 一 本 二 の る 日 か か う の る う の る 、 の る の る る 、 の る の る の る の る の る の る の る の る の る の る の る の る の る の る の る の る の る る の る ろ の る の る ろ の る る の る る の る ろ の る の つ る ろ ろ ろ の る る ろ の る ろ ろ ろ ろ る る ろ ろ ろ ろ ろ ろ ろ の ろ ろ ろ る ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ
(17) 設計手法- 思想	技術	■入先の 験を根拠	方法 (実 計)	落石対策優覧 と実験を根拠 理論	檣は認計ローと余い 「 た に 件 に に 件 、 に 件 、 、 、 、 、 、 、 、 、 、 、 、 、	工計でれ張樹をれている力体の計画でもなった。	落覧の工程の 落覧の工程である。 第二日にいる。 で開発に 数でで のの の 、 数で の の の の 数で の な の で い る。 、 で い で い で い で い で い で れ 取 れ す 点 、 収 の 考 、 れ い れ 、 載 で で い る 、 で い で い む 記 載 じ で い る む に い る む に い る む に い る む に い る む に い る む に い る む に い う む に 新 い む む に い る む に い う む に が わ の う む に か の う む に い む む む に か む む に か む む む に か む む む た い な う た い の う た い る た い の ち た の の 売 年 通 の の 売 た の の 売 た の う た い な が い な が い っ た い っ た い っ た い っ た い っ た い っ た い た い っ た い っ た い っ た い っ た い っ た い っ た い っ た い っ た い っ た い っ た い っ た い っ た い っ た っ っ の 売 先 の う の う た の う の う た の う の う た の う た の う の う た い っ の ろ た の う の う た い っ の ろ た の う の う た い っ の う た い っ い っ い っ い っ い っ い っ い っ い っ い っ い っ い っ い っ い っ い っ っ い っ っ い っ っ っ っ の の の の	実験を根拠 とした。 US-01/WA に よる少解析の 変出し、落石の 変見し、落石な 2 確認してい る。	先発工法 (RSS)の股 計手法を動 対映結果とし、実型 合わせて症 した。	ネットのエ ネルギース やの な ためる ため、 ため、 ため、 ため、 ため、 たい る に している	福上部 200 相性能していた。 「「「「「」」」」 「「」」 「「」」 「「」」 「」」 「」」 「」」 「	− 相上部は に で あ か ま の た の た の た の た の た の た の た の た の た の	実験を祝 と5-0104 に よ5-0104 に ようの104 に よう実験術 の妥認し、落石 条件を変え て確認し いる。	理論を基礎 とし、実験和 果との整合 を取ってい る。	実験を根内ス とし、スイガス のSに基づい のSに基づい ていろ。 アンカーの 定着最時位 でいう 力の 定着最時位 の と 環境のら 算出してい る。	落覧を根 、 、 、 、 、 、 、 、 、 、 、 、 、
1 1 1	*	面上			⊥) 自由落つ =⊐	F 優 援り	→ → 平地上	w ke		SAEFL型		TA ²	 防護柵の設 2) 箇錘衝突状。 3) 箇錘衝突状。 4) 支柱基部 全方向年な。 5) 衝撃度(1) た捕捉エニ 	設置位置の例用 設置位置の例用 た法の例示(間定, で)の例示(固定, で)の例示(固定, で)の例示(固定, で)の例示(固定, で)の例示(固定, で)の例示(固定, で)の例示(固定, で)の例 に)の例 に)の例 に)の例 に)の例 に)の の の ()の の の の ()で)の の の ()で) に の の の の ()で) に の の の の ()で) に の の の の ()で) の の の ()で) の の の の ()で) の の の の ()で) の の の の の の の の の の の の の の の の の の	R (斜面, 鉛調) 日本。 SAEFL, 一方向ヒンジ, なえ部材(主に リ左図と異なる ー) は、 柵の多 敢した場合があ	【號,平地) 子) EOTA) ニロープ) 5。 E位を考慮し 5る。

表3.2.5 科研報告書に掲載されている一覧表

(科学研助成事業データベースから採録)

① 質問項目(1)性能と(10)衝撃度の関係

欧州製品 H、I、L および A、C では、性能認証指針(2001 年)あるいはその思想のため、製品性能 が実証試験の衝撃度になっている。一方、日本製品 B、D、E、F、J の性能は実証試験の衝撃度よりも 大きなレベルまで設定されている。これは、実証試験を基にした数値解析や落石対策便覧を拠り所とし た設計手法に基づいてグレードアップされた落石防護柵が設置されていることを意味する。なお、日本 製品 G、K、M の性能は衝撃度にほぼ一致しているが、繊維性ネットを主体としている製品 G、M では 性能のグレードアップを設計手法により行うことが簡単ではない等の理由と思われる。

② 質問項目(5)衝突体(重錘)形状

欧州製品では、2001年以降は性能認証指針に定められた重錘形状(備考:SAEFL型、EOTA型)が使 用され、それ以前は自然岩石が使用されている。日本製品では、衝突面が球状の重錘から近年は SAEFL 型またはEOTA 型の重錘に移ってきている。

③ 質問項目(9)衝突速度

欧州製品では性能認証指針の衝突速度規定(25m/s以上)が確保されている。日本製品での衝突速度 は13.8~23.8m/s であり、同じ衝撃度で衝突速度を25m/s とする場合に比べると、重錘質量を約1.1~3.3 倍、および衝突投影面積を約1.07~2.2倍で行っていることになる。なお、製品Dは重錘を鉄球にする ことで比較的遅い衝突速度でも所定の衝撃度を確保している。

実証試験は落石防護柵にとって厳しい衝突条件(大径落石の低速衝突よりも小径落石の高速衝突の方 が厳しいと思われる)で行うべきであり、性能保証と

公正な競争のためにも、欧州の性能認証指針の衝突 速度(25m/s以上)の適否も含めて試験方法につい ての指針、さらには数値解析や吸収可能エネルギー の累加則に基づく設計手法の妥当性、性能認証制度 についての議論が必要であろう。

(2)前川報告以後の性能試験の調査

当共同研究の活動の中で、防護柵全体系の性能試 験の前川調査以降の動向を調べる機会を得た。今回 の追加調査に協力いただける参加メンバーを調べ、 日本サミコン(株)、東京製綱(株)、神鋼建材工業 (株)、からデータを提供いただいた。

前川報告との連続性を考え、調査様式は同じもの (前川教授からシートの提供を受け)を使い、また、 集計表記載の内容は、データ提供の各社に記述をお 願いした結果を表3.2.6に示す。

なお、今回共同研究に参加していない、企業、協 会には試験法調査の範囲を広げていないことを付 記する。

表	3.	2.	6	防護柵実験ア	ンケー	ト	(追加)
_					•		

製品名(整理名)	NA	NB	NC
(1)製品性能(KJ)	~300	~100	~1000
(2)実験実施主体	自社	自社	自社
(3)実験実施年	2010	2011	2013
〈4〉衝突体重量〈tf〉	約0.94, 0.32	0.3	7.0
(5)衝突体形状	SAEFL型 □0.74, 0.51	SAEFL型 コンクリート	球体(鉄球) ¢1.2m
(6)衝突方法	自由落下	自由落下	滑り台
(7)衝突角度(度)	90	90	90
(8)鉛直落下高(m)	32	32	15
(9)衝突速度(m/s)	25.0	25.0	17.4
(10)衝撃度(kJ)	300,100	100	1060
(11)速度計測	理論値	高速カメラ	センサー 高速カメラ
(12)実験形態	実物	実物	実物
(13)スパン数	3	3	3
(14)設置場所	鉛直壁(日鋼架台)	鉛直壁	平地上
(15)衝突部位	中央スパン上段(2/3H) 端部スパン上段(2/3H) 最下段、支柱横近傍衝 撃ほか	中央スパン 端部スパン	中央スパン 〈端部スパン〉
(16)性能評価 基準	重錘捕捉	重錘辅誕	重題 補捉 重題 補捉に加 えて部材の 優と変形の程 度を確認。
(17)設計手法・ 思想	実験結果をもとに、設計 手法を構築している。最 下段ロープ下から落石 が抜け出ない構造の確 立、支柱直撃時の防護 性能として実験等により 支柱の吸収可能エネル ギーを確認ずみ。	実 物 右 定 影 時 記 、 家 長 長 に、 家 院 初 に の 家 で お ー の 定 で み ー の 定 湯 長 た で 思 熟 指 記 、 本 一 の 形 之 る 、 の で の で る の で の で の で の の で の の で の の の の	落石 対策 使 覧 で な ル ギー の 収 取 長 に よ の ま い 長 に よ 、 泉 し そ に よ の ま い 、 、 り に 、 の 、 、 り に し 、 、 い に 、 、 の に 、 、 う に こ 、 の い に こ 、 の い に こ 、 の い こ 、 い こ ま い 、 数 記 た に よ の む 、 数 記 た に よ の む い ま こ 、 歌 い で し 、 数 記 た に あ い で し 、 数 記 た に あ の 数 記 た こ し 、 数 記 た こ し 、 数 記 た こ し 、 数 記 た で し て し て い て し 、 で い て し て い る い て い る い う い て い て い る い う い っ い こ い う い っ い っ い こ い う い っ い っ い っ の い っ い っ っ い っ い っ っ 、 っ っ っ い っ っ っ っ っ っ っ っ っ っ っ っ っ
-			

この部分が今回のアンケートにより 得られた情報

1) 性能と衝撃度の関係

表3.2.6の3例とも実大実験の衝撃度と製品性能とは調和しており、柵性能のよりどころとして実験 で確かめていることになる。

2) 衝突体(重錘)形状

3例の試験のうち、2つはSAEFL型、残るひとつは、重錘を鉄球としている。

3) 衝突速度

3 例のうち2 つは、衝突速度を25m/s と欧州製品での性能認証試験の規定速度を採用しており、一方、 残るひとつでは重錘を鉄球とし、速度の比較的遅い実験により衝撃度を確保する手法を用いている。

今回の調査で集められた試験データこそ少なかったが、前川報告の後の状況として、当時見込まれて いた方向性の現状はその延長にあると思われる。重錘の形は欧州型になりつつも、一方、衝撃度を確保 するため材質をかえる工夫も行われるようになっている。

(3)まとめ

前川報告(結果は表を引用)に加え、今回の追加調査の表を合わせ、国内の落石防護柵の実物大試験の概要を俯瞰できたと考える。

海外試験うち最近のものは試験基準策定後のものとなるので、結果は認証試験のものとなる。衝撃度 の設定、重錘、落下方法などは定められた方法によっている。一方、国内の試験も耐力最大値を実大試 験で実証しようという意図で行われることも多く、重錘、あるいは、速度など、いずれも海外基準を参 照した方法にそろってきている。しかし、中には衝撃エネルギーの設定が(柵耐力の限界でなく)途中 の状態での試験の結果も発表されており、開発の手順として行われている試験の結果が発表されたもの であろう。これらの途中状態の衝撃度のものは、構造解析と対応して照査のため行われるもので最大値 を実証する類の試験とは、実施目的も異なるものである。

実物大試験の形態を比較、評価するには、認証の目的なのか、開発の調査研究のものか、そのいずれ かであるか視点を明確にして行う必要がある。

参考文献

 前川幸次:エネルギー吸収型落石防護柵の性能実証試験法と設計法の確立に関する研究,科学研究 費補助金研究成果報告書:https://kaken.nii.ac.jp/ja/file/KAKENHI-PROJECT-20560440/279280.pdf, 科学研助成事業データベース,http://kaken.nii.ac.jp/

3.3 部材・要素レベルの性能照査技術

3.3.1 防護網・柵部材の実験方法・数値解析手法

落石防護網・柵等の落石防護工は、落石の衝撃力を受けた時、金網、ワイヤ、支柱などにどの程度の応力 が発生するか、どの程度変形するか、計算で求めることは、構造が複雑できわめて困難である。したがって、 それらの性能照査は実物大実験によって行われている。

また、使用する材料・部材も弾性限界を大きく超えた変形が許容される場合もあることから主要構成部材 に関しては事前にその材料特性を把握しておくことが望ましい。さらに、補助的に LS-DYNA などの非線 形大変形解析ソフトを用いて数値計算を行う方法も考えられるが、その際は、部材個々の材料特性を把握す る必要があり、そのためには、部材レベルの実験を行い、実験データと整合が取れるようにモデル化や拘束 条件を設定する必要がある。

(1)支柱曲げ試験について

高エネルギー吸収型落石防護柵の支柱には、鋼管を用いる例が多い。鋼管内にコンクリートを充填したもの、鉄筋を鋼管内に組み込みコンクリートを充填したもの、付着のある PC 鋼材を使用しコンクリートを充 填したもの、鋼材を三角形、四角形に溶接して鋼管内に内挿し、コンクリートを充填したものなど、多種多 様なものが見られる。

コンクリートで充填された鋼管では、鋼管の変形が拘束されているので、脆性破壊に対する配慮が必要で あるため、衝撃試験を行うことが望ましいが通常は静的な載荷試験が行われている。図3.3.1 は、試験のモ デルであり、支柱の両端がヒンジになるように設置し、中央部に載荷を行う。静的曲げ試験の様子を写真 3.3.1 に示す。静的曲げ試験の結果を図3.3.2 に示す。写真3.3.2 は、衝撃曲げ試験を行った事例である。

図 3.3.1 支柱曲げ試験モデル

写真3.3.1 静的曲げ試験状況

図 3.3.2 は、スパン中央での曲げモーメントと回転角 ϕ (左右の支点の回転角(それぞれ θ)の交角)の 関係を示したものである。以降、単純ばりの中央部分の変形が、左右対称の場合について説明する。擁壁上 またはコンクリート基礎上に設置される防護柵では、図 3.3.3 に示すように、単純ばりの曲げ試験部材の中 央より左側の部分が、擁壁またはコンクリート基礎に水平に埋め込まれていると考えることができる。する と、はりの部分の回転角(落石対策便覧における変位角)は、 ϕ (=60°)ではなく θ (=30°)であること が分かる。加えて、図 3.3.1 に示す $M-\phi$ 関係図の塗潰した部分は、同図の単純ばりが ϕ だけ塑性回転した ときのひずみエネルギーを示している。このエネルギーを近似的に *E≒M_P*・ φ で表す。ここに *M_P*は、はりの塑性抵抗モーメントである。これは、弾性域での曲げモーメントを塑性抵抗モーメントに一致させていることによっている。

ここで示されることは、擁壁またはコンクリート基礎上に設置された防護柵の塑性曲げによるひずみエネ ルギーは $E = M_P \cdot \phi$ ではなく、 $E = M_P \cdot \theta$ であることである。図3.3.2を見てみると、塑性曲げは、 $\phi = 40^{\circ}$ 程度まで持続しているが、 θ に直すと塑性回転角(変位角)は $\theta = 20^{\circ}$ である。鋼管支柱の特性を考えると、 この塑性回転角は15°程度が妥当といえる。

図3.3.2 静的曲げ試験結果例

写真3.3.2 衝撃曲げ試験状況

図3.3.3 単純ばりの曲げ変形と支柱の変形

(2)金網の試験方法について

金網は落石防護工の阻止面に用いられる。一般的には鉄線を用いたひし形金網や亀甲金網が多く用いられ ている。また、近年ではワイヤロープを格子状に編んだネットや高強度の素線を使用し、金網に厚さを付け たもの、さらにコイル状に編んだものなどを高エネルギークラスの落石防護工に用いることが検討されてい るようであるが、衝撃に対する高強度鋼の特性を十分に把握した上で使用することが望まれる。 これまで従来型落石防護柵の設計では、落石による金網の吸収エネルギーは、一律に25kJと仮定されてきた。金網の強度や変形特性に関し、これまでにいくつかの試験結果が報告されているが、金網の支持方法、荷重の載荷方法などはまちまちであるが、一例を紹介する。供試体は、1.2×1.2mの金網に対して、1.0×1.0mの位置で金網を拘束し、面内静的引張り試験では、写真3.3.3のように荷重方向に引っ張る。荷重直角方向もつづみ状に金網が変形しないように、一定の間隔を保持できるよう拘束している。その他、面外静的引張り試験や面外動的衝撃試験(写真3.3.4、3.3.5)を行い、その挙動を調べることにより、解析結果と比較検討を行い、より精度の高い、解析に用いる材料特性が得られる。図3.3.4 は、面内静的引張り試験の結果を示す。

写真3.3.3 面内静的引張り試験

写真3.3.5 面外動的衝撃試験

写真3.3.4 面外静的引張り試験

図3.3.4 面外静的引張り試験結果

(3) 緩衝装置の実験

高エネルギー吸収型落石防護工に用いられる緩衝装置は、変形変位することによるエネルギー吸収と一定 の制動荷重を保持することによる局所的な破壊防止(主にアンカー基礎部への作用荷重軽減)を期待して設 置される。緩衝装置には、ワイヤロープに金具を取り付け、摩擦や、部材を変形させることにより、エネル ギーを吸収させるタイプがある。写真3.3.6~3.3.8および図3.3.5には、緩衝装置の一例を示す。 いずれの場合も、落石時の挙動を正確に把握するためには、部材レベルの試験を数多く行う必要がある。

写真 3.3.6 鋼材摩擦変形型 [ブレーキリング] (柔構造物工法研究会 HP より)

摺動摩擦型 (索端金具タイプ)

写真3.3.8 摺動摩擦型[索端金具タイプ]

写真3.3.9 静的引張試験状況(摺動摩擦型)

写真3.3.7 摺動摩擦型 [ループタイプ] (ハイジュートルット工法研究会 HP より)

図3.3.5 摺動摩擦型 [プレートタイプ]

T:荷重、δ:スライド量 吸収エネルギー量:E=T×δ

図3.3.6 測定内容と吸収エネルギー量

(a) 試験前 (b) 試験後 写真 3.3.10 静的引張試験の緩衝装置の状況(摺動摩擦型)

写真3.3.9 には、摺動摩擦型緩衝装置の静的引張試験の状況を、写真3.3.10 には、引張試験前後の緩衝装置の状況を示している。引張試験では、図3.3.6 に示すように荷重とスライド量を計測し、荷重一変位関係を求める。

図3.3.7 緩衝装置衝撃試験例

(a)試験装置

(c)試験後

図 3.3.8 緩衝装置衝撃試験計測結果例

図3.3.7は、緩衝装置衝撃試験装置の実験モデル図であり、写真3.3.11は、摩擦型緩衝装置の実験の様子である。重錘を一定の高さから落下させ、その際の衝撃力、ワイヤ張力、たわみ量やスリップ長を計測した事例である。測定結果例を図3.3.8に示す。しかし、この測定法には以下の問題点がある。

i) ロードセルで測定した張力は、衝撃により大きく変化しており、一般的には重錘が衝突しワイヤロープ が滑りだしたと判断される時点から滑りが停止したと思われる時点までの平均値を滑り張力として設計に用 いられている。

ii) 緩衝装置と張力を測定するロードセルは、途中にワイヤロープを介在させることなく、直接連結されて いなければならない(写真3.3.11(b)参照)。途中にワイヤロープで連結されていると、ワイヤロープの衝撃 応答が含まれた張力がロードセルに記録されることになる。

iii) 図3.3.9は、3スパン毎に緩衝装置を設置した場合を示している。落石がこの中間スパンに衝突した場合を検討する。

緩衝装置の位置では、ワイヤロープの張力は、緩衝装置の設定値となる。しかし、この張力が3スパンを 通して一定ではない。当然、落石が衝突した付近のワイヤロープには、緩衝装置で設定した張力よりはるか に大きい張力が発生し、金網を通じて分散し、他のワイヤロープにも張力が発生している。落石が衝突した ワイヤロープのみに伝達することはなく、隣接する他のロープにも張力が発生していることになる。すると、 重錘落下地点でのワイヤロープの引張力は、緩衝装置取付け位置での緩衝装置の滑り張力よりはるかに大き くなっていることが考えられ、設計時には、この張力で検討すべきである。

図3.3.9 複数スパンに1組の緩衝金具が挿入されている防護柵

72

(4) 解析方法

実験の結果をもとに、解析のためのモデル化を行うが、その材料の特性に合わせ、要素を選択する必要がある。図 3.3.10 は、前述の菱形金網静的引張り試験のモデル例である。金網は、BEAM 要素にて作成し、 拘束金具は、既知の材料であり金網の特性を再現するには、影響のない部材であるため、JIS やミルシートに 記載されている値を使用する。

拘束条件としては、金網と拘束金具の交点をXYZ 方向に拘束し、常に同じ動きをするよう設定している。 また、拘束金具の端部延伸方向はXZ 拘束し、対面はXYZ 拘束している。

拘束金具の延伸方向端部の節点に対し、Yおよび-Y方向に時間に比例した荷重をかけて解析を行う。図 3.3.11 は解析状況を示している。

解析結果と実験結果の比較を行い、実験結果に合うようにチューニングを行う。

図3.3.12は、実験結果と解析結果の比較したデータであり、ほぼ実験の値をトレースしている。

図3.3.12 静的引張実験と解析結果の比較

図 3.3.11 解析状況

3.4 構造全体系の性能照査技術

3.4.1 防護網・柵全体系の実験方法・数値解析手法

落石防護網・柵等の落石防護工に求められる性能の一つに落石の捕捉性能がある。この捕捉性能を確 認する方法として、実規模試験体を用いた重錘衝突実験が実施されている。実験を実施するに当たって は、実際に現地に設置した場合の対策工の設置状況と落石の作用状況を十分に考慮した実験を実施する ことが重要である。また、捕捉性能の観点からは、可能吸収エネルギーだけでなく、防護工の形式によっ ては落石の駆け上がりが懸念されるような場合にはそれに対する検証が必要である。高エネルギー吸収 型の落石防護網・柵に対して各工法を横並びで性能比較できるように、標準的な実験的性能照査手法を 「実験による性能照査手法編」に示すが、ここでは、現在我が国で実施されている実規模実験や実規模 実験に対して補足的に採用されている数値解析手法の現状について述べる。

(1) 実験方法

1) 重錘衝突方法

重錘衝突方法としては、斜面滑走式(レール式、ケーブル誘導式等)、斜面転落式、振り子式、水平 滑走式(ワイヤ巻き取り装置による)、鉛直落下式などがある。我が国においては、斜面滑走式(レー ル式)、斜面転落式、振り子式、鉛直落下式などが実規模実験における重錘衝突方法として採用されて いる。

a. 斜面滑走式(レール式)

斜面滑走式(レール式)による実験状況の一例を写真3.4.1、写真3.4.2に示す。

斜面滑走式は、重錘をレール等に沿って滑走落下させて落石防護網・柵試験体の所定位置に衝突さ せる実験方法である。写真に示す実験装置では、重錘底部に車輪が内蔵されており、H 形鋼のレール に沿って重錘が滑走落下するものである。従って重錘には回転は発生せず並進エネルギーのみが試験 体に作用する。本実験方法は、重錘を目標とする衝突位置に比較的精度良く衝突させることが可能で あり、再現性の良い実験ができる。ただし、載荷位置を変える場合には、レールの調整や試験体の設 置位置を変更するなどの対応が必要になる。

写真 3.4.1 実験状況その 1

写真 3.4.2 実験状況その2

b. 斜面転落式

斜面転落式に使用される実験施設の一例を写真3.4.3、写真3.4.4に示す。

斜面転落式は、重錘を所定の高さから斜路に沿って転落落下させる実験方法である。多面体重錘を 転落落下させる場合には、目標とする重錘衝突位置に対して誤差が生じたり、入射角度(水平、鉛直 方向)や並進方向エネルギーと回転エネルギーの割合を制御できないなど、実験の再現性においてや や難があるものと思われる。球体重錘を転落落下させる場合には側方への拘束状況にもよるが比較的 再現性の良い実験が可能になるものと思われる。本実験方法は、実際の落石衝突運動に近い載荷条件 での性能確認や回転による柵の乗り越え等が懸念される形式の防護工に対する性能確認には有効な 実験方法である。

写真3.4.3 実験施設その1

写真3.4.4 実験施設その2

c. 振り子式

振り子式による実験状況の一例を**写真 3.4.5** に示す。

振り子式は、ワイヤロープによって吊り下げら れた重錘を振り子の原理で運動させ試験体の所 定の位置に衝突させる実験方法である。本実験方 法では、重錘を阻止面衝突直前に切り離す必要が あるが、目標とする衝突位置および入射角度(水 平、鉛直方向)で精度良く重錘を衝突させるため には事前のキャリブレーションが重要である。

写真 3.4.5 実験状況

d. 鉛直落下式

鉛直落下式による実験状況の一例を**写真 3.4.6** に示す。

鉛直落下式は、重錘をトラッククレーン等により所 定の高さに吊り上げ、着脱装置により自由落下衝突さ せる実験方法である。本実験方法は、使用するクレー ン等の規模にもよるが、入力エネルギーを自由に変更 することが可能であるとともに任意の位置に比較的 精度良く載荷することができ、再現性の良い実験が可 能である。ただし、重錘による入力エネルギーの作用 方向が鉛直方向であることから、重錘衝突時から阻止 面の最大変位に至るまで重力の影響を受けることや、 実験終了後の重錘の捕捉性状等(残存柵高を含む)が 重錘を水平方向に衝突させた場合と異なることに注 意が必要である。

写真 3.4.6 実験状況

いずれの重錘衝突方法を採用する場合においても、阻止面への重錘の衝突位置、衝突速度、入射角(水平方向、鉛直方向)を精度良く計測することが重要である。

また、重錘の着脱方法としては、油圧、電磁石、圧縮空気を利用した装置や特殊な吊りフック等を 使用したり、重錘を保持したワイヤロープを切断するなどが採用されている。いずれの方法を採用す る場合においても、事前に安全対策についての十分な検討を行うことが必要である。

2) 試験体

性能照査実験には実規模の試験体が用いられるが、防護工を構成する各種部材の力学的特性値や試 験体を固定する基礎の物性値を把握しておく必要がある。また、試験体の設置に際しては、現場で実 際に採用する設置方法、設置条件等(例えば、支柱やアンカーの設置方法やワイヤロープの初期張力、 ボルト類の締め付けトルク)で実験を実施する、または性能照査実験における試験体の設置方法、設 置条件で現場施工することが重要である。

3) 各種計測項目と計測方法

a. 重錘衝突速度

重錘衝突速度の計測に関しては、高速度カメラによる画像解析や**写真3.4.7**に示すような赤外線センサーを用いる方法、スピードガンを用いている事例もある(精度確認必要)。鉛直落下では計算値を用いる場合もあるが、落下高さの計測精度によっては実際の重錘衝突速度に対して計算による速度に誤差が生じる場合もあるため高速度カメラ等による計測値とのクロスチェックを実施しておくことが望ましい。

写真3.4.7 赤外線センサー

写真 3.4.8 金網へのターゲットマーカー 設置状況

b. 入射角度

高速度カメラ等による画像解析が用いられている。

c. 変形量

載荷位置における最大変位の計測には、高速度カメラ等による画像解析が用いられる場合が多い。 柱の傾斜等、変形量が小さい箇所の変位計測ではレーザ式変位計の使用も考えられる。また、**写真** 3.4.8 に示すように試験体全面にターゲットマーカーを設置し、2 方向からの高速度カメラ映像によ り試験体全体の時刻歴応答を計測した事例もある。試験体全体の時刻歴応答画像は、数値解析結果の 妥当性検証などにも活用される。

d. ロープ張力等

ロープ張力の計測には、ロープ固定端部にロードセルを設置する場合や、ロープ固定部材等にひず みゲージを直接貼付して張力や応力度に換算する場合などがある。また、支柱等に発生する応力度を 計測する場合においてもひずみゲージが用いられる。

e. 作用衝擊力

重錘による作用衝撃力を計測するために加速度計を設置する場合もある。有線で加速度計を設置す る場合には、ケーブル自体が衝撃を受けた場合にノイズが発生し、加速度波形に影響を与える場合が あることやケーブルの自重が重錘衝突位置に影響を与える場合があるため、ケーブルの配置に関して は注意が必要である。また、無線で加速度波形を計測する場合には応答周波数について注意が必要で ある。

f.実験終了後の試験体状況

実験終了後には、重錘の捕捉状況や試験体の状況を調査する。重錘に関しては、損傷の有無や停止 状況(捕捉状況、突破した場合やリバウンドした場合には停止位置)を調査する。また、使用材料の 状況に関しては、残留変位の有無(弾性範囲内の挙動か塑性領域に至っているのか)、破断の有無、 緩衝装置の滑りの有無、柱等の傾斜の有無を調査する。さらに、柱基部やワイヤロープの固定箇所、 アンカー等に変状がないか、想定箇所以外が変形してエネルギー吸収していないか等、試験体全体の 状況について注意深く観察し、それらの状況を記録する必要がある。

(2) 数值解析手法

落石防護網・柵に対する数値解析手法としては、LS-DYNA 等の汎用コードを使用した実績が多いように思われる。資料編4.および5.は、いずれもLS-DYNA を使用した数値解析事例である。数値解析における解析モデルは、上記の数値解析事例のように各部材を詳細にモデル化したものや例えば金網を腹要素で簡略化する場合などがあるが、いずれにしてもそれぞれの要素を使用することによる特質について把握しておくことが重要である。また、使用する材料構成則に関しては、一般的な公称値を用いる場合や前節3.3部材・要素レベルの性能照査技術に示されるように部材レベルの実験を行い、実験データと整合が取れるように各種物性値を用いる場合もある。また、境界条件に関しても実際の試験体の設置状況を忠実に反映することが必要である。

数値解析の妥当性を検証するためには複数の実験結果との比較検証が必要であり、その際には各種計 測データ(変形状況や部材の応力発生状況等)と数値解析データとの時刻歴応答値を比較する。実験値 に対してどの程度の誤差を有しているのか、また実験値に対して安全側の評価を与えるのか危険側の評 価を与えるのか、またその傾向は各解析において常に同じ傾向を示しているのかなどを検討する。載荷 位置を変えた場合の解析では、主部材以外の接合部材等に大きな応力が発生する場合も考えられるため 構成部材のモデル化に際しては注意が必要である。

4. 落石防護工の落石捕捉・損傷事例

4.1 調査目的

落石防護工による落石の捕捉、損傷等の事例を調査し、今後の性能照査に向けた課題を抽出・整理することを目的とする。

- 4.2 調査方法
 - ・調査先: 共同研究の参加企業にアンケート調査を実施
 - ・対象: 落石防護柵(支柱強化型、ネット強化型)とポケット式落石防護網
 - ・内容: 落石の捕捉、防護工の損傷事例

4.3 調査結果

- (1)概要
 - ・アンケート集計件数: 32件
 - ・内訳: 落石防護柵: 19件(支柱強化型:2、ネット強化型:17)

ポケット式防護網: 9件

従来型の防護柵・網:4件

・アンケート結果: ①落石捕捉・損傷事例一覧表: 表4.3.1

②事例集: 表4.3.2(1)~(32)

なお、事例の工法(製品名)は、整理記号(アルファベットA~J)で表した。

(2)調査結果

従来型を除く28ケースの調査結果の集計を表4.3.3に示す。

一 一	捕捉·損傷	出作去		損傷	翩位		ſ	修復状泌	卍	設計条件を超えた
空八	報告件数	頂房伯	金網	ロープ	支柱	その他	補修	補強	更新	落石(質量) の事例
落石防護柵 (支柱強化型)	2	2	2	1	1	0	1	0	0	1(1)
落石防護柵 (ネット強化型)	17	5	3	0	2	3	4	0	0	3(2)
ポケット式 落石防護網	9	8	8	5	2	2	7	0	1	2(2)
(計)	28	15	13	6	5	5	12	0	1	6(5)

表4.3.3 落石捕捉・損傷事例の集計

括弧内:損傷有

以下に、調査結果の概要を示す。

- - ・下部すり抜け:想定外の岩盤崩壊、防護網をすり抜けて、従来柵が倒壊
- ② 損傷の有無 (有) 15 ケース、(無) 7 ケース
- ③ 損傷が軽微で補修なしのケース 2 ケース/15 (No.1、4)
- ④ 補修・補強・更新の内訳

補修:12(部位の交換、ロープ再緊張など)

- 補強: 0
- 更新: 1 (雪崩による金網、ロープの損傷) (No.23)
- ⑤ 損傷部位 金網(13): 変形、破網、切断、垂れ下がり
 ロープ(6): 降伏、流下、一部切断、緩み
 - 支柱 (5): 変形、傾斜、破損
 - その他 (5): アンカー(抜け)、グラウンドプレート、ブレーキリング、接合コイル
- ⑥ 設計条件を超えた落石(質量) 6ケース、内5ケースが損傷有
- 4.4 まとめ
 - ・落石により損傷を受ける最も多い部位は「金網」、次いで「ロープ」、「支柱」の順である。
 - ・損傷を受けて補修・更新したのは、12 ケース。内、11 ケースは部位交換等の補修で修復されており、修 復性は高い。
 - ・今回の落石捕捉・損傷の報告件数28件の内、設計条件の落石質量を超えた落石の報告が6件(内5件が 損傷有)あった。そのため、落石防護工の設計の前提条件となる落石規模の設定に際しては、さらなる 調査・評価技術の高度化が必要になるものと考える。

表 4.3.1 捕捉損傷事例一覧表

			1						
No.	施工時期 (年月)	都道 府県	発注者	設計落石 エネルギー (kJ)	工法 (整理番号)	可能吸収 エネルギー (kJ)	型式 1.支柱強化型 2.ネット強化型 3.ポケット式	高さ(m)×スパ ン長(m)×スパ ン数 または高さ (m)×延長(m)	落石規模 発生源位置
1	2014年	高知	高知県	500 (1.2t)	А	500	1	H3.1×L4×4	体積:0.34㎡ 質量:0.89t 発生位置:不明
2	1999年	_	_	215 (1.0t) (高さ30m)	В	_	1	H3.0×L38.8	体積:24㎡以上 質量:3.0t 発生位置:上方 25~30m
3	2009年	富山	富山県	150 (0.3t)	С	150	2	H3.5×L4.5× 13	体積:1.0㎡ 質量:2.6t 発生位置:不明
4	_	_	_	140 (1.0t) (高さ20m)	D		2	H20×L18多連	質量:2.0t 発生位置:上方 40m
5	2000年3月	兵庫	建設省		Е	1500	2	H5×L100	体積:0.8㎡ 質量:2.3t
6	2000年8月	高知	高知県	1229 (2.6t) (高さ60m)	E	1500	2	H4×L63	体積:1.4㎡ 質量:3.7t 発生位置:上方 60m
7	2001年2月	北海道	北海道	6649 (37.5t)	Е	2000	2	H5×L40	
8	2002年10月	和歌山	和歌山県		E	1500	2	H5×L83	
9	2007年3月	和歌山	和歌山県		E	750	2	H3×L40	質量:0.1 t
10	2007年11月	佐賀	佐賀県	1500	E	750	2	H3×L40	質量:0.07t (最大落石)(複 数落石有)
11	2007年12月	静岡	静岡県	1204	E	1500	2	H5×L24	質量:5.0t
12	2008年10月	岐阜	岐阜県	1,439	E	1500	2	$H4 \times L65$	質量:2.3t
13	2011年2月	埼玉	秩父 農林振興 センター	98	F	100	2	H3×L89	体積:2.16㎡ 質量:5.6t

捕捉状況	損傷状況	修復 (補修・補強・更新) の有無	コメント	No.
柵前面	大きな損傷なし 金網:やや変形	補修等なし	多少金網にへこみがあった程度。エネル ギーは小さいと思われる	1
柵前面	柵面のフレキシブル中間支柱が0.1m程度 変位したが、ロープの弾性により元に戻っ た。衝突位置の中間支柱が変形、金網が破 網、ロープの被覆はがれ。 支柱:4°谷側に傾斜、金網:破網・最大 0.5m、ロープ:被覆はがれ3本	(補修) 衝突部の金網破損部 とロープの被覆がはが れたものを交換 支柱はそのまま利用	幅8.0mに及ぶ範囲に最大3.0tの落石が 複数堆積。設計における落石エネルギー は215kJであったが、実際に捕捉した落石 エネルギーは2倍以上であったと推測。 部材の破損は軽微で金網の破網部の交 換と、被覆が剥がれたロープの交換。 その後も堆積が増えているが大きな破損 は確認されていない。 *設計条件を超えた落石	2
柵にて停止	損傷なし	補修等なし	*設計条件を超えた落石	3
ネット内	金網:落石衝突位置の金網が微小変形	補修等なし	落石の除去のみを行った。 *設計条件を超えた落石	4
防護柵内	損傷なし	補修等なし	落石・土砂撤去後ワイヤロープ等を調節	5
防護柵内	支柱:支柱アッセンブリ損傷 金網:一部損傷 その他:グラウンドプレート損傷	(補修) 一部の部材交換を 行った	地震による剥離型落石が発生、全ての落 石を捕捉したものの、落石直撃により一 部支柱やグラウンドプレートの損傷が見ら れた(要交換)。 *設計条件を超えた落石	6
防護柵内	ネットの塑性変形と支柱基礎部の調整モル タルにクラックの発生が見られた。 金網:一部塑性 その他:ブレーキリング	(補修)	ブレーキリングの作動とリングネットの塑 性変形が見受けられるため一部交換。ま た、支柱基礎部の調整モルタルにクラック 発生のため補修。	7
防護柵内	支柱:一部損傷	(補修)		8
防護柵内	損傷なし	補修等なし	集中的な降雨により流出した土砂を捕捉 した。捕捉した土砂除去後の再確認の結 果、交換等の必要性はなかった。	9
防護柵内	損傷なし	補修等なし	落石撤去のみで補修の必要はなかった。	10
防護柵内	損傷なし	補修等なし		11
防護柵内	損傷なし	補修等なし		12
防護柵内	ヘリックススプリングの損傷が見られた。	(補修) ヘリックススア゚リング³3箇所 の交換	支柱上部フレックスゾーン(1.75m)のヘリックスス プリング3箇所の交換を要する。ブレーキリ ングの作動も見られたが20㎝程度であ り、交換の必要はないと判断した。	13

No.	施工時期 (年月)	都道 府県	発注者	設計落石 エネルギー (kJ)	工法 (整理番号)	可能吸収 エネルギー (kJ)	型式 1.支柱強化型 2.ネット強化型 3.ポケット式	高さ(m)×スパ ン長(m)×スパ ン数 または高さ (m)×延長(m)	落石規模 発生源位置
14	2008年4月	兵庫	兵庫県	1000 (3.9t) (40m)	G	1000	2	4m×210m	不明
15	2011年12月	兵庫	兵庫県	1000 (5.8t) (23.1m)	G	1000	2	$4\mathrm{m}\! imes\!50\mathrm{m}$	不明
16	2014年2月	兵庫	兵庫県	500	G	500	2	$3\mathrm{m}\! imes\!16\mathrm{m}$	不明
17	2009年7月	宮崎	国土交通 省	1000	G	1000	2	$4\mathrm{m}\! imes\!36\mathrm{m}$	体積:1.0×0.5 ×0.8m程度が 4個
18	2012年10月	熊本	熊本県 多良木町		G	1000	2	$4m \times 21m$	体積:拳大〜人 頭大の石が多 数
19	2014年1月	鹿児島	鹿児島県	230 (1.7t)	G	250	2	3m×40m	体積:径100~ 300mm
20	2008年12月	高知	高知県	120レヘ [*] ル (1.0t)	Н	150レヘブル	3	H10×L15	体積:3.1㎡ 質量:8.0t 発生位置:網裾 上方8m
21	2010年12月	高知	高知県	382 (1.3t)	Н	400	3	H12×L27	体積:0.4㎡ 質量:1.0t 発生位置:網裾 上方12m
22	2011年9月	愛媛	愛媛県	103 (1.7t)	Н	150	3	H30×L30	体積:0.3㎡ 質量:0.8t 発生位置:網裾 上方55m
23	2009年11月	北海道	渡島西部 森林室	24 (0.1t) (高さ40m)	Ι	39.5	3	H15×L12×1S	質量:0.1t 発生位置:上方 40m
24	2013年12月	高知県	中土佐町 役場	350 (1.5t) (高さ40m)	Ι	400	3	H18×L27×4S	体積:200~300 ㎡ 質量:約500t 発生位置:上方 25m
25	2011年9月	岐阜県	本巣市役所	80 (0.2t) (高さ40m)	Ι	101	3	H12×L27×1S	体積•質量:小 規模複数 発生位置:上方 40m

捕捉状況	損傷状況	修復 (補修・補強・更新) の有無	コメント	No.
防護柵内	損傷なし	補修等なし		14
防護柵内	損傷なし	補修等なし		15
防護柵内	損傷なし	補修等なし		16
防護柵内	損傷なし	補修等なし	緩衝装置(ブレーキエレメント)の作動は ほとんどなし	17
防護柵内	損傷なし	補修等なし	緩衝装置(ブレーキエレメント)の作動は ほとんどなし	18
防護柵内	損傷なし	補修等なし		19
網裾より2m上 方	発破により複数の石(1t程度以下)を捕捉。衝 突箇所は金網が変形していた。想定外の石 (8t)が衝突した箇所は若干の破網がみられ た。 金網:変形・破網、ロープ:降伏	(補修) 金網と, 縦ロープの部 分的な交換で修復	想定外の石の衝突により一部金網が破網したが、全ての落石を捕捉した。落下 高が低いためエネルギーが小さかったと 思われる。 *設計条件を超えた落石	20
網裾部	風化による岩盤斜面の肌落ち。大小約10m の落石を捕捉した。落石は網裾部まで誘導 され,溜まった落石により網裾が孕みだし変 形した。 金網:変形	(補修) 変形した金網を部分 的に交換して修復	大量の落石により網裾が孕み変形した が,全ての落石を捕捉した。落下高が低 いためエネルギーが小さかったと思われ る。	21
網裾より1m上 方	第一衝突点(遷急線付近)と停止位置の金網 に若干の変形がみられた。 裾が孕みだし変形した。 金網:変形	(補修) 変形した金網を部分 的に交換して修復	第一衝突点(遷急線付近)における金網の 変形が少なかったので,何らかの要因に より落石速度が減衰し,エネルギーが小 さくなったものと考えられる。	22
_	最上段横ロープの破断による 支柱・アンカー:損傷なし、金網:流下、 ロープ:流下	(更新)予定	(雪崩)	23
下部すり抜け	従来柵は倒壊 カーテンネットは部分的に破損 支柱:1本破損、金網:一部切断、 ロープ:一部切断	(補修) 溜まった石の除去後、 補修	落石ではなく、想定外の岩盤崩壊が原因 である。 従来柵がある部分には、カーテンネットを 法尻まで設置していなかった。 既設の落石柵は破壊されていたが、カー テンネットは部分補修で済んだ。 *設計条件を超えた落石	24
網尻(健全に 捕捉)	網を吊り下げている最上段横ロープ用アン カーが抜けてしまったため、網部が全体的 に垂れ下がった。 金網:全体が垂れ下がり、ロープ:緩み、 その他:アンカーの抜け(一部)	(補修) アンカー金物を再設置 し、ネット全体を健全な 状態に張り直す。	積雪地域用の設計であり、冬季閉鎖期 は、最下段横ロープの取外しを考慮する設 計であったが、それがなされていなかっ た。本年度は2m~3m程度の積雪があっ た模様。落石よりも、雪荷重による破損と 思われる。	25

No.	施工時期 (年月)	都道 府県	発注者	設計落石 エネルギー (KJ)	工法 (整理番号)	可能吸収 エネルギー (KJ)	型式 1.支柱強化型 2.ネット強化型 3.ポケット式	高さ(m)×スパ ン長(m)×スパ ン数 または高さ (m)×延長(m)	落石規模 発生源位置
26	2014年11月	広島	広島県 東部建設 事務所	4546 (19.4t) (高さ40m)	J	_	3	H15×L26	体積:0.57㎡ 質量:1.52t 発生位置:不明
27	2010年3月	奈良	奈良県 五條土木 事務所	633 (2.7t) (高さ40m)	J	_	3	H15×L16	体積:12㎡ 質量:31.8t 発生位置:不明
28	2013年2月	群馬	群馬県 藤岡土木 事務所	1668 (12.5t) (高さ13.8m)	J	_	3	H15~25×L35	体積:1.24㎡ 質量:3.3t 発生位置:不明
	(従	来型)						<u> </u>	
29				50レヘブル			従来型 防護柵	H2.5m×L30m 横ロープ間 隔:0.3m	体積:0.4㎡ 質量:1.0t 発生位置:柵基 部より上方15m
30				100レベル			従来型 ポケット式防護 網	H10m×L60m 横ロープ間 隔:5m	体積:不明 質量:不明 発生位置:網裾 より上方21m
31							従来型 覆式防護網	H25m×L60m 横ロープ間 隔:5m	体積:490㎡ 質量:1000t 発生位置:
32				31.3 (0.1t) (高さ40m)			従来型 防護柵	H3×L15	質量:0.4t 発生位置:路面 より15m

捕捉状況	損傷状況	修復 (補修・補強・更新)の 有無	אעאב	No.
金網裾部	損傷なし	補修等なし	沢部からの落石であり落下高さは不明	26
金網裾部	表層崩壊により金網裾部に約12mの崖錐を捕 捉した。衝突時および堆積時に金網の一部が変 形した。 金網:変形	(補修) 金網裾部に堆積した崖 錐を撤去するためにワイ ヤロープを緩め、変形し た金網を部分的に交換 した	設計落石重量以上の崖錐が堆積したが金網 の変形のみで捕捉した事例である。 落下高さは不明であるが損傷状況より落石エ ネルギーは小さいと思われる。 *設計条件を超えた落石	27
金網裾部	支柱に落石が衝突し変形し、支柱控えのワイヤ ロープにも衝突しワイヤクリップが一部緩んだ。 金網裾部で金網の一部が変形した。 支柱:変形、金網:変形、ロープ:緩み その他の部位:緩衝金具スリップ	(補修) 金網の一部張替えとワイ ヤロープの再緊張を 行った。支柱は一部変 形したが落石捕捉高さも 十分に確保できるため 補修せず。	落石衝突時に緩衝金具がスリップしたことで 金網などの負担を低減させ金網裾部まで誘 導することが出来た。 落石の一部が金網裾部から抜け出たが、これ は金網下端部と斜面下端の隙間が大きかっ たためである。金網を斜面下端まで覆うことで 抜け出しは防げる。	28

防護柵内	中間支柱は、ウエブが正面を向くほどねじれ曲 がって倒れている。また、ワイヤロープが降伏し 金網に変形や破網がみられる。端末支柱が内 側に倒れ、索端金具のねじ部が破断し抜け落ち ている箇所もある。支柱:ねじれ変形等、金網:変 形・破網 ロープ:降伏、その他の部位:索端金具破断	(更新)	地震により大小10個程度の落石が発生した。 防護柵の損傷は激しいが,全ての落石を捕 捉した。落下高が低いためエネルギーが小さ かったと思われる。	29
落石貫通 飛び越え	落石の直撃による支柱の倒れ込み・脱落や、支 柱吊ロープの破断がみられる。 また、金網の破網やワイヤロープの降伏により防 護機能を果たしていない。 支柱脱落・倒れ込み、金網:変形・破網 ロープ:破断・降伏	(更新)	ポケット式落石防護網は,支柱間隔が3mと狭 いため,落石の直撃により破損する場合が多 い。設計時,危険石の調査に不備があったこ とも考えられる。	30
下部すり抜け	降雨に起因する表層崩壊+複数落石により約 490m ³ の土砂と落石が作用した。覆式落石防護 網の金網は破網、ワイヤロープも破断し、原形を 留めていない。 金網:破網、ロープ:破断	(更新)	当該現場は海岸線にあり岩肌の風化が著し いため、想定を超えた崩壊により損傷が大き かったものと考えられる。	31
防護柵内	間隔保持材の折れ曲がり・金網の破損 金網:破損	補修等なし	想定していた、可能吸収エネルギーより、落 石エネルギーが大きかったため、破損したと 考えるが、すり抜け等は確認されず、捕捉し ている。	32

表 4.3.2(1) 捕捉·損傷等事例(1)

No	1	防護柵	事例種別	施工・捕捉	
110.	-	施丁年度:平成26年度	F 丁 法 (整理記号):	A	
落石	防護工情報	型式:支柱強化型防護相	 ネットサイズ: (高さ×長さ)H3.1m×16m 横ロープ間隔: 240mm 		
設計	条件				
	質量(t)	2.35	高さ(m)	40	
	落石エネルギー(kJ)	500			
落石	状況(施工事例では不要)				
	落石年(度)	平成26年			
		体積(m ³):0.34	(複数の合計か最大落石	の値かを記入)	
	波工	質量:0.89	(複数の合計か最大落石	の値かを記入)	
	俗勹	推定落石エネルギー	9		
		(kJ)	:		
	落石の停止位置	柵前面	落石発生源位置	不明	
捕捉	・損傷状況(施工事例では	は不要)			
		□無(落石貫通 ・	飛び越え ・ 下音	『すり抜け ・その他	
	捕捉の有無	()			
		■有			
	損傷状況		金網の変形		
	支柱		金網	変形	
	ロープ		その他の部位		
	補修・補強・更新状況	 □補修 □補強 補修なし □更新 			
	損傷理由/コメント	多少金網にへこみが	あった程度。エネルギー	は小さいと思われる	

表 4.3.2(2) 捕捉·損傷等事例 (2)

No.	2	防護網 ・ 防護柵	事例種別	施工(捕捉)損傷			
		施工年度:平成11年度	工 法 (整理記号):	В			
落石	防護工情報	型式:支柱強化型防護柵	 ネットサイズ:H=3.0 支柱間隔:5.0m 	0m×38.8m			
設計条件							
	質量(t)	1.0	高さ(m)	30			
	落石エネルギー(kJ)	215		·			
落石	落石状況(施工事例では不要)						
	落石年(度)	平成 14 年					
		体積(m ³):24.0 以上	(複数の合計)				
	落石	質量:3.0t	(最大落石の値)				
		推定落石エネルギー	$530 \sim 650 (\text{kJ})$				
	落石の停止位置	柵山側	落石発生源位置	H=25~30m			
捕捉	・損傷状況(施工事例では	は不要)					
	捕捉の有無	□無(落石貫通 ・ 飛び越え ・ 下部すり抜け ・その他(■有					
		柵面のフレキシブル中間	引支柱が 0.1m 程度変位し	たが、ロープの弾性によ			
	損傷状況	り元に戻った。衝突位置	の中間支柱が変形、金網が破網、ロープの被覆は				
		がれ。					
	支柱	4°谷側に傾き	金網	最大□0.5m 程度			
	ロープ	被覆はがれ3本	その他の部位	特になし			
	補修・補強・更新状況	 ■補修 □補強 □更新 ■補修 衝突部の金網破損部とロープの被服がはがれたものを交換し、 支柱はそのまま利用することとした。 					
	損傷理由/コメント	落石防護柵より約25m~30m上方の崖を発生源とする。幅8.0mに及ぶ範囲 に最大3.0tの落石が複数堆積している。設計における落石エネルギーは 215kJであったが、実際に補足した落石エネルギーは2倍以上であったと 推測される。部材の破損は軽微で金網の破網部の交換と、被覆が剥がれた ロープの交換を行った。その後も堆積が増えているが大きな破損は確認さ れていない。					
<施	 エ・捕捉・損傷 状況>						

表 4.3.2(3) 捕捉·損傷等事例 (3)

No.	3	防護柵	事例種別	捕捉			
		施工年度:平成21年度	王 法 (整理記号):	С			
落石	防護工情報	型式・ネット強化型防護	柵 ネットサイズ:(高さ	×長さ)H=3.5m			
	das t.1		「「」横ロープ間隔:				
設計条件							
	質量(t)	0. 32	高さ(m)	40			
	洛右エネルギー(kJ)	150					
落石状況(施工事例では不要)							
	洛石牛(度)	半成24年		のはなさつこ			
		体積(m ³):1	(複数の合計が最大洛石	の値かを記入			
	落石	<u>東里・4.00</u> 推					
		推 定 洛 石 エ ネ ル キ ー (kJ)	不明				
	落石の停止位置	柵にて停止	落石発生源位置	不明			
捕捉	・損傷状況(施工事例では	は不要)					
	捕捉の有無	□無(落石貫通 ・ 飛び)■有	「越え ・ 下部すり抜け	・その他()			
	損傷状況		損傷なし				
	支柱						
	ロープ						
	補修・補強・更新状況	 □補修 □補強 □更新 					
	損傷理由/コメント						
<施	エ・捕捉・損傷 状況>						
	<ル上・抽捉・損傷 (仄)/>						
	断面図		正面(平面)図				

表 4.3.2(4) 捕捉·損傷等事例 (4)

No.	4	防護網	・防護柵	事例種別	施工・捕捉・	損傷		
		施工年度:平成××年度		工 法 (整理記	L号):D			
落石防護工情報		型式・ネット強化型防護柵						
-0.31		I			6. Om			
設計								
	肖重(t) 遊丁ェネルギー (1-1)	1.0		局さ(m)	20m			
拔石	洛石エイルイー(KJ) 	140						
俗勹	成(加工事例では小安/ 	他上争例では个安) 年(度) 平成××年						
		<u> </u> 体積(m ³)	:	(複数の合計か最大	と落石の値かを記入)			
	-+++	質量:2.	0t	(最大落石の値かる	·記入)			
	洛石	推定落	石エネルギー	500				
		(kJ)		560				
	落石の停止位置	ネット内]	落石発生源位置	H=40m			
捕捉	・損傷状況(施工事例では	は不要)						
	捕捉の有無	□無(落 ■有	石貫通 ・ 飛び	越え ・ 下部すり)抜け・その他()		
	損傷状況		落石	衝突位置の金網の	変形微小。			
	支柱	2	変形なし	金網	変形微小			
	ロープ	有	皮損なし	その他の部位	特になし			
	補修・補強・更新状況	□補修□補強□更新	落石の除去のみ	を行った				
	損傷理由/コメント							
<施	エ・捕捉・損傷 状況>							
1								
ļ						į		
1						 		
					ļ			
ļ								
ļ								
1								
						ļ		
						į		
ľ						 		
ŀ	断面図			正面(平面)図				
li								

表 4.3.2(5) 捕捉·損傷等事例 (5)

No.	5	防護網 ・ 防護柵	事例種別	施工 • 捕捉 • 損傷			
落石防護工情報		施工年度:平成12年度	工法(整理記号):	E			
		刑式・ネット強化刑防制	ネットサイズ:高さ5.0m×100.0m				
		主人・ホノース旧主の間	■ 横ロープ間隔:				
設計	条件	1					
	質量(t)		高さ(m)				
	洛石エネルギー(kJ)	kJ					
落石状況(施工事例では不要)							
落石年(度) 半成			\$40 0 m ³				
		14.惧(m°): 」」」 」」」					
	落石	貝里(い)・ 推定波工 エマルギー	示り Z. 3 し				
		推 定 裕 山 エ イ ル イ ⁻	60kJ	60kJ			
		防護柵内					
捕捉	<u>・損傷状況(施工事例で)</u>	は不要)	相自为工际医国				
111100		□無(落石貫通 · 飛)	び越え ・ 下部すり抜け	·その他()			
	捕捉の有無	☑有					
	損傷状況	なし					
	支柱		金網				
	ロープ		その他の部位				
		□補修					
	補修・補強・更新状況	□補強					
		□更新					
. 14	損傷理由/コメント	落石・土砂撤去後ワイ	ヤロープ等を調節				
<施	工・捕捉・損傷 状況>	; r		,			
ł							
li –							
ł							
ļ							
ł							
-							
ļ							
i -							
ł							
ŀ							
ł							
	断面図		正面(平面)図				
Ľ		i		1			

損傷状況

表 4.3.2(6) 捕捉·損傷等事例 (6)

No.	6	防護網	・「防護柵」		事例種別	施工 • (捕捉 •) 損傷		
		施工年度:	平成12年度	L	法(整理記号):	E		
落石防護工情報		世ナン		: ネッ	,トサイズ:高さ	4.0m×長さ63m		
		型式:イツ	下強化望防護	横□	ュープ間隔:			
設計条件								
	質量(t)	2.6t		高さ(n	n)	60. Om		
	落石エネルギー(kJ)	1,229kJ		•				
落石	状況(施工事例では不要)							
	落石年(度)	平成 13 年						
		体積(m ³):		約1.4	m³			
	遊プ	質量(t):		約3.7	t(最大落石(複	数落石有))		
	洛口	推定落石エネルギー		約4 1 0	0.41 T			
		(kJ) [*] J 1, 324kJ						
	落石の停止位置	防護柵内		落石発	生源位置	60m		
捕捉	・損傷状況(施工事例では	は不要)		•				
	世中の七年	□無(落石)	貫通・飛び	バ越え	 下部すり抜け 	・その他()		
	捕捉の有悪	☑有						
	担伤心心	一部の部を	「交換を行った	-				
	損傷状況							
	支柱	支柱アッセ	ニンブリ損傷	金網		一部損傷		
	n-7°			その供	1の部位	グラウンドプレート損		
						傷		
		☑補修						
	補修・補強・更新状況	□補強						
		□更新						
	指復理由/コメント	地震による	剥離型落石カ	³ 発生、全ての落石を捕捉したものの、落石直撃に				
	顶圆柱田/ - / • • 1	より一部支	ミ柱やグラウン	ィドプレ	ートの損傷が見ら	られた(要交換)		
<施	エ・捕捉・損傷 状況>							
		To ch-h						
	Р <u>55.0</u> <u>GH=709.52</u>	122321	T-23	/4				
	<u>FH=</u>		1	1-1-	AAA			
					<u>61</u> <u>6</u> <u>0</u> <u>0</u> <u>0</u>			
	As			7/0	P45.			
				B斜	面4@10.0m+8m+7m+8m=6			
<u> </u>				_	サングネット	-落石吸収防護柵 'RX-150		
	断面図				正面(平面)図			

表 4.3.2(7) 捕捉·損傷等事例 (7)

No.	7	防護網 ・ 防護柵	事例種別	施工 • (捕捉) 損傷)								
		施工年度:平成13年度	工法(整理記号)	: E								
落石防護工情報		型式:ネット強化型防護	ネーーープ間隔:	さ5.0m×長さ40.0m								
設計条												
	質量(t)	37.5	高さ(m)									
	落石エネルギー(kJ)	6,649kJ										
落石状	況(施工事例では不要)											
	落石年(度)	平成 26 年										
		体積(m ³):	(複数の合計か最大落	石の値かを記入)								
	波石	質量(t):	(複数の合計か最大落	石の値かを記入)								
	洛口	推定落石エネルギー (kJ)	約 3,739.7kJ									
	落石の停止位置	防護柵内	落石発生源位置									
捕捉・	損傷状況(施工事例では	よ 不要)	1	:								
		□無(落石貫通 ·	飛び越え ・ 下	部すり抜け ・その他								
	捕捉の有無	()										
		☑有										
	担伤心问	ネットの塑性変形と支柱	E基礎部の調整モルタル	~にクラックの発生が見								
	損 惕 认 优	られた。										
	支柱		金網	一部塑性								
	ロープ		その他の部位	ブレーキリング								
		☑補修										
	補修・補強・更新状況	□補強										
		□更新										
	損傷理由/コメント	ブレーキリングの作動と	リングネットの塑性変	形が見受けられるため								
		一部交換。また、支柱基礎	遊部の調整モルタルに?	クラック発生のため補修。								
<施工	・捕捉・損傷 状況>											
		2		EREK I								
			A VEEFFF									
	La contraction of the second sec			リングネット防護柵 (RX-200) 100日								
	會通過四 正闻(平闻)凶											

表 4.3.2(8) 捕捉·損傷等事例 (8)

No.	8	防護網 ・ (防護柵)	事例種別	施工 · (捕捉) · (損傷)	
	-	施工年度:平成14年度	工法(整理記号):	: E	
落石	防護工情報	型式:ネット強化型防	護 ネットサイズ:		
		柵	横ロープ間隔:		
設計	条件				
	質量(t)		高さ(m)		
	落石エネルギー(kJ)	kJ			
落石	状況(施工事例では不要))			
	落石年(度)	平成 16 年	1		
		体積(m ³):	(複数の合計か最大落石	「の値かを記入)	
	落石	 〔量(t): 【 (複数の合計か最大落石の値かを記入) 			
		推定落石エネルギー	2.100kT		
		(kJ)		1	
	落石の停止位置	防護柵内	落石発生源位置		
捕捉	・損傷状況 (施工事例で				
		□ 無(洛石貫通 ·	飛び越え ・ ト	部すり抜け ・その他	
	捕捉の有無				
		☑ 有			
	損傷状況 土社	一部文仕損傷			
	文仕	一部損傷	金網		
		口法收	その他の部位		
	 	⊻佣修			
	補修・補強・文利仏仏	□佣烛			
<施	「頃陽埕山/ニノシント				
[<u>`</u>					
ł					
ļ					
l					
ŀ					
l					
ľ					
ł					
l					
ŀ					
li					
ľ	断面図		正面	(平面)図	

表 4.3.2(9) 捕捉·損傷等事例 (9)

No.	9	防護網・ 🕼	方護柵)	事例種別	施工(捕捉)損傷
		施工年度:平成	19年度	工 法 (整理記号)	: E
落石	防護工情報	型式:ネット強イ	上型防護	柵 ネットサイズ : 高さ 横ロープ間隔 :	3. $0 \text{m} \times 40.0 \text{m}$
設計	条件				
	質量(t)			高さ(m)	
	落石エネルギー(kJ)	kJ			
落石	状況(施工事例では不要)				
	落石年(度)	平成 19 年			
		体積(m ³):		(複数の合計か最大落石	石の値かを記入)
	茲石	_ 質量(t):		0.1 t	
		推定落石エネ	ルギー	kТ	
		(kJ)			
	落石の停止位置	防護柵内		落石発生源位置	
捕捉	・損傷状況(施工事例では	は不要)			
	捕捉の有無	□無(落石貫通	 飛び 	「越え ・ 下部すり抜け	ナ・その他(
		⊿有			
	損傷状況	なし			
	支柱			 全網	
	又任			- 並 州 その他の部位	
		□補修		고미대(이 전) 이 이	
	補修・補強・更新状況	口補強			
		□Ⅲ五			
		生中的な降雨に	より流出	した土砂を捕捉した。捕	捕捉した土砂除去後の再確
	損傷理由/コメント	認の結果、交換	等の必要	に生めと加えてい。加	
<施		1			
!			! [[-		
ļ					
1			! !		
į					
1					
1					
1					
1					
į					
1					
!	断面図			正面(平面	町) 図
li					

表 4.3.2(10) 捕捉·損傷等事例 (10)

No.	10	防護網	・(防護柵)	事例種別	施工·(捕捉):	損傷
		施工年度:	平成 19 年度	工 法 (整理記号)	: E	
落石	防護工情報	刑式・ネッ	ト曲化刑防護	柵 ネットサイズ : 高さ	3.0m×長さ40.0m	
		主共・イク	的跟旧主的硬	™ 横ロープ間隔:		
設計	条件					
	質量(t)			高さ(m)		
	落石エネルギー(kJ)	1,500kJ				
落石	状況(施工事例では不要)					
	落石年(度)	平成 20 年		I		
		体積(m ³):				
	落石	質量(t):		約 0.07 t (最大落石 ([*]	複数落石有))	
		推定落石	エネルギー	19k T		
		(kJ)				
	落石の停止位置	防護柵内		落石発生源位置		
捕捉	・損傷状況(施工事例では	は不要)				
	捕捉の有無	□無(落石)	貫通 ・ 飛び	「越え ・ 下部すり抜け	ナ・その他()
		☑有				
	損傷状況	なし				
	支柱			金網		
	ロープ			 その他の部位		
		□補修			1	
	補修・補強・更新状況	□補強				
		□更新				
	損傷理由/コメント	落石撤去0)みで補修の必	、要はなかった。		
<施	エ・捕捉・損傷 状況>					
!]
						1
i						!
ļ						1
						1
!						1
						1
i I						1
						1
	断面図			正面(平面	面) 図	!

表 4.3.2(11) 捕捉·損傷等事例 (11)

					0	
No.	11	防護網	・(防護柵)	事例種別	施工・(捕捉)・	損傷
		施工年度	:平成 19 年度	工 法 (整理記号)):E	
落石	防護工情報	型式:ネッ	ト強化型防護	柵 ネットサイズ:高 横ロープ間隔:	さ5.0m×長さ24.0m	
設計	条件			·		
	質量(t)			高さ(m)		
	落石エネルギー(kJ)	1, 204kJ				
落石	状況(施工事例では不要)					
	落石年(度)	平成				
		体積(m ³):		(複数の合計か最大落	石の値かを記入)	
	歩て	質量 :t		5 t		
	洛口	推定落石	エネルギー	1 000LT		
		(kJ)		1, 962KJ		
	落石の停止位置	防護柵内		落石発生源位置		
捕捉	・損傷状況(施工事例では	は不要)				
	捕捉の右無	□無(落石	貫通 ・ 飛び	「越え ・ 下部すり抜	け・その他()
	1用1007月 無	☑有				
	損傷状況	なし				
	支柱			金網		
	ロープ			その他の部位		
		□補修				
	補修・補強・更新状況	□補強				
		□更新				
	損傷理由/コメント	なし				
<施:	エ・捕捉・損傷 状況>					
\backslash	1×78-1-87888			4 te		
	C C C C C C C C C C C C C C C C C C C			4+ 0 0+ 0+	O ROMAN	_
					I by (AU)	`
	\frown					
	\setminus	N010-10.00		10-10-10 K	A Contraction of the second se	
	//					
				0.00		
			121- 12 122- 8			
	2000 1.5 2000 - 2000 200 - 2000					'
		V	14.19		All and a second se	
	4110 12 4110 11 4110 11 411			. In	and the second s	·.
	断面図			断	面図	

表 4.3.2(12) 捕捉·損傷等事例 (12)

No.	1 2	防護網	・(防護柵)	事例種別	施工 🤆 捕捉 🔪 損傷 🗋
		施工年度:	平成 20 年度	工 法 (整理記号	H): E
落石	防護工情報	型式:ネッ	卜強化型防護 權	■ ネットサイズ:高 横ロープ間隔:	Gさ4.0m×長さ65.0m
設計	条件				
	質量(t)		-	高さ(m)	
	落石エネルギー(kJ)	1,439kJ			
落石	状況 (施工事例では不要)				
	落石年(度)	平成 24 年			
		体積(m ³):		(複数の合計か最大家	落石の値かを記入)
	→± ⁺ → -	質量(t):	;	約 2.3t	
	洛石	推定落石 (kJ)	エネルギー	60kJ	
	落石の停止位置	防護柵内		落石発生源位置	
捕捉	・損傷状況(施工事例では	なで要)	I		:
	捕捉の有無	□無(落石) ☑有	貫通・飛び	越え ・ 下部すり打	友け・その他()
	損傷状況	なし			
	支柱			金網	
	ロープ			その他の部位	
	補修・補強・更新状況	□補修□補強□更新	·		
	損傷理由/コメント				
<施 : 	エ・捕捉・損傷 状況> - <u>リングネット間</u> RX-150,H=4.0m -H= 33	and and a start of the start of		RX-150,H=2 220.96	221.23 221.23
1	断面図				新面図

表 4.3.2(13) 捕捉·損傷等事例 (13)

No.	1 3	防護網 •	(防護柵)	事例	種別	施工	(捕捉	\mathbf{X}	損傷
		施工年度:	平成 23 年度	工法(整理記号):	F		$ \sim$	
落石	防護工情報	刑式・ネット	、油化刑防灌	神 ネットサ	イズ:高さ3	$3.0\mathrm{m}\times$	長さ 89.	0m	
		主共・十ノイ	瓜土的砖		間隔:				
設計	条件								
	質量(t)			高さ(m)					
	落石エネルギー(kJ)	98.0kJ							
落石:	状況(施工事例では不要)								
	落石年(度)	平成 25 年							
		体積(m ³):		2.16 m³					
	波石	質量:t		5.6 t					
	1471	推定落石コ	ニネルギー	2201-T					
		(kJ)		230KJ					
	落石の停止位置	防護柵内		落石発生源位	立置				
捕捉	・損傷状況(施工事例でに	は不要)							
	は捉の方無	□無(落石貫	通 ・ 飛び	越え ・ 下	部すり抜け	・その他	<u>担</u> ()
	1用1007月 册	☑有							
	損傷状況	ヘリックススフ゜リンク	『の損傷が見	られた					
	支柱			 全網					
	又任			正的	<u> </u>				
		□			1/.				
	浦修• 浦础• 再新带沪								
	而医。而强。又利扒沉	口田祇							
		「三文初」	カフリン ーソ(1 75	m) $M \wedge \parallel w h 7 7 7$	1° 11/ガ9 偽司	そのな協	を西す	z ·	ブレ
	指復理由/コメント	又仕上前/ V "/ V / V (1.75m) V / V / A / A / V / A							
	1月 房 生 ロ/ コ / ン ト	「リンジ」	ク下動も先ら		I住反 C のり、	、又按"	ノ心女は	1 L V	・こ十小
/協・									
< / ™-	工"佣捉"很易 认儿/								
	X			EFFFFFFF	++++ FFFFFFF			m	
	⊯323. F#=	. 440	_	(F T		and and	E		TATE
		TXI落石防護柵	4		KBM1 H=325 00			**** ***	
								-	
							FFFT		
DL=323.000		-							
		٩	鉄板			m×8スパン+9m=89m			_
	\checkmark		0		TXI落有防硬伤。C				
	1								
	新史回				亚岛	হ			
1	西国区				一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	山			

表 4.3.2(14) 捕捉·損傷等事例(14)

No.	14	防護網	・「防護柵」	事	例種別	施工	・ 捕捉)・	損傷
		施工年度:	: 平成 20 年度	工法	(整理記号)	G		
落石	防護工情報	型式:ネッ	ト強化型防護	柵 ネット 横口一	サイズ:(柵高 プ間隔・	寄:h=4.	0 m)	
設計	条件			IX.	· tilitei ·			
12381	質量(t)	3. 9(t)	高さ(m)		4 0	(m)	
	落石エネルギー(kJ)	1000(kJ)					
落石	状況(施工事例では不要)							
	落石年(度)	平成××年	Ē.					
		体積(m ³):		不明				
	波石	質量:		不明				
	1787 14	推定落石	エネルギー	不明				
		(kJ)		1.6.1.				
	落石の停止位置	防護網内		落石発生	源位置	不明		
捕捉	・損傷状況 (施工事例で)	は不要)						
	やちゃナケー	□無(落>	石貫通・	飛び越	え • 下	部すり	抜け・そ	の他
	捕捉の有無	()					
		■有			+>1			
	損傷状況				<i>/</i> よし			
				~ 網		1		
	又任			金柄	立心			
		□		2071년07	日1717			
	補修• 補础• 再新出识	口補修						
		□而炁						
	損傷理由/コメント							
≪施:	L) 捕捉) 損傷 状況>							
	高エネルギー吸収型落石防止柵 柵高 4.0m							

捕捉状況

表 4.3.2(15) 捕捉·損傷等事例(15)

No.	1 5	防護網	・「防護柵」	事例種別	施工 ・ 捕捉 ・ 損傷			
		施工年度:	平成23年度	工 法 (整理記号):	G			
落石	防護工情報	刑式・ネット	、強ル刑防灌押	ネットサイズ:(柵高	5 : h=4.0 m)			
		至八・イソト	的跟旧空的硬制	横ロープ間隔:				
設計	条件							
	質量(t)	5.8(t)	虐	馬さ(m)	23.1(m)			
	落石エネルギー(kJ)	1000(k	J)					
落石	状況(施工事例では不要)							
	落石年(度)	平成××年						
		体積(m ³):	体積(m ³): 不明					
	落石	質量: 不明						
		推定落石	エネルギー	「明				
		(kJ)			·			
	落石の停止位置	防護網内	溶	客石発生源位置	不明			
捕捉	・損傷状況(施工事例で)	は不要)						
	上や「「「」」、一方面	□ 無 (洛 石		飛び越え ・ 下音	おすり抜け ・その他			
	捕捉の有無)					
		■1		+> 1				
	損傷状況			ふし				
	去壮		Â	~ 公田	1			
	メロープ		 	これの一方である。 こうしょう こうしょう しょうしょう しょう				
		□						
	補修・補強・更新状況	口補強						
		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□						
	 損傷理由/コメント							
√施	工) 铺捉) 損傷 状況>							
				10 M				
				and walking the second	STATE OF			
				and the second	est of the			
				1	Carlin Party			
			4					
			San State	Berlin C				
			17-18 C		Sec Se P			
		-13			Salar P.			
			ANT IN	State State State				
		a state and	The second		Contraction of the			
		四日日期			THE WAY A			
		12 grater	1 11	233				
		A. 19	1		and the second se			
			1. 19 A. 19 A. 27	194 Stall				
	高エネルギー吸収型落石防止柵 柵高 4.0m							

表 4.3.2(16) 捕捉·損傷等事例(16)

No.	16	防護網・防護柵>	事例種別	施工・捕捉・損傷				
		施工年度:平成25年月	王 法(整理記号)	: G				
落石	防護工情報	型式:ネット強化型防護	₩ ネットサイズ:(柵) 横ロープ間隔:	高:h=3.0 m)				
設計	条件	:	L					
	質量(t)	$\times \times (t)$	高さ(m)	$\times \times$ (m)				
	落石エネルギー(kJ)	500(kJ)						
落石	状況(施工事例では不要)							
	落石年(度)	平成××年	P成××年					
		体積(m ³):	不明					
		質量:	不明					
		推定落石エネルギー	不明					
		(kJ)	1.21					
	落石の停止位置	防護網内	落石発生源位置	不明				
捕捉	・損傷状況(施工事例で「	は不要)						
		□無(落石貫通 ·	飛び越え ・ 下	部すり抜け ・その他				
	捕捉の有無	())					
		■有	45.1					
	損傷状況		なし					
			 夕紹	1				
	又任		金柄 その仲の部位					
	補修・補始・更新 状況							
		□無短						
	 損傷理由/コメント							
≪施	T)·(捕捉)·指傷 状況>							
	高エネルギー吸収型落石防止柵 柵高 3.0m							

<施工・捕捉・損傷 状況>

表 4.3.2(17) 捕捉·損傷等事例(17)

No.	17	防護網 ・ 広護柵 /	事例種別	施工・捕捉)損傷			
	L	施工年度:平成21年度	f 工 法 (整理記号):	G			
落石	防護工情報	型式:ネット強化型防護	₩ ネットサイズ:(柵高 柵	長 : h=4.0 m)			
設計	冬仕		傾口 / 间				
ндит	☆11 「「「」」	$\times \times (+)$	高さ(m)	$\times \times (m)$			
	英重(0) 落石エネルギー(kI)	1 0 0 0 (kI)		(m)			
落石	状況(施工事例では不要)						
	落石年(度)	平成××年					
		体積(m ³):	1.0×0.5×0.8程度が4	個			
	波石	質量:	不明				
	俗伯	推定落石エネルギー	不明				
		(kJ)	יןי נפיו:				
	落石の停止位置	防護網内	落石発生源位置	不明			
捕捉	・損傷状況(施工事例で)						
		□無(落石貫通・	飛び越え ・ 下音	部すり抜け ・その他			
	捕捉の有無	() ■ <i>±</i>					
			721				
	損傷状況	₩經術壮器 (~	いし イレーキェレメント)の	作動けなどなし			
		▲	を (エレバシー) () 全網				
	ロープ		その他の部位				
		□補修					
	補修・補強・更新状況						
		□更新					
	損傷理由/コメント						
≪施.	エ・捕捉・損傷 状況>						
		N.					
		\	in the state	A.			
			all the states				
				La.			
		A CONTRACT OF	- NATO I				
		With the second	CALL PROVIDENCE				
		Martin Martin	C ALM AND STREET	57			
		A CONTRACTOR					
		The second second	State Party				
		CONTRACT OF					
	100	The second second					
	Service Frances						
	\•/ \\/ ⊓⁄∂	局エネルギー吸収型落石 たり 15- 位置が引用仕留さ	防止柵 柵高 4.0m				
	※直路より15m 位置が設置位置だが樹木繁茂で外観は視認なし						

表 4.3.2(18) 捕捉·損傷等事例(18)

No.	18	防護網	・防護柵)	事例種別	施工・・捕捉・損傷		
		施工年度	: 平成24年度	モ 工 法 (整理記号	$\left(\frac{1}{7}\right)$: G		
落石	防護工情報	型式:ネ、	ット強化型防護	柵 ネットサイズ:(柵高:h=4.0 m)		
⇒л.⇒I	友山			横口一プ間隔:			
設計	余件 <u> 広</u> 具 (+)	$\times \times (+)$		古 ≻ (…)	$\times \times (m)$		
) 第五エネルギー(hT)	$\times \times (t)$	(1, T)	向 C (m)	× × (m)		
波石	溶石エイルイニ(KJ) 	1000	(KJ)				
1121111	落石年(度)	平成××	年				
		体積(m ³)	:	拳大~人頭大の石が	多数		
	茨乙	質量:		不明			
	俗仙	推定落る	石エネルギー	不明			
		(kJ)		נייוי 1			
	落石の停止位置	防護網内		落石発生源位置	不明		
捕捉	・損傷状況(施工事例で)	は不要)					
	世日の大価	□ 無 (洛	も頁通 ・	飛び越え ・	ト部すり抜け ・その他		
	捕捉の有悪	(■ <i>古</i>)				
		_ ■ 作		721			
	損傷状況		※緩衝装置(フ)	(レーキエレメント)	の作動け殆どたし		
	支柱			金網			
	ロープ			 その他の部位			
		□補修			5		
	補修・補強・更新状況	□補強					
		□更新					
	損傷理由/コメント						
≪施:	エ・・・捕捉・損傷 状況>						
	and when						
	We wat -		1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	e de la			
	and the second			A MARCHINE	and the second s		
			And a star	New TE Cost	23 July 1		
	17230			Elizaber and a			
	and the second s	Sellin (Mar Rea			
		H. Super			Sec. and Sec.		
	a second			A NATION VINDERSON	A line		
	2.00						
	and the second se	- Alarma	A CO COLOR	and the second			
	the the second sec						
	and the second state of the second se						
		a le h	A BALLER	The spin all			
				A CARLES AND	and the second s		
		高エネル	/ギー吸収型落石	防止柵 柵高 4.0m	1999 - Al Constanting of Constanting		

表 4.3.2(19) 捕捉·損傷等事例(19)

No.	19	防護網 ・ 防護柵	事例種別	施工 ・ 捕捉・ 損傷			
		施工年度:平成26年	度 工 法(整理記号)	: G			
落石	防護工情報	型式・ネット強化型防護	神 ネットサイズ:(柵る	新:h=3.0 m)			
- 0 1	te tel		**** 横ロープ間隔:				
設計	条件						
	質量(t) ボエーウィ ド (11)	$\times \times (t)$	局さ(m)	$\times \times (m)$			
オフ	洛石エイルキー(KJ) 	250(kJ)					
洛石	仏仇(旭工争例では个安) 菠石年(座)	亚武文文在					
	俗但牛(皮)	<u> 十成へへ中</u> 休積(m ³)・	d 100 ~ d 300				
		「叶俱(m) · · · · · · · · · · · · · · · · · · ·					
	落石	<u> 推定落石エネルギー</u>	ルギー				
		(kJ)	不明				
	落石の停止位置	防護網内	落石発生源位置	不明			
捕捉	・損傷状況(施工事例で)	ま不要)		·			
		□無(落石貫通 ・	飛び越え ・ 下	部すり抜け ・その他			
	捕捉の有無	()					
		■有					
	損傷状況		なし				
	+++						
	文仕		金網				
		□	ての他の前位				
	補修・補強・更新状況						
		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□					
	損傷理由/コメント						
₩</th <td>エ・捕捉・損傷 状況></td> <td>1</td> <td></td> <td></td>	エ・捕捉・損傷 状況>	1					
		and the second second					
	A series	Contraction of the second					
			and the second second				
	- XCX		Sector A				
	3 28						
		Contraction of the second		N			
	All Carlos		ALL STREET, LANG	11			
	A STATE OF THE OWNER	The second se	Contraction of the second				
	10-10		1. 1. M. 10	16			
	and the second second	高エネルギー吸収刑滅る	5防止柵 柵高 3.0m				
	同一个/レイ一次収定浴口切止情 価尚 3.000						

表 4.3.2(20) 捕捉·損傷等事例(20)

		\frown		\sim				
No.	2 0	(防護網)・ 防護柵	事例種別	施工 · (捕捉) · (損傷)				
		施工年度:平成19年度	工 法 (整理記号)	: H • • •				
落石防護工情報		型式・ポケット式防護網	_A ネットサイズ:(高る	さ10m×長さ15m)				
		主式・ハノノー式的設備	9 横ロープ間隔:2m					
設計	·条件							
	質量(t)	1.0t	高さ(m)	12m				
	落石エネルギー(kJ)	120kJ レベル						
落石	「状況(施工事例では不要)							
	落石年(度)	平成 19 年						
			約3.1m ³ (複数落石のう	ち最大落石)				
	波石	質量(t):	約8.0t(複数落石のうち最大落石)					
	112111	推定落石エネルギー						
		(kJ)						
	落石の停止位置	網裾より上方約 2m	落石発生源位置	網裾より上方約 8m				
捕捉	・損傷状況(施工事例で)	は不要)						
		□無(落石貫通 ・	飛び越え ・ 下	部すり抜け ・その他				
	捕捉の有無	()						
		☑有						
	指復狀況	発破により複数の石(1t	程度以下)を捕捉。衝突	箇所は金網が変形してい				
		<u>た。</u> 想定外の石(8t)が種	「突した箇所は若干の破	網がみられた。				
	支柱		金網	変形・破網				
	ロープ	降伏	その他の部位					
		☑補修						
	補修・補強・更新状況	□補強 金網と,縦ロー	-プの部分的な交換で修	復できる。				
	損傷理由/コメント	想定外の石の衝突により一部金網が破網したが、全ての落石を捕捉した。						
415		洛下局か低いためエネルモーか小さかったと思われる。						
<施	エ・捕捉・損傷 状況>							
	X							
				>				
	R.S.							
	E							
	名 8							
	定落							
	推	離						
	<u>k</u>							
		\backslash						
	断面区		<u> </u>	自図				

表 4.3.2(21) 捕捉·損傷等事例(21)

No.	21	防護網	· 防護柵		事例種別	施工	• 捕捉) 損傷	
101		施工年度	E:平成 22 年度	E I	法(整理記			
落石防護工情報				<u></u> ネ	<u>ットサイズ:</u>	(高さ12m×	<長さ27m)	
		型式:オ	「ケット式防護	網 横	ュープ間隔:	3. Om	,	
設計	条件	1						
	質量(t)	1.3t		高さ(m)	40m		
	落石エネルギー(kJ)	382kJ						
落石	状況(施工事例では不要)	•						
落石年(度) 平成 23 年			年					
		体積(m ³)	体積(m ³):		lm ³ (複数落石)	落石)		
	波石	質量(t):		約1.()t(複数落石の	りうち最大落	落石)	
		推定茲石エネルギー						
		(k])			_			
	落石の停止位置	網裾部		落石列	修生源位置	網裾	より上方約 12m	
捕捉	・損傷状況(施工事例で)	は不要)				1		
		□無(救	客石貫通 ・	飛び	越え・	下部すり	抜け ・その他	
	捕捉の有無	()					
		☑有						
	指 值	風化によ	、る岩盤斜面の	肌落ち。	大小約 10m ³	の落石を捕	i捉した。落石は網	
	顶场1/1/1	裾部まて	「誘導され,溜」	まった薬	客石により網 々	裾が孕みだ	し変形した。	
	支柱			金網			変形	
	ロープ		1	その作	也の部位			
		☑補修	網裾に溜まって	た茨石な	* 排除]	形した全網	を部分的に交換し	
	補修・補強・更新状況							
		□更新						
	損傷理由/コメント	大量の落	る石により網裾:	が孕み変	変形したが、	全ての落石	を捕捉した。落下	
		高が低い	いためエネルギ	ーが小さ	さかったと思	われる。		
<施	エ・捕捉・損傷 状況>							
			/					
				\sim	\sim /			
		/	/					
				577				
		\checkmark						
	「「「「」」「」」「」」「「」」」「「」」」「」」「」」「」」」「」」「」」」「」」」「」」」「」」」「」」」」							
				/				
	断面図				正	面(平面)図		

表 4.3.2(22) 捕捉·損傷等事例(22)

							\sim	\frown		
No.	2 2	(防護網)	・ 防護柵	1	事例種別	施工(捕捉	(損傷)		
		施工年度:	平成 23 年度	I	法(整理記号)	: H	\smile	\smile		
落石	防護工情報	刑式・ポケ	いしず防護約	📓 ネッ	トサイズ:(高	さ 30m×長	さ30m)			
		主人・ハク	ントム的酸素	横口	ープ間隔:3.0	m				
設計	設計条件									
	質量(t)	1.7t		高さ(m)		9. Om				
	落石エネルギー(kJ)	103kJ								
落石										
	落石年(度)	平成 24 年								
		体積(m ³):		約 0.3m	3(最大落石)					
	**	質量(t) :		約 0.8t	(最大落石)					
	洛石	推定落石:	エネルギー							
		(kJ)								
	落石の停止位置	網裾より上	方約 1m	落石発生	生源位置	網裾より) 上方約	55m		
捕捉	・損傷状況(施工事例で)	は不要)								
		□無(落る	「貫通 ・	飛び走	<u> </u>	部すり抜	えけ・	その他		
	捕捉の有無	()							
		☑有								
	損傷状況	第一衝突点	(遷急線付近)と停止(立置の金網に著	干の変形	がみられ	した。		
	支柱			金網			変形	-		
	ロープ			その他の	の部位					
		☑補修				1				
	補修・補強・更新状況	□補強 落	石を排除し,	変形し	た金網を部分的	りに交換し [、]	て修復し	た。		
		□更新								
		第一衝突点	(遷急線付近)におけ	る金網の変形か	「少なかっ」	たので,	何らか		
	損傷理由/コメント	の要因により落石速度が減衰し、エネルギーが小さくなったものと考え								
		られる。					_	-		
<施	エ・捕捉・損傷 状況>									
	<u> </u>									
		_								
		>	T			1>				
		$\sqrt{-1}$	_					<u>ال</u>		
			34 T	$\leq / $						
			11 × 11							
	毛を		* =			and the second				
	*	204 204	ゆ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	E C				and the second		
		30. 0	型		- Committee	and the second	6000	2222		
			1		0000		Altre A	~		
						. 10				
	1	— <u>L</u>	4							
	断面図				断	面図				

表 4.3.2(23) 捕捉·損傷等事例(23)

		\sim			-				
No.	23	「防護網」・	防護柵	事例種別	施工・捕捉 損傷				
		施工年度:平成	は 21 年度	工 法 (整理記号)	: I 💛				
				ネットサイズ:(高さ	×長さ)15m×12m×1 スパ				
落石	防護工情報	型式:ポケッ	ト式防護維	周ン					
				横ロープ間隔:6m					
		製造メーカ(集	製造メーカ(製造番号)東京製綱株式会社						
設計	条件 □-0.3 m×0.4 m>	<0.2 m	1						
	質量(t)	0.1t		高さ(m)	40. Om				
	落石エネルギー(kJ)	24kJ							
落石	状況(施工事例では不要)								
	落石年(度)	平成××年		1					
		体積(m ³):		(複数の合計か最大落	石の値かを記入)				
	茨石	質量:		(複数の合計か最大落	石の値かを記入)				
	14.1	推定落石エネルギー							
		(kJ)							
	落石の停止位置			落石発生源位置					
捕捉	・損傷状況(施工事例でに	は不要)							
	捕捉の右無	■無(落石貫通	通 ・ 飛	び越え ・ 下部すり掛	友け ・その他(雪崩)				
	1用1足021月 無	□有							
	指值出现	最上段横ロープの破断による							
	顶圆状机								
	支柱	損傷な	:L	金網	流下				
	ロープ	流下	-	その他の部位	アンカー健全				
		□補修							
	補修・補強・更新状況	□補強	予定						
		■更新							
	損傷理由/コメント			雪崩による損傷					
<施	エ・捕捉・損傷 状況>								
	A POLICE		Solo		The second				
and and	AN A TELE				the states				
-1-			8 121		A A A A A A A A A A A A A A A A A A A				
	Jun Vielante								
	and for the	53 11019	ASAUL	1/ 563	S ALL OF ALL				
Alla I	可任此教育学习	STATION IN							
1	All Plants		-16 B	1 3 11 11 11 11	A AND A AND A AND A AND				
	and all the the				CALL THINK SALEN				
177		2014							
1	CALLS TO BE			North Andrew Provention	Contraction 1 1/2/201				
			A A	and and and and					
1 and a		A CONTRACTOR OF THE			and the second second				

全景①

全景②

表 4.3.2(24) 捕捉·損傷等事例(24)

No.	24	(防護網) 防護柵	事例種別	施工 ・ 捕捉 【損傷					
		施工年度:平成23年度	工 法 (整理記号):	I					
客石	防護工情報	刑式・ポケット式防護網 ネットサイズ:(18m×111m)							
		主人、小人人工人的设计	空氏: ホクット氏的護柄 横口一プ間隔:6.0m						
計	条件								
	質量(t)	15kN	高さ(m)	40m					
	落石エネルギー(kJ)	350kJ							
石	状況(施工事例では不要)								
	落石年(度)	平成 24 年							
		体積(m ³):	体積(m ³): 200 m~300 m						
	<u> </u>	質量: 約 500t							
	î П ́ ́ ́ ́ ́	推定落石エネルギー 1000kI 以上							
		(kJ)							
	落石の停止位置		落石発生源位置	路面より25m					
抳	・損傷状況(施工事例で)	は不要)							
	捕捉の有無	□無(落石貫通 ・ 飛び	び越え ・ 下部すり抜け	ン ・その他(
		■有							
	損傷状況		従来柵は倒壊						
		カーテ	ンネットは部分的に破損	(下記)					
	支柱	支柱1本破損	金網	一部切断					
	ロープ	一部切断	その他の部位						
		■補修							
	補修・補強・更新状況	□補強 溜まった石の	除去後、補修						
		落石ではなく、想定外の	の岩盤崩壊が原因である。						
	損傷埋田/コメント	従来柵がある部分には、	カーテンネットを法尻る	まで設置していなかった。					
. 16		既設の溶石柵は破壊され	れていたが、カーテンネッ	ットは部分補修で済んだ。					
. 施	エ・捕捉・損傷 状況>								
	\rightarrow								
	and the second se		I.						
				1.00-1					
	X		Hab Hab Hab Hab						
	l l	#							
	Ν								
	"	ſ							
	Ĺ								
	···		+++>6 B\$						
	断面図		断面図						

表 4.3.2(25) 捕捉·損傷等事例(25)

No.	5	防護網	• 防護柵	事例種別	施工 • 捕捉)• 損傷				
		施工年度:	平成 23 年度	工 法 (整理記号)	: I				
落石防護工情報		파나는 구성		』 ネットサイズ:(高	さ12.0m×長さ27.0m)				
		型式:ボケット式防護網		横ロープ間隔:6.0	m				
設計	設計条件								
	質量(KN)	2		高さ(m)	40				
	落石エネルギー(kJ)	80			-				
落石:	状況(施工事例では不要)								
	落石年(度)	平成 26 年							
		体積(m ³):		小規模複数(雪崩誘発	\$)				
	世一	質量:		小規模複数(雪崩誘発	<u>\$</u>)				
	洛白	推定落石	エネルギー						
		(kJ)		小規模					
	落石の停止位置	網尻(健全)	に補足。)	落石発生源位置	40m				
捕捉	・損傷状況(施工事例では	な不要)			-				
		□無(落る	「貫通 ・	飛び越え ・ 下	部すり抜け ・その他				
	捕捉の有無	()							
		■有							
	招作中河	網を吊り下	「げている最上	:段横ロープ用アンカー	が抜けてしまったため、				
	頂篋扒仍	網部が全体的に垂れ下がった。							
	支柱	当初より	の谷に傾斜	金網	全体が垂れ下がり				
	7-70	ý	至7,	その仲の部位	アンカーの抜け(一				
		形	反广	ての可以の方向近	音ß)				
		■補修							
	補修・補強・更新状況	□補強 アンカー金物を再設置し、ネット全体を健全な状態に張り直す。							
		□更新							
		積雪地域用	目の設計であり	、冬季閉鎖期は、最下	段横ロープの取外しを考慮				
	損傷理由/コメント	する設計で	ぎあったが、そ	れがなされていなかっ	た。本年度は2m~3m程				
		度の積雪が	ぶあった模様。	落石よりも、雪荷重に	よる破損と思われる。				
く施工	エ・捕捉・損傷 状況>								
				St Contractor					
l	THE REAL PROPERTY AND A		A COLOR	1412	and the second				
30	AND MARKED	- 1 Ja- 84	1. 50 6		a standard the				
			Control and	R Martin All					
				the Plant					
100	Se Hould	16die	The Star	Alt Contraction	Sec. 4 1-198				
			Mr.						

全景(正面)

全景(横)

表 4.3.2(26) 捕捉·損傷等事例(26)

No.	2 6	(防護網)・ 防護柵	事例種別	施工(捕捉)損傷	
		施工年度:平成26年度	工 法 (整理記号):	J	
落石	防護工情報	刑式・ポケット式防護網	a ネットサイズ:(高さ	15m×長さ26m)	
		主人・ハケクトム防疫権	┫ 横ロープ間隔:		
設計	条件				
	質量(t)	19.4	高さ(m)	40	
	落石エネルギー(kJ)	4, 546			
落石:	状況(施工事例では不要)				
	落石年(度)	平成 27 年			
		体積(m ³):0.57	(最大落石の値)		
	菠乙	質量:1.52t	(最大落石の値)		
	洛口	推定落石エネルギー			
		(kJ)			
	落石の停止位置	金網裾部	落石発生源位置	不明	
捕捉	・損傷状況(施工事例では	な不要)			
	世界の大気	□無(落石貫通 ・ 飛び	「越え ・ 下部すり抜け	・その他()	
	捕捉の有悪	■有			
			損傷なし		
	損傷状況				
	支柱		金網		
	ロープ		その他の部位		
		□補修		1	
	補修・補強・更新状況	□補強			
		□更新			
	損傷理由/コメント	沢部から	らの落石であり落下高さん	は不明。	
<施:	エ・捕捉・損傷 状況>				
			11/100	The second secon	
			MINING		
			31111111111111111111111111111111111111		
		\checkmark			
				105 00 202 44 28 25 202 44 28 25 202 44 28 25 202 44 28 25 202 44 28 25	
			a second	AND	
1			······································	1 4	
	断面図		正面(平)	面) 図	

表 4.3.2(27) 捕捉·損傷等事例(27)

Ma	9.7	(防護網), 防護押	重励适则	施工 (
110.	21	加速相 の 愛加 か 愛加 施工 年度・ 平成 99 年度	→ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	
茲石	防護工情報	旭工干及,干成22干及	ネットサイズ・(高さ	
гагн		型式:ポケット式防護網	周 横口一プ間隔:	IOM A LC IOM
設計	条件			
2261	 昏 量 (t)	2.7	高さ(m)	40
	落石エネルギー(kI)	633		1
客石	状況(施工事例では不要)	1		
	落石年(度)	平成 23 年		
		体積(m ³):12	(複数の合計)	
		質量: 31.8t	(複数の合計)	
	洛石	推定落石エネルギー		
		(kJ)	个明	
	落石の停止位置	金網裾部	落石発生源位置	不明
甫捉	・損傷状況(施工事例で)	は不要)	•	
	世日の古知	□無(落石貫通 ・ 飛び	バ越え ・ 下部すり抜け	・その他()
	捕捉の有悪	■有		
	坦库山河	表層崩壊により金網裾音	阝に約 12 mの崖錐を捕捉	した。衝突時および堆積
	俱砺朳伔	時に金網の一部が変形し	<i>、</i> た。	
	支柱		金網	変形
	ロープ		その 他の 部位	
		■補修 会網相部に 推設	書」た岸錐を樹土するた x	トにロイヤロープを経め
	補修・補強・更新状況	□補強 変形した全網な	した産産を服去するた。 ションのにな換した	リビシュイローンを扱い、
		□更新 ◎ 2000100000000000000000000000000000000		
		設計落石重量以上の崖錐	単が堆積したが金網の変用	彡のみで捕捉した事例で
	損傷理由/コメント	ある。落下高さは不明で	あるが損傷状況より落石	エネルギーは小さいと思
		われる。		
<施	エ・捕捉・損傷 状況>			
				× X)IIII
		\checkmark		
		-		
			- 6 - 6 - 1	
			STE HI	No Maria
	断面図		正面(平面	面)図

表 4.3.2(28) 捕捉·損傷等事例(28)

Na	0.0	に蒲綱	1. 吃蕹抽	重化	动话回		(
10.	20	<u> </u>			/ 敢 珊 宅 旦		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
波云	防灌工桂却	爬工牛皮	:平成 24 年度	上 広	(登理記万 サイブ・(ヨ): J ヨキ 15~,95m	> E. そ 25m)
俗勹	的喪工用報	型式:ポ	ケット式防護網	イソト!	ッイス、(『 プ問隔・	∃C 10°~20Ш	▲★6 20Ⅲ)
設計	冬仳			(供中)	/ 印印令 •		
 民 日	木IT 	12 5		直さ(m)		13.8	
	貝里(U) 波石エネルゼー(LT)	12.0		同C(三)		15.0	
波乙	俗石エイルイ (KJ) 	1008					
俗山	滅石在(庶)	亚成 94 名	Ē.				
			· 1 94	(複数の合	≣+)		
		暦量・3	3+	(複数の合	±+)		
	落石	<u>員重.0</u> 推定菠	<u>の</u> 石 T ネ ル ギ ー		HI/		
				—			
	蒸石の停止位置	全網裙部		茨石登生派	「位置	不明	
捕捉	 ・指復状況(施工事例でに) 	1不要)			비꼬뜨	1.671	
	資源状況で起ニーデバでで	∑□ 無(茨)	石貫通 • 飛び	ド載 え・	下部すり抜	テナ・その他	()
	捕捉の有無	■右			VIC (9441		
		<u>-</u> 1 支柱に 茨	石が衝空し変形	(1) 支柱控	ネのワイキ	アロープにも	衝空しワイヤク
	損傷状況	ノーに招	一部緩んだ。金	網裾部で余		が変形した。	
	支柱		変形	全網			変形
	ロープ		緩み	その他の音	R位		
		■補修					
	補修・補強・更新状況	□補強	金網の一部張権	をえとワイキ	ワープの	再緊張を行く	った。支柱は一部
		□Ⅲ五	変形したが落石	「捕捉高さも	っ十分に確	保できるため	り補修せず。
		落石衝突	時に緩衝金具が	ぶスリップし	たことで	金網など負担	日を低減させ金
		網裾部ま	で誘導すること	・が出来た。			
	損傷理由/コメント	落石の一	部が金網裾部カ	ら抜け出た	こが、これに	は金網下端部	と斜面下端の隙
		間が大き	間が大きかったためである。金網を斜面下端まで覆うことで抜け出しは防				で抜け出しは防
		げる。					
<施	エ・捕捉・損傷 状況>	1 -					
	N						
	\sim		-				
	· · · · · · · · · · · · · · · · · · ·	\searrow	-	<u> </u>			
		H					
			T				
		<u></u>	-				
	新面図		I		正面(平面)図	
					ш (ш		

表 4.3.2(29) 捕捉·損傷等事例(29)

							\sim
No.	29	防護網	・(防護柵)	事例種別	施工	(捕捉)	損傷
		施工年度	:平成××年度				
落石	防護工情報	刑式・従い	七形吃苦灌押	ネットサイズ:(柵)	高さ H=2.	5m)	
		空式:從7	木生的硬制	横ロープ間隔:30cr	n		
設計	条件						
	質量(t)			高さ(m)			
	落石エネルギー(kJ)	50kJ レベ	ル				
落石	状況(施工事例では不要)						
	落石年(度)	平成 13 年					
		体積(m ³):	糸	勺0.4m³(複数落石のう	ち最大落	\$ 石)	
	素工	質量(t):	糸	勺1.0t(複数落石のう	ち最大落	石)	
	洛口	推定落石	エネルギー				
		(kJ)					
	落石の停止位置	防護柵内	喜	春石発生源位置	柵基部	より上方線	勺 15m
捕捉	・損傷状況(施工事例で)				•		
		□無(落	石貫通 ・	飛び越え ・ 下	部すり	抜け ・ そ	その他
	捕捉の有無	()				
		☑有					
		中間支柱	は, ウエブが正面	「を向くほどねじれ曲	がって倒	れている。	また,
	損傷状況	ワイヤロー	ープが降伏し、	を網に変形や破網がみ	られる。	端末支柱	が内側
		に倒れ、	索端金具のねじ部	部が破断し抜け落ちて	いる箇所	「もある。	
	支柱	ねじ	れ変形等	2.200	2	変形・破網	l
	ロープ		降伏 そ	その他の部位	索	就當金具破	釿
		口補修	•				
	補修・補強・更新状況	□補強					
		☑更新					
		地震により	の大小 10 個程度	の落石が発生した。	坊護柵の	損傷は激し	いが,
	損傷理由/コメント	全ての落る	石を捕捉した。落	客下高が低いためエネ	ルギーカ	「小さかっ」	たと思
		われる。					
<施	エ・捕捉・損傷 状況>						
			/				
					·×.		1
			·				$\mathcal{I}_{\mathcal{I}}$
					<u> </u>)) =	//
					Î.	しょう	6/
				B		2,00	1//
		r			Z.		$\mathbb{Z}_{\mathbb{Z}}$
	Alle-	Ţ					\leq
J. J							· · · ·
		e E					
	茶石防護柵 (H=2.5m)						
		F	P.		- -		
	, / <u>/</u> / <u>*</u>	Ţ				} 	
1							· · ·
	. 바루 프 다기			त्तर न	<u>स</u> छा		
	町田区			÷(비즈		

表 4.3.2(30) 捕捉·損傷等事例 (30)

No.	3 0	防護網・ 防護柵	事例種別	施工 · 捕捉 損傷
		施工年度:平成××年	度	
落石	防護工情報	型式:従来型ポケットオ	芯防 ネットサイズ : (高	さ10m×長さ60m)
		護網	横ロープ間隔:5m	
設計	条件			
	質量(t)		高さ(m)	
	落石エネルギー(kJ)	100kJ レベル		
落石				
	落石年(度)	平成××年		
		体積(m ³):	不明(複数落石と思われ	13)
	→± ⁺ → -	質量(t):	不明(複数落石と思われ	13)
	洛石	推定落石エネルギー		
		(kJ)		
	落石の停止位置		落石発生源位置	網裾より上方約 21m
甫捉	・損傷状況(施工事例で)	は不要)		
		☑無(落石貫通) · 飛	び越え・ 下部すり抜	け・その他(写真に示す)
	捕捉の有無			
		蒸石の直撃による支柱	の倒れ込み・脱落や支柱	吊ロープの破断がみられ
		品 [1) <u>に</u> (100 0) (1		
損傷状況 ***			防護機能を果たしていた	
		<u> </u>	全網	破網• 変形
	へ止 ワープ	破新•降伏	その他の部位	
			고대다오이	
	浦修• 浦瑞• 雨新州洞			
		□Ⅲ沤		
		■文初 ポケット式波石防護綱	1+ 古壮問 [[[が 3m と 体]]	、ため 波石の直報に上り
	指値理由/コメント	破損する担合が多い	は、又任间隔からIII こ 小V 設計時 - 合除石の調本に	「ため」、俗句の巨手により 「不備があった≻ とも去う
	1月 四四 コノント	11以1月りつ物口が多い。」	以可时, 旭陕石	
ノ佐		04020		
、他	エ・捕捉・損傷 仏沈ノ	/		
			×	
			1/1//2007-	
			- <u>) /// (</u>) - <u>-</u>	
				F31 F3
			FG	
		Ē		
		高		
	<u>超</u>	茶		
	落 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	推		
	2			
				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	「「」」「」」		<u>57</u> r	五図
	[···································			9 K-1

表 4.3.2(31) 捕捉·損傷等事例(31)

No.	3 1	(防護網)・ 防護柵	事例種別	施工 · 捕捉 · 損傷
		施工年度:平成××年月)
落石	防護工情報	型式:従来型防護網	ネットサイズ:(福	寄さ 25m×長さ 60m)
-111	友山		横ローブ間隔:5m	
設計	余件		古たく	
	肖重(t) ガエーネッジ (11)		局さ(m)	
<u>₩</u> →	洛石エネルキー(KJ) 小洞(佐エ東側本はエ亜)			
各石	状況(他上争例では个 要)	파라아도		
洛石午(度)		半成 24 年		*四日年)
		1半傾(m°): 所具(u)	約490m°(複数洛石+ 約1000(複数落石+	- 衣厝朋場/
	落石	<u>肖</u> 重(t): 世	約1000t(複数洛石+	衣僧朋瑗)
		推正洛石エイルキー		
		(KJ)	** 7 ** 4 海 /-> 四	
++1	洛石の停止位直	 + て	洛石充生原位直	町田凶に示う
刊犯	・損傷状況(他工事例で)			$\mathbf{Y} = h \mathbf{k} (\mathbf{x})$
	捕捉の有無	☑ 無(洛石員通・飛び越 □ 有	え・「部すり抜け・	
損傷状況		降雨に起因する表層崩壊	裏+複数落石により約	490m ³ の土砂と落石が作用
		した。覆式落石防護網の	の金網は破網、ワイヤ	ロープも破断し, 原形を留
		めていない。		
	支柱		金網	破網
	ロープ	破断	その他の部位	
		□補修		
	補修・補強・更新状況	□補強		
		☑更新		
		当該現場は海岸線にあり	の岩肌の風化が著しい	ため,想定を超えた崩壊に
	11110月11日/11/21	より損傷が大きかったす	ものと考えられる。	
く施	エ・捕捉・損傷 状況>			
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	20m			
		<u></u>		
			···	
	\		215.0	ロックシェッド
	$\langle \cdot \rangle$			· · · · · · · · · · · · · · · · · · ·
	VL.	<u>U</u>	· ····	. [ ] ]
	断面図		म	<u>-</u> 面図



## 表 4.3.2(32) 捕捉·損傷等事例 (32)

		电 杨叶士 黄豆目	1 七丁 【 甘田 】 出作 】
52		● 予例性別	他上 ( <b></b> 捕捉)(頂傷)
防護工情報	型式:従来型防護柵		
条件			
質量(t)	0.87kN	高さ(m) 40m	
落石エネルギー(kJ)	31. 3kJ		
状況(施工事例では不要)			
落石年(度)	不明		
	体積(m ³ ):	(複数の合計か最大落石	の値かを記入)
波石	質量:	3. 7kN ( $\Box$ 0. 6×0. 6×0.	4×26kN/m^3)
141.11	推定落石エネルギー	15 QLT	
	(kJ)	40. JKJ	
落石の停止位置	対策内部	落石発生源位置	路面より15m
・損傷状況(施工事例では	は不要)		
捕捉の有無	<ul><li>□無(落石貫通 ・ 飛び)</li><li>■有</li></ul>	「越え ・ 下部すり抜け	・その他( )
損傷状況	間隔保	持材の折れ曲がり・金網	の破損
支柱	破損なし	金網	
ロープ	破損なし	その他の部位	
補修・補強・更新状況	<ul> <li>□補修</li> <li>□補強</li> <li>■補強</li> <li>補修はしてない</li> <li>□更新</li> </ul>	)	
損傷理由/コメント	想定していた、可能吸収 め、破損したと考えるが	エネルギーより、落石エ ぶ、すり抜け等は確認され	ネルギーが大きかったた uず、捕捉している。
	Water State       Water State         防護工情報         条件         質量(t)         落石エネルギー(kJ)         状況(施工事例では不要)         落石         落石         落石         落石の停止位置         ・損傷状況(施工事例では         損傷状況         支柱         ロープ         補修・補強・更新状況         損傷理由/コメント         エ・捕捉・損傷 状況>	Drawn Drawn Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker Marker	□ □ □     □ □ □ □     □ □ □ □     □ □ □ □ □       butter     butter     butter     □ □ □     □ □ □ □       butter     butter     □ □ □     □ □ □     □ □ □       butter     □ □ □     □ □ □     □ □ □     □ □ □       a     □ □ □     □ □ □     □ □     □ □       a     □ □     □ □     □ □     □ □       a     □ □     □ □     □ □     □ □       a     □ □     □ □     □ □     □ □       a     □ □     □ □     □ □     □ □       a     □ □     □ □     □ □     □ □       a     □ □     □ □     □ □     □       a     □ □     □     □     □       a     □ □     □     □     □       a     □ □     □     □     □       a     □ □     □     □     □       a     □     □     □     □       a     □     □     □     □       a     □     □     □     □       a     □     □     □     □       a     □     □     □     □       a     □     □     □     □



# 実験による性能照査手法編

#### 1. 概要

近年、高エネルギー吸収型といわれるような様々な落石防護工(落石防護網・柵)が開発され、採用事例 も増えてきている。これら落石防護工の性能(安全性)は、道路交通や人命に直接的に関わるものであること から、想定される落石作用に対して要求される性能が確保されていなければならない。しかしながら、我が 国においてはそれらの性能照査手法に関する統一的な指標がないことから、海外等の事例を参考に開発者独 自の実験や解析に委ねられているのが現状である。このことから、落石防護工として求められる性能を明ら かにするとともに、統一的な性能照査手法を確立することが求められている。

上記背景より、「実験による性能照査手法編」では、落石防護工として求められる性能を示すとともに、高 エネルギー吸収型落石防護網・柵に対して各種工法を横並びで性能比較ができるように標準的な実験的性能 照査手法を示した。

また、各種工法の適用現場における設計落石条件や設置条件等が実験条件と異なることも想定される。こ のような条件の相違に対しても各種工法が要求性能を確保できることを明らかにする必要があることから現 場適用にあたっての留意事項の一例を整理した。

#### 2. 求められる性能と限界状態

落石防護網・柵として求められる性能としては以下のことがあげられる。

① 想定される落石を確実に捕捉できること(捕捉性能)。

② 落石や土砂が堆積したときの撤去、破損したときの部材の取り替え、補修が容易なこと(維持管理性能)。

③耐久性に優れること(耐久性能)。

上記に示した落石防護網・柵として求められる3つの性能のうち、実験による性能照査手法編の実験手法 により確認する性能は捕捉性能であり、性能照査実験終了後には、下記に示すような土工指針等の考え方に 従ってあらかじめ設定した各部材の性能マトリックスに照らして、各構成部材が照査エネルギーに対してど の性能水準にあるかを整理する。

落石防護網・柵を構成する部材の性能1に対する限界状態は、落石による変形・損傷が軽微なものに留ま り構成部材の交換が必要でない限界の状態を設定すればよく、一般的には部材の力学特性が弾性域を超えな い限界の状態を設定すればよい。

落石防護網・柵を構成する部材の性能2に対する限界状態は、一般的には塑性化等を許容する部材のみ塑 性変形等が生じ、その塑性変形等の修復を容易に行い得る限界の状態として設定すればよい。この際、部材 の交換等を含めた損傷に対する修復方法を考慮して設定する必要がある。

落石防護網・柵を構成する部材の性能3に対する限界状態は、一般的には部材の耐力が大きく低下し始める限界の状態として設定すればよいが、設置位置によっては部分的な破断を許容する場合もある。

落石防護網および落石防護柵の性能マトリックスの一例を表2.1および表2.2に示す。

性能水準	阻止面	支柱	ワイヤロープ*2	支柱基礎、アンカー
性能 1	損傷が生じな い、もしくは損 傷が軽微で部材 交換を要しない 限界の状態	力学特性が弾性域 を超えない限界の 状態* ¹	力学特性が弾性域 を超えない限界の 状態	力学特性が弾性域を 超えることなく、支 柱基礎またはアン カーを支持する地盤 の力学特性に大きな 変化が生じない限界 の状態
性能2	損傷の修復を容 易に行いうる限 界の状態	力学特性が弾性域 を超えない限界の 状態 ^{*1}	損傷の修復を容易 に行いうる限界の 状態 ³³	副次的な塑性化に留 まる限界の状態

表2.1 落石防護網の主要構成部材毎の一般的な限界状態(例)

*1: 落石が支柱を直撃したときに損傷や変形が生じるのはやむを得ないが、支柱の損傷が全体系の崩壊等につなが らないとともに、比較的容易に修復が可能でなければならない。

支柱基礎がヒンジの場合には、有意な傾斜を生じないこと。

- *2:緩衝装置を装着した防護網においては、各性能水準に対して各緩衝装置に設定されている変形量・移動量以内 であること。
- *3:例えば、ワイヤロープの締め直し等で復旧が可能な状態であること。

性能水準	阻止面	支柱	ワイヤロープ*2	基礎
性能1	損傷が生じない、 もしくは損傷が軽 微で部材交換を要 しない限界の状態	力学特性が弾性域 を超えない、もし くは有意な傾斜を 生じない限界の状 態 ^{*1}	力学特性が弾性域 を超えない限界の 状態	力学特性が弾性域 を超えることな く、基礎を支持す る地盤の力学特性 に大きな変化が生
性能2	損傷の修復を容易 に行いうる限界の 状態	力学特性が弾性域 を超えない限界の 状態 ^{*1 *1} 損傷の修復を容易 に行いうる限界の 状態 ^{*1 *3}	力学特性が弾性域 を超えない限界の 状態 ^{*3} 損傷の修復を容易 に行いうる限界の 状態 ^{*4}	副次的な塑性化に留まる限界の状態

表2.2 落石防護柵の主要構成部材毎の一般的な限界状態(例)

*1: 落石が支柱を直撃したときに損傷や変形が生じるのはやむを得ないが、支柱の損傷が落石防護柵全体系の崩壊等 につながらないとともに、比較的容易に修復が可能でなければならない。また、支柱基部がヒンジの場合には、有 意な傾斜を生じないこと。

*2:摩擦系の緩衝装置を装着した防護柵においては、性能2に対して許容すべり量以下であること。

*3:支柱に塑性化又は主たるエネルギー吸収を考慮する場合

*4:ワイヤロープに塑性化又は主たるエネルギー吸収を考慮する場合

#### 3. 実験による性能照査手法

本章では、前章2.①の落石の捕捉性能を照査するための標準的な実験的性能照査手法を示す。なお、3.2 供試体寸法以外の項目に関しては、落石防護網、落石防護柵に対して共通事項である。

#### 3.1 重錘衝突方法(実験場)

実験方法(実験場)は下記に示すように各種あるが、重錘の衝突は基本的にはどの実験方法で実施してもよい。

ただし、重錘の衝突速度、入射角が所定の精度で計測されること。

(解説)

重錘衝突方法としては、斜面滑走式(レール式)、斜面転落式、振り子式、水平滑走式(ワイヤ巻き取り装置)、鉛直落下式などがある。実験方法によって重錘衝突位置の衝突精度に違いがある。斜面滑走式(レール 式)、水平滑走式(ワイヤ巻き取り装置)、鉛直落下式などは比較的精度よく目標とする衝突位置に重錘を衝 突させることができるものと思われる。振り子式は、重錘を阻止面衝突前に切り離す必要があるが、目標と する衝突位置に精度よく重錘を衝突させるためには事前のキャリブレーションが重要である。斜面転落式は、 重錘を自由に転落させて行うことから衝突位置に関する再現性の面ではやや難があるが、重錘の回転による 柵の乗り越え等が懸念される形式の性能を確認するためには有効な実験方法と考えられる。また、重錘の衝 突方向が水平方向と鉛直方向とでは重錘衝突時から阻止面の最大変位量に至るまでの位置エネルギーの影響 度が異なることにも注意が必要である。いずれの重錘衝突方法を採用する場合においても、阻止面への重錘 の衝突速度や入射角を精度よく計測することが重要である。

また、実験において、最大変位量に達する前に重錘衝突部分が地面等に衝突した場合には、照査エネルギーの一部が照査対象以外で吸収されることから重錘衝突部分は地面等に接触してはならない。

#### 3.2 供試体寸法

(1)網

供試体は、実物大を標準とする。

スパン数(2本の支柱と網で構成される範囲を1スパンとする)、支柱間隔は任意とする。

(2)柵

供試体は、実物大を標準とする。

3スパン(支柱4本)を標準とする。また、支柱間隔は任意とする。

(解説)

現時点では、小型模型実験結果を基に数値計算等によって実物大供試体の耐衝撃挙動を評価するまでの知見が得られていないと考えられることから、性能照査実験に使用する供試体寸法は実物大を標準とした。

落石防護網の性能照査実験では1スパン(2本の支柱と網で構成される範囲を1スパンとする)、落石防護 柵の性能照査実験では、3スパン(支柱4本)の供試体を使用して重錘衝突実験を実施しているものがほと んどであるが、落石防護柵においても独立した1スパンの供試体で実験を実施しているものもある。

#### 3.3 重錘形状·材料(表面)

重錘形状は多面体を標準とする。

材質はコンクリートを標準とする。

重錘の密度は2,300kg/m³以上3,000kg/m³以下を標準とする。

(解説)

重錘形状としては、球体、立方体、多面体等が考えられるが、球体よりも立方体や多面体の方がワイヤロー プの破断や金網の破網に対しては厳しい載荷条件になると想定される。また欧州における性能認証試験にお いては多面体が使用されている(海外における性能照査実験の重錘形状は本編3.1を参照)。これらのことか ら、重錘形状に関しては多面体を標準とした。

重錘の材料は、コンクリート製が一般的であるが、鋼製を用いている事例もある。コンクリート製と鋼製 とでは同一の重量でも阻止面への接触面積が大きく異なり、防護工の耐衝撃挙動への影響も考えられること から、材質はコンクリートを標準とした。ただし、エネルギー等価の実験を実施する場合に載荷面積を等し くするために重錘の密度を大きくする場合にはコンクリート以外の材料を使用する場合もある。

#### 3.4 衝突速度

阻止面に接触する直前における重錘の衝突速度は25m/s以上を標準とする。

阻止面衝突直前の速度は、高速度カメラの画像データなどから算出した値を用いる。

ただし、鉛直落下実験の場合は、落下開始位置と阻止面衝突位置の高低差から衝突速度を算出してもよい。 (解説)

阻止面に接触する直前における重錘の衝突速度に関しては、欧州性能認証試験規定速度が25m/s であること、また、落石対策便覧¹に記載されている既往の実験結果(図1-5)において、斜面が長大となって落下高さが40mを超えると、落石速度は一定値(終端速度)に達する傾向にあることが示されており、図1-5より終端速度を計算すると27m/s程度となることなどを踏まえ、衝突速度に関しては25m/s以上を標準とした。

#### 3.5 阻止面と重錘入射方向のなす角度

阻止面に対し垂直を標準とする。

斜めに衝突した場合、垂直成分を入力エネルギーとして評価する。

(解説)

現地における落石衝突を考えると、阻止面に対する落石の入射方向や角度は三次元的に様々な状況である ものと思われる。実験において全ての状況を再現することは困難であること、また、阻止面に対する重錘の 入射角度が浅くなるに従って防護工に入力されるエネルギーが小さくなることが想定されることから、実験 における重錘の入射角度は阻止面に対して垂直を標準とし、斜めに衝突した場合には垂直成分を入力エネル ギーとして評価することとした。

#### 3.6 重錘の回転の影響

入力エネルギーとしては、並進運動エネルギーのみを考慮し回転の影響は考慮しない。 (解説)

斜面転落式等による実験方法を採用した場合には、重錘が回転しながら阻止面に衝突することになるが、 回転エネルギーの大きさが防護工の耐衝撃挙動に及ぼす影響に関する知見が十分にないことから、現時点で は回転の影響は考慮せず、入力エネルギーとしては阻止面衝突時の並進運動エネルギーのみを考慮して性能 評価することとした。

#### 3.7 重錘衝突位置

阻止面に対する重錘衝突位置は、水平方向はスパン中央、鉛直方向は試験を実施する工法の現地設置条件 を踏まえた設計落石作用位置とすることを基本とし、阻止面の鉛直中央高さから設計落石作用位置の間で設 定する。

(解説)

現地での落石防護工の阻止面に対する落石衝突位置は、水平方向は柱間の全ての位置、鉛直方向は地表面 近傍の最下段から現地設置条件を踏まえた設計落石作用位置までが想定される。実験であらゆる衝突位置に 対する防護工の性能を把握することは困難であり、工法の形式により載荷位置の違いに対する性能への影響 度が異なることから、上記衝突位置を基本とした。

## 3.8 計測項目

実験の各段階における主な計測項目を以下に示す。

(実験前データ)

- 重錘重量
- ・防護網・柵の公称高さ
- ・防護網・柵の形状寸法
- ・使用材料のミルシート

(実験データ)

- 衝突直前の重錘速度
- ・阻止面への重錘入射角度
- ・阻止面の最大張出量
- ・各ロープ張力(設計上必要な場合)
- ・画像データ

(実験後データ)

- ・供試体の損傷状況(補修量の目安)
- ・実験後の網・柵高(網・柵高の変化)
- ・緩衝装置の動作状況

(解説)

実験の各段階における主な計測項目を示したが、必要と思われるデータは適宜計測すること。

3.9 評価方法

衝突実験結果は、5章に示す総括表(評価シート)に整理するとともに、構成部材の限界状態に照らして、 構造体として各要求性能を満たす落石エネルギーを導き明示する。詳細は実験報告書としてとりまとめる。 (解説)

実験終了後には、あらかじめ設定した各部材の性能マトリックスに照らして、各構成部材が照査エネルギー に対してどの性能水準にあるか、またそれらを踏まえ構造体としてどの性能水準にあるかを整理する。 なお、実験終了後において部材の損傷状況が想定より軽微な場合であっても明示する落石エネルギーは実験での照査エネルギーを超えてはならない。

#### 4. 現場適用と留意事項

落石防護網・柵の現場適用にあたっては、想定される落石状況や設置箇所の地形等に応じて以下の留意事 項を考慮し適切な設計を行うことが必要である。2章②の維持管理性能に関しては3章の性能照査実験終了 後における防護工の各部材の性能水準に応じて照査を行うこと。③に関しては、防護工が設置される環境に 応じて適宜対応を検討すること。

#### 4.1 設計における配慮事項

- (a)落石の発生頻度が高い区間、落石が連続して発生することが想定されるような現場では、要求性能に応じたロバスト性を有している必要がある(複数回落石に対してエネルギー吸収性能を有すること、落石衝突後に阻止面の傾斜等により阻止面積が初期状態より減少する場合は減少量を考慮した設計を行う等)。
- (b)落下速度の大きい小落石の発生が想定されるような現場では、落石が阻止面を貫通しない性能を有する必要がある。

(c)緩衝装置等を含む構成部材は、錆やクリープなどの経時変化に対する安定性等を有する必要がある。

(d)現場設置時の阻止面高さは、実験における載荷位置と設計上の落石作用位置が一致するよう設定すること を基本とする。

- (e)現地設置箇所の地形状況によっては、落石が阻止面に衝突したのち柵を乗り越え谷側にこぼれ落ちたり、 阻止面下端からすり抜けたりするおそれがあるため、これらを防止するための配慮が必要である。
- (f)落石衝突時または衝突後には阻止面には大きな変形を伴うが、道路側近に設置され路側に余裕のない場合 には、設置条件によっては道路空間の安全性を確保できない(建築限界に支障を及ぼす)ことになること

から、これに配慮する必要がある。

- (g)阻止面をすり抜けた土砂や小落石が道路空間の安全性に影響を及ぼすおそれのある現場では、これを防止 するための配慮が必要である。
- (h)複数スパンから構成される構造に関し、中央部スパンへの衝突実験のみが実施され、端部スパンへの衝突 時の性能が明らかでない場合には、端部スパンに落石が作用しないような配置等を検討する必要がある。
- (i)現地における平面・縦断的配置が直線的にならない場合、エネルギー吸収性能が発揮されないことがある ので配慮が必要である。例えば、支柱強化型落石防護柵などで、柵の平面的配置が山側に凸な場合には、 支柱に落石が直撃して曲がってもワイヤロープは緩む方向となり、ワイヤロープや緩衝装置のエネルギー 吸収量は実験時と異なる場合がある。
- (j)支柱強化型落石防護柵などの支柱が曲げ変形する工法では、設計上最大変形量を算出する場合には支柱の 倒れ分と阻止面のはらみ分を考慮する必要がある。

## 4.2 留意事項-実験と現地条件の違い

(1) 重錘衝突速度

・重錘の衝突速度は25m/s以上を標準としたが、実験実施上の制約から25m/sよりも遅い衝突速度でしか実

験ができない場合も想定される。現時点での知見からは、重錘の質量調整によるエネルギー等価実験の妥当性が明確でなく、防護柵の種類によって異なると考えられるため低速度での実験結果を25m/sの実験結果へ一律に補正することは困難である。性能検証実験は本編3.2.3のように厳しい衝突条件で行われるべきであり、25m/s 未満の重錘衝突速度を採用する場合にはその速度を適用現場における落石の適用最大速度とすることが適切であるものと考えられる。

#### (2)構造条件--寸法

- ・落石防護網では、基本的に設置面積の大きい方が、エネルギー吸収性能は大きくなるものと考えられることから、現地における設置延長および高さは実験供試体以上とする。ただし、落石作用時の変形量が大きくなる場合もあることから、設置条件によっては留意する必要がある。
- ・落石防護柵では実験供試体の延長を現地における最小設置延長とする。また、落石想定範囲におけるスパン長は、実験供試体の中央部スパン長とし、端部スパン長については、実験時の端部スパン長以上とする。
   ただし、落石作用時の変形量が大きくなる場合もあることから、設置条件によっては留意する必要がある。
- ・落石防護柵では、実験時と異なる寸法(高さ・支柱間隔等)とする場合は、設計条件において性能が確保 されることを複数の実験結果との比較検証により信頼性を担保された解析等により示す必要がある。
- (3)構造条件-材料
- ・実験時と異なる構造部材(支柱・ワイヤロープ・ブレーキ装置・金網)を用いる場合は、それぞれに対し 部材性能を示す必要がある。ただし、その部材が構造全体のエネルギー吸収性能や耐荷力に影響を及ぼす と考えられる場合(例えば、緩衝装置や固定治具等)には、それらの部材を組み込んだ全体構造試験体で 再度性能照査実験を実施する必要がある。

#### (4) 載荷位置

- ・現地では阻止面の様々な位置に落石が衝突することが想定されることから、載荷位置が異なる場合のエネ ルギー吸収性能が示されている必要がある。
- ・支柱強化型落石防護柵などの支柱が曲げ変形する工法では、載荷位置が上段でも阻止面に斜めに衝突する 場合や、載荷方向が垂直でも下段に載荷される場合は、上段に垂直に載荷される場合に比べ支柱が曲がり にくく、ワイヤロープと緩衝装置で大きな落石エネルギーを吸収しなければならない場合がある。その場 合には、緩衝装置でのワイヤロープのスリップ量が大きくなり、落石の最大変位が、支柱が曲がる場合よ りも大きくなる場合があることに留意する必要がある。
- ・現場適用時に最大変形量が問題となる場合には、実験時と異なる設計条件に関する最大変形量が適切な方 法で示されている必要がある。

#### (5) 数値解析の適用範囲

実験条件と現場条件の違いに対して数値解析により性能が確保されることを示す場合がある。この場合 には、使用する数値解析は、複数(2つ以上)の実験結果との比較検討により信頼性が担保されているこ とが必要である。また、数値解析が適用できる範囲については、落石の作用位置の違いや構造寸法の違い (最小延長以外)などにとどめるものとする。現時点では、エネルギー吸収性能や耐荷性状に影響を及ぼ す部材の変更、実験条件を上回る入力エネルギーや実験時を上回る衝突速度には解析を適用すべきではな く、それらに対する性能照査は実験での確認を基本とする。

# 5. 評価シート (案)

次頁に評価シート案を示す。

## 参考文献

1) (社)日本道路協会: 落石対策便覧, 2000.6

## 落石防護工性能照査実験 評価シート(案)

実験供試体	
形式(製品名)	
延長	
高さ	
支柱本数	
支柱間隔	
緩衝装置	

実験条件	
実験方式	
重錘形状	
重錘材質	
重錘寸法	
重錘質量	
重錘密度	

#### 供試体形状寸法

(実験概要図、主要部材の規格、写真等)

実験結果	
重錘の衝突速度	
阻止面への重錘入射角度	
衝突時エネルギー	
阻止面の最大張り出し量	
高さの変化	
緩衝装置の動作状況	

損傷状況	
阻止面	
支柱	
ワイヤロープ	
基礎・アンカー	
緩衝装置	
その他	

(損傷写真等)

(その他記載事項)

## 性能照査結果

構成部材	再使用性・修復性			性能水準
阻止面				
支柱				
ワイヤロープ				
基礎・アンカー				
緩衝装置				
その他				
全体				
		性能	要求性能を満た	す落石エネルギー
		1		
		2		

# 資料編

## 1. 落石跳躍量の予測方法

#### 1.1 はじめに

落石防護施設における落石の作用高さは、落石の衝突位置によって決定されることから、落石跳躍量の予 測が重要である。「落石対策便覧¹⁾」では、軌跡の最大跳躍量を採用するとしており、最大跳躍量hは、図1.1.1 に示すように定義されているが、「最大跳躍量が一般的な斜面形状の場合には落石の形状によらず、ほとんど が 2m以下であるが、斜面に突起があるとこれを超える」としている。また、「凹凸の少ない斜面では跳躍量 が 2mを超えることは少ないが、斜面上に局部的な突起のある場合や凹凸の多い斜面では、跳躍量は 2m以上 になることがあり、4~5mに達する場合もある」としている。「落石対策工の設計法と計算例²⁾」では、斜面 勾配が急変する場合や突起が大きい場合などで斜面からの跳躍量の測定方法に不明瞭さ ( $h \ge h$ の設定方法) があるという指摘 (図1.1.2) や、跳躍量を小さく設定したために防護柵を飛び越えた事例などが報告されて いる (図1.1.3)。「勘田ら³」は、一般的に平坦な斜面における跳躍量の予測方法を提案しているが限定的で ある。そこで、図1.1.2 に示すような特に問題となる遷急点(下部斜面が上部斜面より急な場合の地形変化 点)を有する斜面において、全体的に比較的凹凸が多い斜面(以下では凹凸斜面と称する)と全体的に比較 的平坦な斜面(以下では平坦斜面と称する)の斜面評価を考慮に入れて、落石と斜面の位置関係を物理的に 把握し、軌跡として跳躍量を予測する「勘田ら⁴」の方法を示す。



図1.1.1 落石軌跡の模式図







図1.1.3 防護柵を飛び越えた事例

## 1.2 基本的な方針

落石の運動形態は、図1.2.1に示すように線運動(滑り運動+回転運動)と跳躍運動とこれに伴う衝突運動 に分けられる。また、図1.2.2に示すように遷急点から跳躍する場合の軌跡は、飛び出し角度と飛び出し速 度が推定できれば求めることができる。

跳躍量を的確に予測するために斜面形状と落石の運動形態を考慮して4ケースを設定した。まず、遷急点 より上部斜面の落石運動が線運動の場合を CaseA とする。線運動の場合で遷急点に到達した落石が斜面接線 方向に飛び出す場合を CaseA-1 とし、斜面勾配と異なる飛び出し角度が予測できる場合を CaseA-2 とする。ま た、遷急点より上部斜面の落石運動が跳躍運動となる場合を CaseB とする。跳躍運動の場合で飛び出す位置 が平均斜面勾配である場合を CaseB-1、斜面平均勾配より緩斜面の場合を CaseB-2 とする。跳躍した落石が緩 斜面に衝突し飛び出す場合には、反射角度が大きくなることから飛び出し角度が小さくなったり、上向きに なったりして跳躍量が大きくなる場合があるため、CaseB-2 の検討が必要となる。また、実務における活用を 促進するため、それぞれに計算例を添付した。



図 1.2.1 落石運動の概念図



#### 1.3 線運動の場合 (CaseA)

#### 1.3.1 飛び出し角度が斜面勾配の場合(CaseA-1)

上部斜面が比較的平坦で緩斜面であれば、線運動で遷急点まで到達し、斜面接線方向に飛び出すと考えられる。 軌跡は放物線となる。

(1) 飛び出し角度

飛び出し角度βは、上部斜面勾配θと同一とする。

(2)飛び出し速度

落石対策便覧の速度算定式から遷急点から飛び出す落石の速度 Viを求める。

 $V_{I} = \sqrt{2g(1 - \mu/\tan\theta_{I})H} \quad \cdots \quad \mathbf{t}(1, 3, 1)$ 

ここで、 *θ*:上部斜面の平均斜面勾配、 *μ*:等価摩擦係数、*H*:発生源から遷急点に至るまでの高さである。 (3) 算定方法

座標値(x, y)設定し、防護工の衝突位置を仮定する。飛び出し位置から到達時間 t における落石の座標(x, y) 及び落下速度水平成分 V_xと落下速度鉛直成分 V_yは、以下のように表すことができる。ここで、β=θ_iである。 なお、座標値の原点は、飛び出し位置における落石中心とする。

$t = \frac{x}{V_I \cos \beta}$	・・・・式(1.3.2)
$x = V_I \cos \beta \cdot t$	・・・・式(1.3.3)
$y = 1/2gt^2 + V_I \sin\beta \cdot t$	・・・・式(1.3.4)
$V_x = V_1 \cos \beta$	・・・・式(1.3.5)
$V_y = gt + V_1 \sin \beta$	・・・・式(1.3.6)

飛び出し位置からの衝突位置までの水平距離(*x*)を仮定することで、(式1.3.2)より到達時間 *t* が求められる。また、(式1.3.2)を(式1.3.4)に代入することにより、下向きを正として跳躍の軌跡式を導くことができる。

防護工との衝突位置の速度 V2は、

また、衝突速度から線速度エネルギーを求めることも可能である。 (4)計算例 A-1 図1.3.1 に示すように上部斜面勾配 θ=30°、等価摩擦係数 μ=0.35、落下高さ H=20m、落石形状 φ 0.90 m(球体)と仮定し、衝突位置 (x、y)を求める。 遷急点からの飛び出し速度

$$V_1 = \sqrt{2 \times 9.807 \times (1 - 0.35/\tan 30) \times 20}$$

=12.429 m/sec

衝突位置(x=17.100m)までの到達時間

$$t = \frac{17.100}{12.429 \times \cos 30} = 1.589 \text{ sec}$$

衝突位置のy座標

$$y = 9.807 \times 1.589^2 / 2 + 12.429 \times \sin 30 \times 1.589$$

$$= 22.256 \text{ m}$$

軌跡式

$$y = \frac{9.807}{2 \times 12.429^2 \times \cos^2 30} x^2 + \tan 30 \times x$$
$$= 0.0423 x^2 + 0.577 x$$

衝突位置の速度

 $V_x = 12.429 \times \cos 30 = 10.764$  m/sec  $V_y = 9.807 \times 1.589 + 12.429 \times \sin 30 = 21.798$  m/sec

$$V_2 = \sqrt{10.764^2 + 21.798^2} = 24.311 \text{ m/sec}$$



図 1.3.1 計算例 A-1 の条件と軌跡

## 1.3.2 飛び出し角度が斜面勾配と異なる場合

図1.3.2に示すように遷急点付近に凹凸や突起等があり、飛び出し角度が予測できる場合がある。

## (1) 飛び出し角度

飛び出し角度βは、遷急点位置の斜面勾配と同一とする。

## (2)飛び出し速度

落石対策便覧の速度算定式から飛び出し速度を求める。

CaseA-1と同様に求められる。

## ③算定方法

CaseA-1と同様に求められる。

## (4)計算例 A-2

図 1.3.2 に示すように飛び出し角度 β=0°、上部斜面勾配 θ_l=30°、等価摩擦係数 μ=035、落下高さ H=20m、 落石形状 φ 0.90m(球体)と仮定し、衝突位置 (x, y)を求める。 遷急点からの飛び出し速度

$$V_1 = \sqrt{2 \times 9.807 \times (1 - 0.35/\tan 30) \times 20} = 12.429$$
 m/sec

衝突位置(x=17321m)までの到達時間

$$t = \frac{17.321}{12.429 \times \cos 0} = 1.394 \text{ sec}$$

衝突位置のy座標

$$y = 9.807 \times 1.394^2 / 2 + 12.429 \times \sin 0 \times 1.394 = 9.529$$
 m

衝突位置(x=17.321 m, y=9.529 m) 軌跡式

$$y = \frac{9.807}{2 \times 12.429^2 \times \cos^2 0} x^2 + \tan 0 \times x$$
$$= 0.0317 x^2$$

衝突位置の速度

$$V_x = 12.429 \text{ m/sec}$$
  
 $V_y = 9.807 \times 1.394 + 12.429 \times \sin 0 = 13.671 \text{ m/sec}$ 

 $V_2 = \sqrt{12.429^2 + 13.671^2} = 18.476$  m/sec



図 1.3.2 計算例 A-2 の条件と軌跡

#### 1.4 跳躍運動の場合 (CaseB)

上部斜面が急勾配や岩盤斜面、凹凸斜面の場合では、跳躍運動となる可能性が高い。遷急点付近で衝突し、 飛び出すと仮定する。この場合、入射角度を仮定して反射角度から飛び出し角度を推定する必要がある。実 斜面による落石シミュレーションの実績^{2,3}から入射角度を推定する。落石シミュレーションの実斜面軌跡 図を示す。図1.4.1~図1.4.3は凹凸斜面の例、図1.4.4~図1.4.6は平坦斜面の例である。

#### 1.4.1 入射角度の推定

#### (1) 凹凸斜面の場合

図 1.4.1~図 1.4.3 により、斜面接線方向の最大跳躍距離が約 50m であったため、図 1.4.7 に示すように安全側に配慮して試算条件の最大跳躍距離を 50m と仮定する。試算する条件は、斜面勾配が 35°と 40°、飛び出し速度は、15 m/sec と 20 m/sec、25 m/sec の 3 ケースで行う。水平からの入射角度は、図 1.4.7 に示すように斜面勾配が 35°の場合では 465°~58.6°、斜面勾配が 40°の場合では、50.0°~59.3°である。したがって、安全側として 60°と仮定する。

#### (2) 平坦斜面の場合

最大跳躍距離は、図1.4.4~図1.4.6に示すよう凹凸斜面の半分程度となり、20~30mと仮定する。試算する斜面勾配と飛び出し速度の条件は、凹凸斜面と同様とする。同様の試算の結果、水平からの入射角度は、 斜面勾配が35°の場合では44.7°~52.6°、斜面勾配が40°の場合では43.0°~51.0°となり、安全側として55°と仮定する。






図 1.4.5 平坦斜面の軌跡例(2)

図 1.4.6 平坦斜面の軌跡例(3)





## 1.4.2 飛び出し位置が平均斜面勾配の場合(CaseB-1)

### (1) 飛び出し角度

反射角度は、入射角度が既知であれば衝突時の反発係数で決定される。反発係数は、「勘田ら³」より表1.4.1 に示すように既往の落石実験から落石条件ごとに表すことができる。入射角度と反射角度の関係を表 1.4.2 に示す。表1.4.1と表1.4.2で求められる反射角度から飛び出し角度が決定される。

条件番号	条件①	条件②	条件③	条件④
斜面土質	岩盤	崖 錐	岩盤	崖 錐
落石重量	10kN 未満	10kN未満	10kN以上	10kN以上
法線反発	054	058	0275	0275
係数:e	(028)	(0.26)	(0.28)	(0.22)
接線反発	058	0.77	0.78	0.78
係数 : ρ	(025)	(0.17)	(0.25)	(0.18)
	園原 A	園原 B	立山有料	田田
出典	(日本道路	(日本道路	道路	中田 (今河十学)
	公団)	公団)	(富山県)	(並(八人子)

表1.4.1 落石条件と反発係数

※平均値(標準偏差)

表1.4.2 入射角度と反射角度

	入射角度: β ₁	反射角度:β2
凹凸斜面	$60^{\circ} -\theta_{I}$	$\tan^{-1}\left(\frac{\tan\beta_1 \cdot e}{2}\right)$
平坦斜面	$55^{\circ} - \theta_I$	$\left( \frac{\rho}{\rho} \right)$

### (2)飛び出し速度

落石対策便覧¹の速度算定式から遷急点に到達した速度を入射速度 V₁として、表 1.4.2 より求めた入射角度と反射角度から飛び出し速度 V₁は(式 1.4.1)で求められる。入射速度 V₁は、(式 1.3.1)から求められる。

$$V_2 = \frac{\rho \cos \beta_1}{\cos \beta_2} V_1 \qquad \cdot \cdot \cdot \cdot ( \pm 1.4.1 )$$

ここで、ρ:接線反発係数、β1:入射角度、β2:反射角度である。

## ③算出方法

**CaseA** と同様に、座標値(x, y)設定し、衝突位置を求める。飛び出し位置から到達時間 t における落石の座標 (x, y) 及び落下速度水平成分  $V_x$ と落下速度鉛直成分  $V_y$ は、以下のように表すことができる。軌跡は放物線となる。

ここで、
$$\beta = \theta_1 - \beta_2$$
である。

$$t = \frac{x}{V_2 \cos \beta}$$
  

$$x = V_2 \cos \beta \cdot t$$
  

$$\cdot \cdot \cdot \cdot \cdot ( \vec{x} \ 1.4.2 )$$
  

$$\cdot \cdot \cdot \cdot \cdot ( \vec{x} \ 1.4.3 )$$

$y=1/2gt^2+V_2\sin\beta\cdot t$	・・・・(式 1.4.4)
$V_x = V_2 \cos \beta$	・・・・・(式 1.4.5)
$V_y = gt + V_2 \sin \beta$	・・・・(式 1.4.6)

飛び出し位置からの衝突位置までの水平距離(x)を仮定することで、(式 1.4.2)より到達時間 t が求められる。また、(式 1.4.4)に(式 1.4.2)式を代入することにより、下向きを正として跳躍の軌跡式を導くことができる。

$$y = \frac{g}{2V_2^2 \cos^2 \beta} x^2 + \tan \beta \cdot x \qquad \cdot \cdot \cdot \cdot ( \ddagger 1.4.7)$$

防護工との衝突位置の速度 V2は、

$$V_2 = \sqrt{V_x^2 + V_y^2}$$
 ・・・・(式 1.4.8)

### (4)計算例 B-1

図1.4.8 に示すように上部斜面勾配 θ_l = 40°、凹凸斜面、表1.4.1 に示した落石条件は条件③(斜面土質: 岩盤、落石重量 10kN以上)、等価摩擦係数 μ=0.15、落下高さ H=30m、落石形状 φ 0.90m(球体)と仮定し、衝 突位置 (x, y)を求める。

遷急点への入射速度

$$V_l = \sqrt{2 \times 9.807 \times (1 - 0.15/\tan 40) \times 30}$$

$$= 21.983 \text{ m/sec}$$

入射角度 β_l=60-40=20° 反射角度

$$\beta_2 = \tan^{-1} \left( \frac{\tan 20 \times 0.275}{0.78} \right) = 7.310^{\circ}$$

遷急点からの反射速度が飛び出し速度となる。

$$V_2 = \frac{0.78 \times \cos 20}{\cos 7.31} \times 21.983 = 16.245 \text{ m/sec}$$

飛び出し角度

$$\beta = 40 - 7.310 = 32.690^{\circ}$$

衝突位置(x=17.032m)までの到達時間

$$t = 17.032/(16 .245 \times \cos 32.69) = 1.246 \sec$$

衝突位置のy座標

$$y = 9.807 \times 1.246^{2}/2 + 16.243 \times \sin 32.69 \times 1.246$$
  
= 18544 m

衝突位置(x=17.032m, y=18.544m)

# 軌跡式





図 1.4.8 計算例 B-1 の条件と軌跡

## 1.4.3 飛び出し位置が緩斜面の場合 (CaseB-2)

落石が急斜面から緩斜面に到達し、衝突し飛び出す場合には、入射速度に対して反射速度は小さくなるが、 反射角度が大きくなるため、飛び出し角度が小さくなったり、上向きになったりして跳躍量が大きくなる場 合がある。

## (1)飛び出し角度

CaseB-1と同様に求められる。

## (2)飛び出し速度

CaseB-1と同様に求められる。

#### (3)算出方法

CaseB-1と同様に求められるが、緩斜面に衝突した場合、図1.4.9に示す計算例B-2のように水平より上向き に飛び出すことがある。上向きの軌跡は、以下のように求められる。

$x = V_2 \cos \beta \cdot t$	・・・・(式 1. 4. 9)
$y = V_2 \sin\beta \cdot t - 1/2gt^2$	・・・・(式 1.4.10
$V_x = V_2 \cos \beta$	・・・・(式1411
$V_y = V_2 \sin \beta - gt$	・・・・・(式 1. 4. 12

$$y = \tan \beta \cdot x - \frac{g}{2V_2^2 \cos^2 \beta} x^2$$
 ... (£ 1.4.13)

最高点に達するまでの時間は、落下速度鉛直成分K=0であることから

$$t_h = \frac{V_2 \sin \beta}{g} \qquad \qquad \cdot \cdot \cdot \cdot \cdot ( \vec{\mathbf{x}} \mathbf{1}, \mathbf{4}, \mathbf{14} \mathbf{4})$$

飛び出し位置から最高点までの高さは、(式1.4.14)を(式1.4.10)に代入して、

$$y_h = \frac{V_2^2 \sin^2 \beta}{2 g}$$
 .... (式1.4.15)

飛び出し位置から最高点までの水平距離は、(式1.4.14)を((式1.4.9)に代入して、

$$x_h = \frac{V_2^2 \sin \beta \cos \beta}{g} \qquad \qquad \cdot \cdot \cdot \cdot ( \pm 1.4.16 )$$

最高点からは、計算例A-2と同様となる。

(4)計算例 B-2

図1.4.9に示すように遷急点位置の緩斜面勾配 θ=0°上部斜面勾配 40°、凹凸斜面、表1.4.1に示した落石 条件は条件③(斜面土質:岩盤、落石重量 10kN以上)、等価摩擦係数 μ=0.15、落下高さ H=30m、落石形状 φ090m(球体)と仮定し、衝突位置 (x, y)を求める。ただし、緩斜面は、平坦とし崖錐とする。 遷急点への入射速度

 $V_1 = \sqrt{2 \times 9.807 \times (1 - 0.15/\tan 40) \times 30}$ 

= 21.983 m/sec

入射角度 β_l=60-0=60° 反射角度

$$\beta_2 = \tan^{-1} \left( \frac{\tan 60 \times 0.275}{0.78} \right) = 31.411^{\circ}$$

遷急点からの反射速度が飛び出し速度となる。

$$V_2 = \frac{0.78 \times \cos 60}{\cos 31.411} \times 21.983 = 10.046 \text{ m/sec}$$

飛び出し角度は、水平面のため反射角度と同一となり、上向きとなる。

 $\beta = 31.411^{\circ}$ 

飛び出し位置から最高点までの高さ

$$y_h = \frac{10.046^2 \times \sin^2 31.411}{2 \times 9.807} = 1.398m$$

飛び出し位置から最高点までの水平距離

$$x_h = \frac{10.046^2 \times \sin 31.411 \times \cos 31.411}{9.807}$$

$$= 4.577 \,\mathrm{m}$$

最高点までの軌跡式

$$y = \tan 31.411 \times x - \frac{9.807}{2 \times 10.046^2 \times \cos^2 31.411} x^2$$

$$= 0.611x - 0.0667x^2$$

最高点の速度

$$V_x = 10.046 \times \cos 31.411 = 8.574 \text{ m/sec}$$

衝突位置(x=17.321m)までの時間

$$t = (17.321 - 4.577)/8.574 = 1.486 \text{ sec}$$

衝突位置のy座標

$$y = 9.807 \times 1.486^{2}/2 - 1.398 = 9.430 \,\mathrm{m}$$

最高点からの軌跡式

$$y = \frac{9.807}{2 \times 8.574^2 \times \cos^2 0} x^2 + \tan 0 \times x$$
$$= 0.0667 x^2$$



図1.4.9 計算例B-2の条件と軌跡

# 1.5 線運動と跳躍運動の判定

「吉田ら⁶」は、線運動から跳躍運動に移行する限界速度が「園原(日本道路公団)」や「甲田(金沢大学)」の落石実験より、崖錐斜面では、3~12 m/sec、岩盤斜面では、0~7 m/secとしている。しかし、限界速度を多

少上回った程度では跳躍量は大きくならない。例えば、計算例A-1では限界速度を超えている可能性があるが、 斜面規模そのものが小さく、CaseB-1の平坦斜面のように20~30 mの跳躍距離に達するとは考えられない。し たがって、斜面勾配にかかわらず平坦斜面で斜面長が小さければ線運動と判断して問題はない。

#### 1.6 凹凸斜面と平坦斜面の判定

凹凸斜面と平坦斜面を明瞭に区分することは困難であるが、図1.4.1~図1.4.3と図1.4.4~図1.4.6で比較で きるように凹凸斜面では、凹凸の度合いは数メートル程度の規模が目安となり、これらが連続すれば凹凸斜 面と判断してよい。また、凹凸斜面も小さな遷急点の連続と見なすことができるため、凹凸部分の急斜面か ら緩斜面へ落下した場合、大きく跳躍する可能性が高くなる。跳躍量の予測にはこのような配慮が重要であ る。

#### 1.7 まとめ

遷急点に着目し、斜面形状を考慮した跳躍量の予測方法が示されたことで、ある程度の精度で比較的容易 に跳躍量を求めることができるため、実務では有効である。また、遷急点が明瞭でないような斜面形状にお いてもこのような手順を応用して予測することが可能であると考えられるため、今後の進展に期待したい。

#### 参考文献

- 1) (社) 日本道路協会: 落石対策便覧, pp.16-20, 2000.6
- 2) (公社)地盤工学会: 落石対策工の設計法と計算例, pp.44-45, 2014.12
- 3) 勘田益男, 荒井克彦: 落石跳躍量予測方法の提案, 日本地すべり学会誌 Vol.49, No.3, pp.129-140, 2012.5
- 4) 勘田益男,中村健太郎,近藤智裕,大家雄太:斜面形状を考慮した落石跳躍量の予測方法の提案,日本地すべり学会誌Vol.52, No.5, pp.247-254, 2015.9
- 5) 勘田益男,荒井克彦 : 長大斜面における落石運動エネルギー推定に必要な等価摩擦係数の提案,日本 地すべり学会誌 Vol.46, No.1, pp.48-53, 2009.5
- 6) 吉田博,右城猛,桝谷浩,藤井智弘:斜面性状を考慮した落石覆工の衝撃荷重の評価,土木学会構造 工学論文集 Vol.37A, pp.1603-1616, 1991 3

## 2. 落石以外の荷重(積雪荷重)

### 2.1 設計荷重

落石防護工を積雪地域に設置する場合の設計荷重は、表 2.1.1 を参考に設置地点の諸条件や構造などに よって適宜考慮する。なお、許容応力度設計法に用いる許容応力度および許容応力度の割増し係数は、「道路 橋示方書・同解説」に準じる。限界状態設計法で設計する場合は、許容応力度法と同等以上の安全を確保で きるよう各限界状態の設計積雪深や安全率を設定することとする。



表2.1.1 基本的な設計荷重¹⁾

#### 2.2 設計積雪深

許容応力度法で設計する場合の設計積雪深は、原則として30年再現確率による年最大積雪深とする2。

## 2.3 積雪の単位重量

積雪の単位重量は、最大積雪深 4.0m までは 3.50kN/m³とし、4.0m を超え 7.0m までは、図 2.3.1 に示すように最大積雪深 7.0m を 4.50kN/m³とした直線補間で求めてよい²⁰。



図 2.3.1 積雪の単位重量と積雪深

## 2.4 積雪地域の設計への配慮

### (1)斜面雪圧

防護柵に斜面雪圧を考慮する場合、斜面からのグライドや除雪車の排雪等による積雪深増加が起こるので、 斜面雪圧を考慮する高さの決定に配慮が必要である。

また、想定以上の作用がワイヤロープに生じ緩衝金具等の機能を低下させることが考えられるので注意が 必要である。

(2)沈降力

控えワイヤ等で支柱を斜面から支える構造の防護工は控えワイヤの沈降力により、支柱が山側に倒れたり、 アンカーの抜けおよびワイヤクリップの抜けが生じやすいので注意が必要である。特に控えワイヤに緩衝金 具等を設置している場合は、前項と同様緩衝金具の機能の低下が生じやすいので注意が必要である。

# (3)防護工の積雪による損傷事例

積雪による防護工の想定される損傷箇所を図2.4.1に示すので、設計の配慮が必要である。





## (4)防護柵のメンテナンス

斜面中腹に防護柵を設置する場合、特に積雪が多く雪崩の発生が頻繁に起こる地域では降雪前に雑草木処 理や調査が行われる。その際作業は人力で行われるため、防護柵がネット型の場合、作業足場が不安定とな り安全確保に対する特段な配慮が必要となる³。このような積雪地域特有なメンテナンスが必要となるので 注意が必要である。

## 参考文献

1) (社)雪センター:集落雪崩対策工事技術指針(案)本編, 1996.2

2) (社) 日本道路協会:道路防雪便覧, pp.48-49, 1990.5

3) 町田敬,松井富栄,町田誠:維持管理による雪崩防止対策,ゆき,No.99, pp.70-73, 2015.6

## 3. 杭基礎の設計法(柵)

### 3.1 杭体の設計

### (1)落石時

落石時の杭体の設計は、工法毎の設計方法に準じる。

## (2)積雪時

杭体の設計は断面力を弾性支承上の梁として解析し、求められた断面力に対して杭体に生じる応力度が許 容応力度以下であることを確認する。

杭体を斜面上に設置する場合の水平地盤反力係数は、斜面の影響を考慮して補正する。

許容応力度および許容応力度の割増し係数は、「道路橋示方書・同解説」に準じる。

## 3.2 根入れ長の決定

根入れ長の決定は、杭体が斜面上に設置されることが多いことから、杭前面の地盤の影響を考慮して決定 することを基本とし、最小根入れ長は3.0mとする。

斜面の影響を考慮して根入れ長を決定する代表的な既存の設計方法を以下に記載する。

①斜面上の深礎杭の水平方向安定度照査(NEXCO 設計要領 H23 年度版)

②遮音壁設計要領の水平方向安定度照査(NEXCO設計要領)

③地すべり鋼管杭設計要領(斜面防災対策技術協会、日本地すべり協会)

ここで、③の根入れ長の決定は半無限長とみなせる長さとしており、他に地盤の降伏・破壊の検討を要求 しているが斜面の場合の具体的な検討方法は明記されていない。

上記設計方法において設置地盤形状または地盤条件に対して柔軟に対応できるのは①の方法である。 地盤の極限支持力に対する水平支持力の安全率を表3.2.1に示す。

検討状態	安全率
落石時	1
積雪時	2

表3.2.1 水平支持力の安全率

積雪時の安全率は積雪地における防護柵支柱基礎の設計方法¹¹および地すべり鋼管杭設計要領を参考にした。

## 参考文献

1) 霜上民生,石平貞夫,下村忠一,山本益人,満田喬,積雪地における防護柵支柱基礎の設計方法,(財) 土木研究センター:土木技術資料,第27巻,第10号,pp.27-32,1985.

## 4. ひし形金網の落石衝突時における回転エネルギーの影響に関する解析的検討事例

#### 4.1 概要

本検討事例では、ひし形金網に回転させた落石を衝突させることにより、その回転エネルギーがひし形金 網に与える影響を把握するために、三次元弾塑性衝撃応答解析を実施した。得られた解析結果と別途実施さ れた実験結果^{1,2}を比較することにより回転エネルギーの影響について検討を行った。なお、本解析にはLS-DYNA³を使用している。

### 4.2 実験概要

図 4.2.1 には、実験装置および試験体の形状寸法 を示している。実験は、H 形鋼で構成される 6m 四方 の鋼製枠内に 3m 間隔で縦横それぞれ 2 本のワイヤ ロープ (18φ)を設置し、ワイヤロープで囲まれる 3m 四方の領域にひし形金網 (3.3m×3.3m)を設置して実 験を行っている。ひし形金網は、素線径を 3 種類 (3.2、 4.0、5.0φ) に変化させている。

写真 4.2.1(a)には、試験体の設置状況(全景)を 示している。各ロープと金網の結合には、写真 4.2.1(b)に示すように素線の一山ごとにU字ボルト を使用して結合している。また、各ロープの交点はク ロスクリップで固定している。各ロープの端部は ターンバックルを介して専用のロードセルと接合さ れており、ピン接合に近い状態となっている。また、 ロードセルは写真 4.2.1(c)に示すように鋼製型枠と ピン接合されている。

実験は、荷吊り用の帯を巻き付けた多面体重錘(質量 300 kg)をトラッククレーンで所定の高さまで吊り上げ自由落下させることにより回転を与えている。実験における測定項目は、ロープの端部に取り付けたロードセルによるロープ張力および高速度カメラ撮影による金網のたわみ量である。なお、本検討事例では、素線径 5mm のひし形金網を対象とし、落下高さ H=20m における全エネルギーに対する回転エネルギーの割合を変化させた全3ケースについて数値解析を実施している。また、図4.2.2 に示すように金網展開方向と金網展開直角方向で縦ロープと横ロープに区別して整理している。











写真4.2.1 試験体の設置状況



### 図4.2.2 ひし形金網の形状と配置方向



### 4.3 数值解析概要

### 4.3.1 解析モデル

数値解析モデルの要素分割状況を図4.3.1に示す。本解析では、ひ し形金網の素線の一山を原寸に基づいて忠実に梁要素で作成し、それ らを連続的に組み合わせることにより、金網全体をモデル化した。そ の他の構成部材に関しては、鋼製型枠を構成しているH形鋼および溝 形鋼は4節点シェル要素、ターンバックルは2節点梁要素、ワイヤ ロープは圧縮力を伝達しない2節点ケーブル要素、重錘およびロード セルは8節点固体要素を用いた。

ひし形金網の素線同士、金網-U字ボルト間および重錘-金網素線 間には、接触および剥離・すべりを伴う接触面(摩擦係数0.4)を定義 した。なお、U字ボルトの締め付けトルクについては考慮せず、U字 ボルトと金網を密着させることで接続している。また、ワイヤロープ とU字ボルトは完全結合としている。境界条件は、実際の実験条件と 同様に鋼製型枠の柱基部を完全固定としている。



4.3.2 材料構成則

図4.3.2(a)には、ワイヤロープに用いた応力--ひずみ関係を示している。ここでは、引張側をトリリニア型とする非線形弾性体モデルを適用した。なお、ワイヤロープの--次弾性係数 El および強度特性(降伏応力および破断強度)は落石対策便覧⁴を参考に決定し、破断ひずみを 5%と仮定し、その後はひずみが増大するように設定した。

図4.3.2(b)には、ひし形金網の応力ーひずみ関係を示している。ここでは、塑性硬化係数Hを弾性係数の 1% とするバイリニア型の等方硬化則を適用した。なお、降伏の判定には von Mises の降伏条件式を採用して

実験	金網展開直角方向	金網展開方向	正面落下角	側面落下角	角速度	速度エネルギー	回転エネルギー	全エネルギー
ケース名	$\delta_x$ (mm)	$\delta_y$ (mm)	α (°)	β (°)	ω (rad/s)	$E_v$ (kJ)	$E_r$ (kJ)	$E_t$ (kJ)
Case1	417	34	160.5	79.1	27.225	49.6	7.4 (0.13)	57.0
Case2	371	0	103.4	69.4	31.414	48.4	9.9 (0.17)	58.3
Case3	115	58	75.2	111.4	23.319	43.6	8.6 (0.17)	52.2

表4.3.1 重錘落下位置および落下角

括弧内の数値は全体エネルギーに対する回転エネルギーの割合を表している.

#### いる。

鋼製型枠、鋼製治具、ターンバックル、U字ボルトおよびクロスクリップに関しては、実験時に塑性化が 生じていないことより、弾性体(弾性係数 E_s=200GPa、ポアソン比 v_s=0.3)と仮定した。また、コンクリー ト重錘に関しても実験では損傷が確認されていないことから弾性体(弾性係数 E_c=20GPa、ポアソン比 v_c= 0.167)と仮定し、所定の質量となるように単位体積質量を換算している。

## 4.3.3 数值解析方法

数値解析では、高速度カメラの撮 影映像の分析より得られた実験時 の重錘衝突速度および角速度を初 速度として重錘に付加することで 載荷している。また、実験における 重錘の落下位置および落下角を可縦ロー 能な限り正確に解析条件に反映さ せている。

**表**4.3.1には、高速度カメラ映像 から得られた重錘落下位置および 落下角を一覧にして示している。図 4.3.3には、表4.3.1に示す重錘落 下位置のずれ量 δx、δy および落下 角α、βの定義を示している。なお、 解析時間は200ms とし、本数値解析



図4.3.3 重錘落下位置および落下角の定義

ではワイヤロープの初期張力、減衰および重力を考慮していない。また、実験では金網設置時に初期たわみ が生じているが、本解析では初期たわみは考慮していない。

### 4.4 数値解析結果および考察

## 4.4.1 金網変形性状

図 4.4.1 には、重錘衝突後における金網の変形状況の一例として、Casel における実験の連続写真と解析 結果を時系列的に比較して示している。なお、本解析では実験における金網設置時の初期たわみを考慮して いないため、金網のたわみが実験と比較して小さく示されており、直接的な比較は難しいものの、金網の全 体の変形状況を概ね再現しているものと考えられる。





 $t = 0 \,\mathrm{ms}$ 





t = 40 ms





 $t = 96 \,\mathrm{ms}$ 





 $t = 140 \,\mathrm{ms}$ 



図 4.4.1 変形状況(Case1)

### 4.4.2 金網たわみ量

図4.4.2 には、金網中央部および最大変位点におけるたわみ量の時刻歴波形を実験結果と解析結果を比較 して示している。なお、黒の破線は過去に報告されている落下高さ H=20m から回転を加えずに自由落下さ せた場合の実験結果¹⁾である。また、時間軸は重錘が金網に衝突した時刻を零としている。

実験結果に着目すると回転エネルギーの有無によって金網のたわみ波形に明確な差は生じていないことが 確認できる。

次に解析結果に着目すると Case2 を除き解析結果は実験結果と比較して最大たわみ量を若干小さく評価していることが分かる。この解析結果と実験結果における最大たわみ量の差は、解析において金網の初期たわみを考慮していないことによる重錘衝突面の形状やそれに起因する接触面積の差異によるものと推察される。 一方、波形の立ち上がり勾配および除荷勾配に関しては、解析結果と実験結果は概ね一致していることが分かる。なお、Case2 に関しては、解析結果に着目すると、実験結果における最大変位点のたわみ量を過小評価していることが分かる。これは、実験において重錘衝突後約 100ms で T-4 ロープが破断したことにより、金網に局所的な変形が生じたことが要因と推察される。

#### 4.4.3 ワイヤロープ張力

図4.4.3 および図4.4.4 には、縦および横ロープ張力の時刻歴波形を実験結果と解析結果を比較して示している。

図 4.4.3 に示す縦ロープ張力の実験結果に着目すると、Case2 を除き回転エネルギーの有無による明確な 差は生じていないことが確認できる。

次に解析結果に着目すると、立ち上がり時刻に差が見られるものの最大値をほぼ適切に再現できているこ とが分かる。一方、作用継続時間に関しては、実験結果より長くなる傾向にあることが分かる。これは、解 析においてロープ初期張力および減衰などを考慮していないためと考えている。

図 4.4.4 に示す横ロープ張力の実験結果に着目すると、最大値は全てのケースでほぼ等しく回転エネル ギーの有無による明確な差は生じていないことが分かる。

次に解析結果に着目すると、実験結果の立ち上がり勾配および最大値と概ね一致していることが確認できる。なお、作用継続時間に関しては縦ロープ同様に実験結果より解析結果は長くなる傾向にあることが確認できる。今後、解析精度をより向上させるためには、金網の初期たわみ、ロープ初期張力および重力を考慮して検討する必要があると思われる。



図4.4.2 たわみ量



図4.4.3 縦ワイヤロープ張力



図4.4.4 横ワイヤロープ張力



#### 4.4.4 各種最大応答

図4.4.5 には、全3ケースにおける金網たわみ量および各ワイヤロープ張力の最大値を、実験結果を横軸 に解析結果を縦軸に取って整理したものであり、図の45°の直線は解析結果と実験結果が等しいことを意味 する。また、黄色の網掛け部分は、誤差が20%以内の領域を示している。

(a)図のたわみに着目すると、金網中央部に関しては、解析結果は実験結果を高い精度で再現できていることが分かる。一方、最大変位点は、解析結果はいずれのケースにおいても実験結果を若干小さく評価する傾向にあるものの、ロープが破断したケースを除き解析結果は実験結果を 20%程度の精度で再現可能である。

(b) 図および(c) 図に示す縦・横ロープ張力に着目すると、解析結果は実験結果を若干大きく評価する傾向 にあるものの、いずれのケースにおいても実験結果を20%程度の誤差範囲内で推定できることが分かる。

#### 4.5 まとめ

本検討事例では、落石防護工に使用するひし形金網を対象に三次元衝撃応答解析を実施した。得られた結果を整理すると以下のようになる。

- 提案の材料構成則および解析手法を用いることで重錘が回転エネルギーを有する場合においても金網のた わみ量および各ロープ張力の立ち上がり勾配および最大値をほぼ適切に再現可能である。
- 2) 金網のたわみ量および各ロープ張力に与える重錘の回転エネルギーの影響は、実験結果と同様に数値解析 においても小さいことを確認した。

#### 参考文献

- 1) 荒木恒也, 今野久志, 西弘明, 佐々木哲也, 小室雅人, 田中優貴: 落石防護網に使用するひし形金網の重 錘落下衝撃実験, 土木学会北海道支部論文報告集, 第72号, A-45(CD-ROM), 2016.
- 2) 今野久志,西弘明,山澤文雄,加藤俊二,内藤直人,小室雅人:ポケット式落石防護網の落石衝突時における回転エネルギーの影響に関する実験的研究,土木学会北海道支部論文報告集,第72号,A-43(CD-ROM),2016.
- 3) Hallquist, J. O. : LS-DYNA Version R8 User's Manual, Livermore Software Technology Corporation, 2016.
- 4) (社) 日本道路協会: 落石対策便覧, 2000.

#### 5. 重錘のリングネットへの衝突に対するエネルギー等価条件下での解析による評価

#### 5.1 解析の背景

高エネルギー型落石防護柵の重錘衝突実験において、実験において性能評価を行なう場合、衝突速度が 25m/s以上とすることが望ましい。(共同研究の成果案)

しかし、衝突方法によっては25m/s以上を確保できない場合がある。こうした条件下では、同等の評価が できるようエネルギー等価条件で実験した場合、保守的な評価になるかどうかの検証を行うため、 解析により比較を行なうこととした。

#### 5.2 解析概要

リングネットを使用した高速飛来物バリアは、各部材の要素試験結果と鋼材の衝突に関する実物大実験に 基づいて、再現性の高い解析モデルを既に確立しているため、これを用いて球体の重錘衝突解析を行った。

当解析に用いた高速飛来物バリアは平面的に正方形で、剛体の架構に四隅(8点)で吊り下げられている 構造で、重錘が直角方向に自由落下で衝突することとした。

落下衝突物(飛来物)である重錘は、代表的なケースとして、球体の剛体とした。

衝突位置はすべてのケースにおいて、ネット面の中央としている。

Case 1 は衝突速度が 25m/s であり、この速度を得ることができないケースとして、Case 2 と Case 3 を比較 ケースとした。

運動エネルギーが等価とするための手段として、質量を大きくするため、Case2 は形状を大きくしたケース、Case3 は密度を大きくしたケースとした。

なお、解析の入力値として設定した衝突エネルギーは、過去に実施した実物大試験の結果を基に本システム で剛体球の捕捉が可能な範囲として、衝突時の運動エネルギーを E=約220kJ とした。

			剛体球		ネット	架構
解析 ケース	球体直径	質量	衝突速度	エネルギー	リングネット*	架構梁 サイズ
	(m)	(kg)	(m/s)	(kJ)		
Case1	0.800	697	25	217.8	1枚	H400
Case2	1.124	1933	15	217.5	1枚	H400
Case3	0.800	1936	15	217.8	1枚	H400

表 5.2.1 解析ケース一覧

※ リングネットは、ROCCO-19/3/300 (3mm の硬鋼線を 300mm の直径で 19 本束ねた形状) また、ネット 面には、中央部が単リング (19 回巻きリング相当モデル)、周辺部が二重リング (19 回巻きリング相当 モデル×2 リング) で構成したモデル。

## 5.3 解析手法と条件

本章で実施する解析は、すべて非線形有限要素法解析コード LS-DYNA (米国 Livermore Software Technology Corporation 社製)を用いて評価した。使用したコードのバージョンは R8.0.0 である。(表 5. 3. 1、 表 5. 3. 2)

表 5.3.1 解析手法

	動的陽解法		
解析手法	3次元モデル解析		
	ラグランジェソリッド要素、	シェル要素、	ビーム要素使用

表5.3.2 使用ソフトウェア一覧

解析コード	LS-DYNA
プリプロセッサー	HyperMesh、 LS-PrePost
ポストプロセッサー	LS-PrePost

## 5.3.1 高強度ネットシステム解析モデル

表5.3.3に、主要部材の解析モデル外形寸法一覧を示す。

衣 5.5.5 土安部州の解析モナル外形引法一	一見
-------------------------	----

*77++		解析条件		
可とう	断面寸法	板厚/外径	外形寸法	要素タイプ
固定用ロープ		φ22mm	φ 22mm —	
フレームド ロープ		φ20mm	φ20mm L=4200mm	
ブレーキリング	GS-8001	_	全体径 $\phi$ 466 締結部幅 50mm	シェル要素 ソリッド要素
シャックル (リングネット用)	Ι	φ22mm	内径 76.4mm	ビーム要素
リングネット	ROCCO 19/3/300	ワイヤ径 3mm ワイヤ 19 巻 径 D300mm	4.0m×4.0m	ビーム要素 (断面径 8.326mm)
ターンバックル	_	φ 32mm	L=932mm 端部内径 50mm	ビーム要素

以下に高速飛来物バリアの解析モデルを示す。(図5.3.1~図5.3.3)







4,200mm





図 5.3.3 解析モデル リングネット部詳細図

## 5.3.2 剛体球諸元

表 5.3.4 に剛体球諸元一覧を示す。図 5.3.4 および図 5.3.5 に剛体球の全体図および断面図を示す。剛体球はソリッド要素とした。

解析ケース 飛手	<b>記Strthm</b>	球体直径	質量	衝突速度	質量密度
	而未初	(m)	(kg)	(m/s)	(ton/m ³ )
Case1	剛体球	0.800	697	25	2.60
Case2	剛体球	1.124	1933	15	2.60
Case3	剛体球	0.800	1936	15	7.22

耒	5	3	4	副体球諸元一	皆
1X	υ.	υ.	т.		륬





## 5.4 解析結果

# 5.4.1 Case1 (リングネット、 剛体球、 m=697kg、 v=25m/s、 中央衝突) 変形図

図5.4.1および図5.4.2に衝突速度25m/sで剛体球がネット中央部に衝突するケースの変形図を示す。



図 5.4.1 剛体球 697kg 衝突速度 25m/s 中央衝突(Case1) 変形図(1/2)



図 5.4.2 剛体球 697kg 衝突速度 25m/s 中央衝突(Case1) 変形図(2/2)

# 5.4.2 相当塑性ひずみ分布図

図5.4.3 および図5.4.4 に相当塑性ひずみ分布図を示す。





剛体球 697kg 衝突速度 25m/s 中央衝突(Case1) 相当塑性ひずみ分布図(2/2) 図 5.4.4

5.4.3 Case2(リングネット、 剛体球、 m=1933kg、 v=15m/s、 中央衝突)変形図 図 5.4.5 および図 5.4.6 に衝突速度 15m/s で剛体球がネット中央部に衝突するケースの変形図を示す。





図 5.4.6 剛体球 1933kg 衝突速度 15m/s 中央衝突(Case2) 変形図(2/2)

# 5.4.4 相当塑性ひずみ分布図

図5.4.7および図5.4.8に相当塑性ひずみ分布図を示す。





5.4.5 Case3(リングネット、 剛体球、 m=1936kg、 v=15m/s、 中央衝突)変形図 図 5.4.9 および図 5.4.10 に衝突速度 15m/s で剛体球がネット中央部に衝突するケースの変形図を示す。





図 5.4.10 剛体球 1936kg 衝突速度 15m/s 中央衝突(Case3) 変形図(2/2)

# 5.4.6 相当塑性ひずみ分布図

図5.4.11 および図5.4.12 に相当塑性ひずみ分布図を示す。





# 5.4.7 フレームドロープ張力

図 5.4.13 にフレームドロープ張力の出力点を示す。出力点位置は、すべての解析ケースにおいて同じである。



図 5.4.13 フレームドロープ張力 出力点位置図

表5.4.1 にフレームドロープ張力の最大値一覧を示す。

図 5.4.14 にフレームドロープ張力の時刻歴グラフを示す。ロープ張力も同様にローパスフィルタ 180Hz を使用して高周波成分を除去して示した。

各ケースにおいて同じ出力点で張力最大値を比較した結果、Case 1 が全ての出力点で最も小さい値となった。

山力占	張力最大值(kN)	張力最大值(kN)	張力最大值(kN)
	Case 1	Case 2	Case 3
K11	43.5	59.6	59.3
K21	44.5	62.1	58.5
K31	58.2	65.9	69.2
K41	52.4	68.4	70.5
K51	47.9	58.9	59.4
K61	38.0	55.3	49.0
K71	62.7	73.1	74.3
K81	50.4	59.9	56.9

表 5.4.1 フレームドロープ張力最大値一覧 Case1、2、3


図 5.4.14 Case1~3 フレームドロープ張力時刻歴

#### 5.4.8 重錘加速度——時間関係

図5.4.15に重錘加速度と時間の関係を示す。



図 5.4.15 Case1~3 重錘加速度—時間関係

#### 5.4.9 ネット変位量時刻歴

図5.4.16にネット変位量の時刻歴グラフを示す。



図 5.4.16 Case1~3 ネット変位量時刻歴 (グラフ y 軸 Z-Displacement = 0.0(m)は、ネット初期たわみ位置を示す。)

#### 5.5 まとめ

リングネットを用いた場合の剛体球落下衝突解析の結果は、以下のとおりである。

- (1) エネルギー等価解析に相当する Case2、Case3 は、フレームドロープ張力ならびに最大衝撃力が概ね同傾向を示したが、8 箇所の接続点全てにおいて、フレームドロープの最大張力は Case1 が最も小さい値となった。
- (2) フレームドロープ張力、最大衝撃力は、Case2、Case3 が同程度、Case1 は Case2、Case3 と比べ 0.8 倍程 度、小さな値を示した。
- (3) ネット変形量は、Case1、Case2 が同程度、Case3 は Case1、Case2 と比べ 1.07 倍程度、大きな値を示した。
- (4) 剛体球衝突箇所における最大衝撃力作用時のネット相当塑性ひずみは、Case1、Case2 が同程度、Case3 は Case1、Case2 と比べ 1.04 倍程度、大きな値を示した。なお、ネット破断ひずみ (4.65%) に対しては、 Case1~Case3 ともに 1.6 倍程度の裕度が確保される結果が得られた。

以上の点を勘案すると、エネルギー等価の速度が異なる衝突ケースの評価として、以下のことが分かった。

- リングネットのような高強度でかつ大きな変形を許容するネットへの鉛直落下衝突の場合、衝撃に対するネットの応答として、時差は生じるが概ね同様の傾向を示す。
- ネットの変形量は速度が小さい方が大きくなる傾向であるが、ワイヤロープを経て架構に作用する力は 全体的に小さくなる傾向がある。そのため、構造自体の衝撃に対する安全性を評価することに対しては、 速度が小さい方が保守的(安全側の評価)となる。

ただし、上記解析結果はあくまでも一事例であり、解析対象の種類や入力エネルギーの大きさ、重錘の衝 突方向によっては上記結果と異なる傾向が示される可能性があることに注意が必要である。検討すべき対象 の諸条件を考慮し、その都度適切な数値解析を実施することが必要であるものと考えられる。

#### 6. 関連論文

	タイトル	著者	概要	出典
1	緩衝具を配置したワイヤネット 工の性能に関する実験的研究	<u>【吉田】</u> <b>吉田博</b> 、澤田 直子、南和 夫、窪田俊男 (1998)	緩衝装置(端緩衝具、クロス緩衝具)への衝撃載荷試験およびこれを ワイヤネットに配した部分模型への衝撃載荷試験を行っている。	第4回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.101- 106,1998.
2	緩衝金具を配置した落石誘導 ワイヤネットシステムの実規模 実験について	澤田直子、 <b>吉</b> 田博、藤井智 弘、窪田潤 平、前川幸次 (2000)	2種類の緩衝装置単体への衝突載荷試験、および高さ10m、幅10mの ネットを支持するロープに緩衝装置を付けた実大規模の模型に対して 斜め70°の入射角で重量49kNの重錐を衝突させる実験を行った。	第5回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.141- 146,2000.
3	緩衝金具を配置した落石誘導 ワイヤネットシステムの実規模 実験について	澤田直子、 <b>吉</b> 田博、藤井智 弘、窪田潤 平、前川幸次 (2000)	2種類の緩衝装置単体への衝突載荷試験、および高さ10m、幅10mの ネットを支持するロープに緩衝装置を付けた実大規模の模型に対して 斜め70°の入射角で重量49kNの重錐を衝突させる実験を行った。	土木学会構造工学論文 集、Vol. 46A, pp.1853- 1864, 2000.3.
4	特殊ひし型金網および緩衝金 具を配置した落石防護網の実 斜面実験について	窪田潤平、中 村浩喜、 <b>吉田</b> <b>博</b> (2008)	特殊ひし形金網・緩衝装置を用いた覆式落石防護網について、金網の 引張試験、緩衝金具の衝撃すべり試験、実斜面における落石実験、お よびLS-DYNAによるシミュレーションの結果を示している。	土木学会構造工学論文 集、Vol. 54A, pp.11-22, 2008.3.
		【前川(金沢大	学)】	
5	実物大モデルを用いた重錘衝 突載荷実験によるポケット式 落石防護網の評価	田島与典、岩 崎征夫、 <b>前川</b> 幸次(2009)	エネルギー吸収装置を装着した高エネルギー吸収型のポケット式落石 防護網の性能を評価することを目的として、実物大モデルを用いた重 錘衝突載荷実験を行っている。	土木学会第64回年次学 術講演会、pp.1133-1134.
6	ポケット式落石防護網の落錘 衝突シミュレーションに関する 研究	河上康太、田 島与典、 <b>前川</b> <b>幸次</b> (2009)	ポケット式落石防護網の落錘衝突実験をLS-DYNA によりシミュレー ション解析を行い、衝突現象を解析上で把握できる解析モデル作りを 目的としている。	土木学会第64回年次学 術講演会、pp.1135-1136.
7	ポケット式落石防護網の落石 衝突シミュレーションに関する 研究	河上康太、田 島与典、 <b>前川</b> <b>幸次</b> (2010)	実物のポケット式落石防護網のモデルを作成し、落石対策便覧に準じ て落石を防護網に対して垂直に衝突させる解析を行い、落石の衝突位 置の違いによる落石の挙動、ポケット式落石防護網の状態及びエネル ギー収支等を考察している。	平成21年度土木学会中 部支部研究発表会講演 概要集、pp.15-16.
8	実物大重錘衝突実験による緩 衝装置を用いたポケット式落 石防護網の評価	田島与典、 <b>前</b> 川 <b>幸次</b> 、岩崎 征夫、河上康 太(2010)	2種類の緩衝装置単体への衝突載荷試験、および高さ10m、幅18mの 従来型ポケット式落石防護網と緩衝装置を付けた高エネルギー型ネッ トに対して、質量1.7t、2.5tの重錘を斜め入射させた実験を行った。	土木学会構造工学論文 集、Vol.56A, pp.1088- 1100, 2010.4.
9	ポケット式落石防護網に対す る落石衝突位置の影響に関す る研究	河上康太、田 島与典、 <b>前川</b> <b>幸次</b> (2010)	ポケット式落石防護網の落錘衝突実験をLS-DYNA によりシミュレー ション解析を行い、衝突位置の違いによる落石の挙動、網の状態およ びエネルギー収支等を考察している。	土木学会第65回年次学 術講演会、pp.555-556.
10	ポケット式落石防護網の実物 大実験へのLS-DYNAの適用	河上康太、 <b>前</b> 川 <b>幸次</b> 、田島 与典、岩崎征 夫(2010)	2種類の緩衝装置単体への衝突載荷試験、および高さ10m、幅18mの ネットを支持するロープに緩衝装置を付けた実大規模の模型に対し て、質量1.7t、2.5tの重錘を斜め入射させた実験に対して、LS-DYNAに よるシミュレーション解析を行った。	第10回構造物の衝撃問 題に関するシンポジウム 論文集、土木学会、 pp.257-262.
11	ポケット式落石防護網のシミュ レーション解析に関する研究	前川幸次、河 上康太、田島 与典、岩崎征 夫(2011)	2種類の緩衝装置単体への衝突載荷試験、および高さ10m、幅18mの ネットを支持するロープに緩衝装置を付けた実大規模の模型に対し て、質量1.7t、2.5tの重錘を斜め入射させた実験に対して、LS-DYNAに よるシミュレーション解析を行った。落石の衝突位置を水平方向に変化 させた場合、および緩衝装置のストッパーあり・なしの場合についても 検討を行っている。	土木学会構造工学論文 集、Vol.57A, pp.1134- 1144, 2011.3.
12	緩衝装置を用いたポケット式 落石防護網の実規模重錘衝 突実験	難波正和、 <b>前</b> 川 <b>幸次、</b> 田島 与典、横田哲 也(2013)	2種類の緩衝装置を用いたポケット式落石防護網について、実斜面に 設置し重錘衝突実験を行い、エネルギー吸収性能や落石捕捉挙動を 確認し評価している。	土木学会第68回年次学 術講演会、pp.933-934.
13	実斜面を用いた実規模重錘衝 突実験によるポケット式落石 防護網の評価	難波正和、前 川幸次、田島 与典、横田哲 也(2014)	2種類の緩衝装置を用いたポケット式落石防護網について、実斜面に 設置し重錘衝突実験を行い、エネルギー吸収性能や落石捕捉挙動を 確認し評価している。	土木学会構造工学論文 集、Vol.60A, pp.1032- 1041, 2014.3.
14	実斜面を用いた実規模重錘衝 突実験によるポケット式落石 防護網のシミュレーション解析 に関する研究	難波正和、 <b>前</b> 川 <b>幸次</b> 、濱晃 子、小池拓真 (2015)	2種類の緩衝装置を用いたポケット式落石防護網について、実斜面に 設置し重錘衝突実験を行い、エネルギー吸収性能や落石捕捉挙動を 確認し評価している。	鋼構造年次論文報告集 第22巻
15	緩衝装置を用いたポケット式 落石防護網の実規模重錘衝 突実験に関する一考察	難波正和、前 川幸次、田島 与典、横田哲 也(2014)	2種類の緩衝装置を用いたポケット式落石防護網について、実斜面に 設置し重錘衝突実験を行い、エネルギー吸収性能や落石捕捉挙動を 確認し評価している。	第11回構造物の衝撃問 題に関するシンポジウム 論文集、土木学会、

従来/高エネルギー			実験		数值解析	簡易評価	実験検
柵∙網∙外	対象·特徴	緩衝装置	部材実験	実大実験	解析手法	手法	証方法
高エネルギーワ イヤネットエ	<ul> <li>・端緩衝具</li> <li>・クロス緩衝具</li> </ul>	0	緩衝装置の衝撃載荷 試験	3mx3m			
高エネルギーワ イヤネットエ	・端緩衝具 ・クロス緩衝具	0	緩衝装置の衝撃載荷 試験	高さ10m、幅10m 斜め衝突			
高エネルギーワ イヤネットエ	・端緩衝具 ・クロス緩衝具	0	緩衝装置の衝撃載荷 試験	高さ10m、幅10m 斜め衝突			
高エネルギー覆 式防護網	・特殊ひし形金網 ・緩衝装置	0	金網の引張試験、 緩衝金具の衝撃すべ り試験	高さ25m、幅30m 落下	LS-DYNA		
高エネルギーポ ケット式防護網 (ビーズリンガー ネット)	<ul> <li>・Uボルト型式緩衝</li> <li>装置</li> <li>・リング式緩衝装</li> <li>置</li> </ul>	0					
高エネルギーポ ケット式防護網 (ビーズリンガー ネット)	<ul> <li>・Uボルト型式緩衝</li> <li>装置</li> <li>・リング式緩衝装</li> <li>置</li> </ul>	0			LS-DYNA		
高エネルギーポ ケット式防護網 (ビーズリンガー ネット)	<ul> <li>・Uボルト型式緩衝</li> <li>装置</li> <li>・リング式緩衝装</li> <li>置</li> </ul>	0			LS-DYNA		
高エネルギーポ ケット式防護網 (ビーズリンガー ネット)	<ul> <li>・Uボルト型式緩衝</li> <li>装置</li> <li>・リング式緩衝装</li> <li>置</li> </ul>	0	緩衝装置単体への衝 突載荷試験	高さ10m、幅18m のネットに質量 1.7t、2.5tの重錘 を斜め入射			
高エネルギーポ ケット式防護網 (ビーズリンガー ネット)	<ul> <li>・Uボルト型式緩衝</li> <li>装置</li> <li>・リング式緩衝装</li> <li>置</li> </ul>	0			LS-DYNA		
高エネルギーポ ケット式防護網 (ビーズリンガー ネット)	<ul> <li>・従来金網</li> <li>・U型緩衝装置</li> <li>・R型緩衝装置</li> <li>・滑車装置</li> </ul>		_	_	LS-DYNA 初期たるみの 影響		
高エネルギーポ ケット式防護網 (ビーズリンガー ネット)	<ul> <li>・従来金網</li> <li>・U型緩衝装置</li> <li>・R型緩衝装置</li> <li>・滑車装置</li> </ul>		_	_	LS-DYNA 落石の衝突位 置、ストッパー の影響		
高エネルギーポ ケット式防護網	<ul> <li>・従来、新型金網</li> <li>・U型緩衝装置</li> <li>・R型緩衝装置</li> <li>・滑車装置</li> </ul>	0		高さ15m、幅 12+9m 水平衝突			
高エネルギーポ ケット式防護網	<ul> <li>・従来、新型金網</li> <li>・U型緩衝装置</li> <li>・R型緩衝装置</li> <li>・滑車装置</li> </ul>	0		高さ15m、幅 12+9m 水平衝突			
高エネルギーポ ケット式防護網	<ul> <li>・従来、新型金網</li> <li>・U型緩衝装置</li> <li>・R型緩衝装置</li> <li>・滑車装置</li> </ul>	0		高さ15m、幅 12+9m 水平衝突			
高エネルギーポ ケット式防護網	<ul> <li>・従来、新型金網</li> <li>・U型緩衝装置</li> <li>・R型緩衝装置</li> <li>・滑車装置</li> </ul>	0		高さ15m、幅 12+9m 水平衝突			

	タイトル	著者	概要	出典
		【前川(金沢大	学)】	
16	従来型ポケット式落石防護網 の実施例に対する衝撃応答解 析	上杉拓矢、前 川幸次、小野 健弘、難波正 和(2015)	簡易式で設計されたポケット式落石防護網(設計事例7件)について LS-DYNAを用いた衝撃応答解析を行い、挙動と安全性の確認を行っ ている。	土木学会第70回年次学 術講演会、pp.567-568.
		【香月(防衛大		
17	個別要素法による落石防護網 の衝撃応答解析に関する基礎 的検討	高橋和慎、原 木大輔、 <b>香月</b> <b>智、</b> 田代元司 (2008)	洛石エネルキーが洛石防護網に吸収される過程を検討するために、大 変形問題への適用が可能と考えられる個別要素法を用いた解析法を 開発し、重錘衝突実験の結果と挙動を比較検討している。	第35回土木字会関東支 部技術研究発表会
18	高エネルギー対応落石防護網 の開発とその安全対策エとし ての適用性	原木大輔、 <b>香</b> <b>月智、</b> 田代元 司(2008)	個別要素法に新たな要素を組み入れた解析手法を用いて、面積 3mx3mの実物大の網に質量100kgの重錐を衝突させる実験のシミュ レーションを実施した。	第57回平成20年度砂防 学会研究発表会概要集
19	円柱形要素を用いた個別要素 法による落石防護網の衝撃応 答解析	原木大輔、 <b>香</b> <b>月智</b> 、田代元 司(2009)	個別要素法に新たな要素を組み入れた解析手法を用いて、面積 3mx3mの実物大の網に質量100kgの重錐を衝突させる実験のシミュ レーションを実施した。また、「便覧」設計法の妥当性についても検討し ている。	土木学会論文集A、 Vol.65, No. 2, pp.536- 553, 2009.6.
20	三次元個別要素法による落石 防護網の落石補足解析	高橋利延、山 本佳士、 <b>香月</b> 智、高森潔 (2012)	実物大スケール(高さ15m)の落石防護網に対する重錘衝突実験について、3次元個別要素法によって解析を行い、その再現性について検証している。	土木学会第67回年次学 術講演会、pp.1265-1266.
21	落石防護網のエネルギー吸収 性能の評価に関する実験的検 討	高橋利延、山 本佳士、 <b>香月</b> 智、高森潔 (2013)	高さ6.0m の実規模の落石防護網に対する重錘衝突実験をもとに、実 物大の落石防護網の応答特性を評価している。	第40回土木学会関東支 部技術研究発表会
22	実物大落石防護網を用いた重 錘衝突実験	高橋利延、山 本佳士、 <b>香月</b> 智、高森潔 (2013)	実用スケールの15m 高規模の落石防護網に対するエネルギー照査型 設計法の適用性を検証するために、実規模の落石入力エネルギーを 再現可能な斜路を有する実験施設を用いて重錘衝突実験を行ってい る。	土木学会論文集 A2(応用 力学), Vol. 69, No. 2 (応 用力学論文集 Vol. 16), I_787-I_798, 2013.
23	落石防護網の衝撃応答解析 における初期自重安定形の影 響	高橋利延、山 本佳士、 <b>香月</b> 智、高森潔 (2013)	実物大スケール(高さ15m)の落石防護網に対する重錘衝突実験に対して、3次元個別要素法による解析を行う際に、侍従安定状態を初期 条件とすることの影響について検討している。	土木学会第68回年次学 術講演会、pp.889-890.
24	FULL SCALE EXPERIMENTS OF FALLING ROCK PROTECTION NET	T. Takahashi, and K. Takamori(201 3)	実用スケールの15m 高規模の落石防護網に対するエネルギー照査型 設計法の適用性を検証するために、実規模の落石入力エネルギーを 再現可能な斜路を有する実験施設を用いて重錘衝突実験を行ってい る。	10th International Conference on Shock & Impact Loads on Structures
25	落石防護網の衝撃応答に及 ぼす落石回転の影響解析	高橋利延、山 本佳士、 <b>香月</b> 智、高森潔 (2014)	実物大の防護網を用いた重錘衝突実験に対して、個別要素法を用い た解析を行う際に、重錘の回転がネットの応答に与える影響について 検討している。	第41回土木学会関東支 部技術研究発表会
26	三次元個別要素法による落石 防護網の衝撃応答解析	高橋利延、山 本佳士、 <b>香月</b> 智、高森潔 (2014)	事前に行った実物大スケール(高さ15m)の落石防護網に対する重錘 衝突実験について、3次元個別要素法によって再現解析を行い、その 適用性について検証している。	土木学会構造工学論文 集、Vol.60A, pp.1042- 1055, 2014.3.
		【岩崎(長岡技	科大)】	
27	落石防護工に用いる緩衝金具 の開発と性能評価	<b>岩崎英治、</b> 加 規秀二、向笠 正洋 (2011)	開発した緩衝金具について、静的引張試験、重錘落下試験を行い、さらにこの緩衝金具で支持した6mx6mの防護網に質量3440kgの重錘を 落下させる実験を行った。すべりと要素間の接触について独自に工夫 した有限要素解析法を用いて、これら実験のシミュレーションを行った。	土木学会構造工学論文 集、Vol.57A, pp.75-85, 2011.3.
28	落石防護工に用いる緩衝金具 の開発と性能評価に関する研 究	向笠正洋、 <b>岩</b> 崎英治、加規 秀二(2011)	開発した緩衝金具について、静的引張試験、重錘落下試験を行い、さらにこの緩衝金具で支持した6mx6mの防護網に質量3440kgの重錘を 落下させる実験を行った。すべりと要素間の接触について独自に工夫 した有限要素解析法を用いて、これら実験のシミュレーションを行った。	土木学会第66回年次学 術講演会、pp.131-132.
29	緩衝金具を有する落石防護工 の解析手法の簡易化に関する 研究	山本順也、岩 崎英治(2013)	動的応答解析によるワイヤの滑りと落石防護工の変位を再現できるような静的解析法を提案している。 	土木学会第68回年次学 術講演会、pp.963-964.
30	静的解析による緩衝金具を有 する落石防護工の解析手法簡 易化に関する研究	鍋島渉、山本 順也、 <b>岩崎英</b> 治(2014)	動的応答解析によるワイヤの滑りと落石防護工の変位を再現できるような静的解析法を提案している。	第41回土木学会関東支 部技術研究発表会
31	緩衝金具を有する落石防護工 の解析手法の簡易化	<b>岩崎英治、</b> 山本順也 (2014)	動的応答解析によるワイヤの滑りと落石防護工の変位を再現できるよ うな静的解析法を提案している。 	土木学会構造工学論文 集、Vol.60A, pp.35-44, 2014.3.

従来/高エネルギー			実験		数値解析	簡易評価	実験検
柵・網・外	対象·特徴	緩衝装置	部材実験	実大実験	解析手法	手法	証方法
従来型ポケット 式防護網					LS-DYNA		
従来型ポケット 式防護網		_			個別要素法		
従来型ポケット 式防護網	・ひし形金網	-	_	3mx3m	新たな要素を 組み入れた個 別要素法		
従来型ポケット 式防護網	・ひし形金網	_	_	3mx3m	新たな要素を 組み入れた個 別要素法		
従来型ポケット 式防護網		_	落差40mの斜路によ る斜め落下試験	高さ17.5m幅21m	3次元個別要 素法		
従来型ポケット 式防護網		_	_	高さ5m幅15m			
従来型ポケット 式防護網		_		高さ5m幅15m 高さ15m幅21m 高さ15m幅30m	3次元個別要 素法		
従来型ポケット 式防護網		-	落差40mの斜路によ る斜め落下試験	高さ17.5m幅21m	3次元個別要 素法		
従来型ポケット 式防護網		-	_	高さ15m幅30m			
従来型ポケット 式防護網		-	_	高さ15m幅21m			
従来型ポケット 式防護網		-	_	高さ17.5m幅21m	3次元個別要 素法		
		-					
高エネルギーポ ケット式防護網 (NPF)	<ul> <li>・緩衝金具(ワイヤ 滑動)</li> </ul>	0	緩衝金具の静的引張  試験・重錘落下試験	6mx6m	<u>すべりと要素間</u> <u>の接触</u> につい て独自に工夫 した有限要素 解析		
高エネルギーポ ケット式防護網 (NPF)	•緩衝金具(ワイヤ 滑動)	0	緩衝金具の静的引張 試験				
高エネルギーポ ケット式防護網	•緩衝金具(ワイヤ 滑動)	0			静的解析		
高エネルギーポ ケット式防護網	<ul> <li>・緩衝金具(ワイヤ 滑動)</li> </ul>	0			静的解析		
高エネルギーポ ケット式防護網	・緩衝金具(ワイヤ 滑動)	0	ワイヤロープの重錘 落下実験				

	タイトル	著者	概要	出典
32	緩衝金具を有する落石防護網 の静的解析手法に関する研究	[后崎(長岡技) 山本順也、鍋 島渉、 <b>岩崎英</b> 治(2014)	➡★★★、) 』 動的応答解析の簡易化を図るため、静的解析により設計に必要な滑り 量を再現するための手法を提案している。	土木学会第69回年次学 術講演会、pp.519-520.
33	実斜面を想定した緩衝金具を 有する落石防護網の静的解析 法に関する研究	内藤和彦、岩 崎英治(2015)	実斜面を想定した落石防護網の解析モデルを作成し、動的応答解析と エネルギー的に等価な静的解析法による緩衝金具の滑り量の評価に ついて検討を行っている。	土木学会第70回年次学 術講演会、pp.565-566.
34	エネルギー吸収金具を付けた 落石防護ネットの開発	【右城】 右城猛、西岡 南海男、筒井 秀樹、田中登 志夫、(2008)	エネルギー吸収金具付き落石防護ネット(ロングスパン)の構造概要、 特徴、性能確認実験、数値シミュレーションの概要などについて整理し ている。	第3回南海地震四国地域 学術シンポジウム、土木 学会四国支部
35	落石防護ネットの課題	<b>右城猛、</b> 加賀 山肇、筒井秀 樹 (2009)	ポケット式落石防護ネットの問題点と今後の課題について論述している。	第15回土木学会四国支 部技術研究発表会講演 概要集、pp.319-320.
36	新しい落石防護ネット・ロング スパンの開発	加賀山肇、 <b>右 城猛、</b> 筒井秀 樹 (2009)	エネルギー吸収金具付き落石防護ネット(ロングスパン)の構造概要、 特徴について整理している。	第15回土木学会四国支 部技術研究発表会講演 概要集、pp.321-322.
37	新しい落石防護ネット・ロング スパンの重錘衝突実験	筒井秀樹、 <b>右 城猛、</b> 加賀山 肇(2009)	エネルギー吸収金具付き落石防護ネット(ロングスパン)の性能確認 実験について報告している。	第15回土木学会四国支 部技術研究発表会講演 概要集、pp.323-324.
38	ポケット式落石防護ネットの重 錘衝突実験	松本洋一、濱 田拓也、大谷 正康(2010)	既存のポケット式落石防護ネットにエネルギー吸収装置を取り付け捕 捉性能の確認を行っている。また、支柱間隔を従来の倍にして実験を 行っている。	第16回土木学会四国支 部技術研究発表会講演 概要集、pp.37-38.
39	Experimental, numerical and analytical modelling of a newly developed rockfall protective cable-net structure	Dhakal, Bhandary, 矢田部、木下 (2011)	右城ら(2008)の開発したロングスパンについて、実物大実験の結果の 紹介、LS-DYNAにより76000の要素からなるFEMモデルでシミュレー ションを行っている。さらに、単純化された設計手法の必要性を述べ、2 質点系モデルの適用を検討している。	Natural Hazards and Eath System Sciences, 11, 3197–3212, 2011.
40	Numerical and analytical investigation towards performance enhancement of a newly developed rockfall protective cable-net structure	Dhakal, Bhandary, 矢田部、木下 (2012)	Dhakal(2011)の続編である。最大変位量に関連する各種影響因子の 効果、摩擦緩衝装置の効果についても検討している。	Natural Hazards and Eath System Sciences, 12, 1135–1149, 2012.
		【土研】		
41	ホケット式洛石防護網の実現 模実験	西弘明、今野 久志、山口 悟、佐々木哲 也、小室雅人 (2013)	ホケット式洛石防護網の耐衝撃挙動やエネルキー吸収機構等を詳細 に検討するための基礎資料を得ることを目的として、従来型落石防護 網の実規模の重錘衝突実験について報告している。	土木字会第68回年次字 術講演会、pp.935−936.
42	ポケット式落石防護網の実規 模実験における三次元挙動計 測	山口悟、西弘 明、今野久 志、加藤俊 二、栗橋祐介 (2013)	ポケット式落石防護網の耐衝撃挙動やエネルギー吸収機構等を詳細 に検討するための基礎資料を得ることを目的として、従来型落石防護 網の実規模の重錘衝突実験における3次元挙動計測について報告し ている。	土木学会第68回年次学 術講演会、pp.937-938.
43	従来型ポケット式落石防護網 の実規模重錘衝突実験	山口悟、今野 久志、西弘 明、佐々木哲 也、小室雅人 (2013)	ポケット式落石防護網の耐衝撃挙動やエネルギー吸収機構等を詳細 に検討するための基礎資料を得ることを目的として、従来型落石防護 網の実規模の重錘衝突実験について報告している。	鋼構造年次論文報告集 第21巻
44	従来型ポケット式落石防護網 の耐衝撃性能に関する実規模 実験	西弘明、今野 久志、山口 悟、加藤俊 二、栗橋祐介 (2013)	ポケット式落石防護網の耐衝撃挙動やエネルギー吸収機構等を詳細 に検討するための基礎資料を得ることを目的として、従来型落石防護 網の実規模の重錘衝突実験について報告している。	平成25年度 土木学会北 海道支部 論文報告集 第70号
45	従来型ポケット式落石防護網 の耐衝撃性能に関する数値シ ミュレーション	小室雅人、西 弘明、今野久 志、山口悟、 平田健朗、 佐々木哲也 (2013)	ポケット式落石防護網の実規模衝突実験3)を対象に、その耐衝撃性 能を適切に評価可能な解析手法を確立することを目的に、三次元弾塑 性衝撃解析を実施した.得られた解析結果を実験結果と比較すること により、解析手法の妥当性を検証した後に、エネルギー吸収機構等に ついても検討を行っている。	平成25年度 土木学会北 海道支部 論文報告集 第70号

従来/高エネルギー			実験		数值解析	簡易評価	実験検
柵·網·外	対象·特徴	緩衝装置	部材実験	実大実験	解析手法	手法	証方法
高エネルギーポ ケット式防護網	・緩衝金具(ワイヤ 滑動)	0			静的解析		
高エネルギーポ ケット式防護網	・緩衝金具(ワイヤ 滑動)	0			静的解析		
高エネルギーポ ケット式防護網 (ロングスパン)	<ul> <li>・エネルギー吸収</li> <li>金具</li> <li>・支柱間隔長スパン化</li> </ul>	0		幅30mx高さ 10m(10ケース)	LS-DYNA		
高エネルギーポ ケット式防護網 (ロングスパン)	<ul> <li>・エネルギー吸収</li> <li>金具</li> <li>・支柱間隔長スパン化</li> </ul>	0					
高エネルギーポ ケット式防護網 (ロングスパン)	<ul> <li>・エネルギー吸収</li> <li>金具</li> <li>・支柱間隔長スパン化</li> </ul>	0		幅15mx高さ10m 幅30mx高さ10m			
従来型ポケット 式防護網		0		幅18mx高さ15m			
高エネルギーポ ケット式防護網 (ロングスパン)	<ul> <li>・エネルギー吸収</li> <li>金具</li> <li>・支柱間隔長スパン化</li> </ul>	0			LS-DYNA	最大変位 量簡易予 測式	
高エネルギーポ ケット式防護網 (ロングスパン)	<ul> <li>・エネルギー吸収</li> <li>金具</li> <li>・支柱間隔長スパン化</li> </ul>	0			LS-DYNA	最大変位 量簡易予 測式	
従来式ポケット 式落石防護網		_		高さ10m 幅5@3m			
従来式ポケット 式落石防護網		_		高さ10m 幅5@3m			
従来式ポケット 式落石防護網		—		高さ10m 幅5@3m			
従来式ポケット 式落石防護網		—		高さ10m 幅5@3m			
従来式ポケット 式落石防護網		_		高さ10m 幅5@3m	LS-DYNA		

	タイトル	著者	概要	出典
46	従来型ポケット式落石防護網 の三次元衝撃応答解析	【土研】 小室雅人、西 弘明、山口 悟、今野久 志、平田健朗 (2014)	ポケット式落石防護網の実規模衝突実験を対象に、その耐衝撃性能 を適切に評価可能な解析手法を確立することを目的に、三次元弾塑性 衝撃解析を実施している。	土木学会第69回年次学 術講演会、pp.533-534.
47	落石防護網の実規模静的載 荷実験	西弘明、加藤 俊二、今野久 志、栗橋祐 介、山口悟 (2014)	落石防護網の構成部材のエネルギー吸収量や数値解析における材料 構成則等を検討することを目的に実施した、静的載荷実験の概要につ いて報告している。	土木学会第69回年次学 術講演会、pp.539-540.
48	落石防護網の実規模衝撃載 荷実験	今野久志、加 藤俊二、西弘 明、小室雅 人、山口悟 (2014)	従来型のポケット式落石防護網について、荷重作用時における落石防 護網の構成部材のエネルギー吸収量や数値解析における材料構成則 等を検討することを目的に実規模試験体を用いた衝撃荷重載荷実験 の概要について報告している。	土木学会第69回年次学 術講演会、pp.541-542.
49	従来型ポケット式落石防護網 の耐衝撃挙動に関する衝撃応 答解析	平田健朗、小 室雅人、西弘 明、今野久 志、山口悟 (2014)	ポケット式落石防護網の実規模衝突実験3)を対象に、その耐衝撃性 能を適切に評価可能な解析手法を確立することを目的に、三次元弾塑 性衝撃解析を実施した。得られた解析結果を実験結果と比較すること により、解析手法の妥当性を検証した後に、エネルギー吸収機構等に ついても検討を行っている。	鋼構造年次論文報告集 第22巻
50	落石防護網の実規模模型実 験	山口悟、今野 久志、西弘 明、加藤俊 二、小室雅人 (2014)	ポケット式落石防護網の耐衝撃挙動やエネルギー吸収機構等を詳細 に検討するための基礎資料を得ることを目的として、従来型落石防護 網の実規模の重錘衝突実験について報告している。	鋼構造年次論文報告集 第22巻
51	従来型ポケット式落石防護網 の重錘衝突実験	西弘明、今野 久志、山口 悟、佐々木哲 也、小室雅人 (2014)	ポケット式落石防護網の耐衝撃挙動やエネルギー吸収機構等を詳細 に検討するための基礎資料を得ることを目的として、従来型落石防護 網の実規模の重錘衝突実験とその三次元挙動計測について報告して いる。	第11回構造物の衝撃問 題に関するシンポジウム 論文集、土木学会、
52	従来型ポケット式落石防護金 網の実規模静的載荷実験	山口悟、西弘 明、今野久 志、佐々木哲 也、小室雅 人、栗橋祐介 (2014)	数値解析による落石防護網の構成部材のエネルギー吸収量の算定や 材料構成則等の設定を最終目的として、実規模の静的載荷実験を実 施したので、その概要について報告している。	平成26年度 土木学会北 海道支部 論文報告集 第71号
53	落石防護網に使用するひし形 金網の静的載荷実験	西弘明、加藤 俊二、今野久 志、荒木恒 也、山口悟、 栗橋祐介 (2015)	構成部材の一つであるひし形金網のエネルギー吸収量や数値解析に おける材料構成則等を検討することを目的に実施した、静的載荷実験 の概要について報告している。	土木学会第70回年次学 術講演会、pp.523-524.
54	落石防護網に使用するひし形 金網の重錘落下衝撃実験	今野久志、加 藤俊二、西弘 明、内藤直 人、山澤文 雄、小室雅人 (2015)	落石防護網の構成部材の一つであるひし形金網に着目し、素線径の 異なる金網に対する重錘落下衝撃実験を実施して、重錘の入力エネ ルギーを変化させた場合や回転エネルギーの有無による耐衝撃挙動 について検討を行っている。	土木学会第70回年次学 術講演会、pp.525-526.
55	水平に設置された落石防護網 の動的応答性状に関する数値 シミュレーション	小室雅人、西 弘明、今野久 志、山口 悟、 佐々木哲也 (2015)	落石防護網の実規模模型実験を対象に、その動的応答性状を適切に 評価可能な解析手法を確立することを目的に、三次元弾塑性衝撃解 析を実施し得られた解析結果を実験結果と比較することにより、解析手 法の妥当性を検証している。	土木学会第70回年次学 術講演会、pp.569−570.
56	落石防護網に使用するひし形 金網の実規模載荷実験	今野久志、西 弘明、荒木恒 也、加藤俊 二、小室雅人 (2015)	落石防護網の構成部材の一つであるひし形金網に着目し、素線径の 異なる金網に対する重錘落下衝撃実験を実施して、重錘の入カエネ ルギーを変化させた場合や回転エネルギーの有無による耐衝撃挙動 について検討を行っている。	鋼構造年次論文報告集 第23巻
57	水平に設置された落石防護網 の耐衝撃挙動に関する衝撃応 答解析	小室雅人、西 弘明、今野久 志、荒木恒 也、佐々木哲 也(2015)	水平に金網を設置した落石防護網の実規模模型実験を対象に、三次 元弾塑性衝撃解析による再現解析を実施し、その妥当性を実験結果と 比較することによって検証している。	鋼構造年次論文報告集 第23巻

従来/高エネルギー			実験		数值解析	簡易評価	実験検
柵∙網∙外	対象·特徴	緩衝装置	部材実験	実大実験	解析手法	手法	証方法
従来式ポケット 式落石防護網		-		高さ10m 幅5@3m	LS-DYNA		
従来式ポケット		-	静的載荷実験	高さ2@5m			
式洛右防護網				₩6@3m			
従来式ポケット		_	衝擊荷重載荷実験	高さ2@5m			
式落石防護網				幅5@3m			
従来式ポケット		_		高さ10m	LS-DYNA		
式落石防護網				幅5@3m			
従来式ポケット		_	衝撃荷重載荷宝騇	 			
式落石防護網			小大可 <u>非王</u> 可子可	幅5@3m			
従来式ポケット		_					
式落石防護網				幅5@3m			
従来式ポケット		_	静的載荷宝瞈	 			
式落石防護網				幅5@3m			
従来式ポケット		_	静的載荷実験	高さ3m			
式落石防護網				幅3m			
従来式ポケット		_	衝撃荷重載荷実験	高さ3m			
式落石防護網				幅3m			
従来式ポケット		—			LS-DYNA		
式落石防護網							
従来式ポケット 式落石防護網		_	衝撃荷重載荷実験				
従来式ポケット 式落石防護網		_			LS-DYNA		

	タイトル	著者	概要	出典
		【土研】		
58	落石防護網に使用するひし形 金網の重錘落下衝撃実験	荒木恒也、西 弘明、今野久 志、佐々木哲 也、小室雅 人、田中優貴 (2015)	従来型ポケット式落石防護網の構成部材の一つであるひし形金網に 着目し、素線径の異なる金網に対する重錘落下衝撃実験を実施して、 重錘の入力エネルギーを変化させた場合の耐衝撃挙動について報告 している。	平成27年度 土木学会北 海道支部 論文報告集 第72号
59	ポケット式落石防護網の落石 衝突時における回転エネル ギーの影響に関する実験的研 究	今野久志、西 弘明、山澤文 雄、加藤俊 二、内藤直 人、小室雅人 (2015)	従来型ボケット式落石防護網に落石が衝突した際の回転エネルギー の影響について検討することを目的として、縦・横それぞれ2本のワイ ヤロープとひし形金網から構成される最小部材構成の金網構造に対し て、重錘落下衝撃実験を実施し、その耐衝撃挙動について検討につい て報告している。	平成27年度 土木学会北 海道支部 論文報告集 第72号
60	落石防護網用ひし形金網のモ デル化に関する一検討	田中優貴、小 室雅人、今野 久志、荒木恒 也、西弘明 (2015)	従来型のポケット式落石防護網に用いられているひし形金網を対象に その耐衝撃挙動に関する三次元衝撃応答解析を実施し、金網を膜要 素と梁要素でモデル化した場合について、別途実施した衝撃荷重載荷 実験結果との比較により、両者の妥当性について検討を行っている。	平成27年度 土木学会北 海道支部 論文報告集 第72号
		【土木学会】		
61	「防災・安全対策技術者のための衝撃作用を受ける構造物の性能設計一基準体系の指針一」	土不字会 (2013)	第11編第2章・ワイヤーローフ型洛石防護工の包括設計コード(こおいて、要求性能・性能規定・照査方法、耐久性と維持管理計画、破壊限界・性能規定等に関して考え方が整理されている。	土木字会構造工字シリー ズ22,pp.33-52,2013,1,31
62	高エネルギー対応落石防護網 の開発とその安全対策工とし ての適用性	下条和史、渡 辺達男 (2012)	高エネルギー対応落石防護網(ハンガーネットエ)の開発ポイント、構造と特徴、実験概要、適用性について述べるとともに工事中の安全対策エとして用いられた例を紹介している。	第61回平成24年度砂防 学会研究発表会概要集

従来/高エネルギー			実験		数値解析	簡易評価	実験検
柵∙網∙外	対象·特徴	緩衝装置	部材実験	実大実験	解析手法	手法	証方法
従来式ポケット		—	衝擊荷重載荷実験	高さ3m			
式落石防護網				幅3m			
従来式ポケット		-	衝擊荷重載荷実験	高さ3m			
式落石防護網				幅3m			
				144.5.1.1			
従来式ポケット		-			I S-DYNA		
式落石防護網							
防護柵・防護網							0
(高エネルギー吸							
収型含)							
高エネルギーポ	・高強度ネット(より						
ケット式防護網	線ひし形金網)						
(ハンガーネット)	・HGNブレーキ(鋼						
	板)						

	タイトル	著者	概要	出典
		[JR]		
1	柔構造落石防護柵の衝撃性 能確認実験 	加藤千典、村 石尚、下条和 史(1998)	リングネット防護柵の性能を確認するため、実物の柵体に岩体を衝突 させてエネルギー吸収性能の確認実験を行っている。	土木学会第53回年次学 術講演会、pp.362−363.
2	エネルギー吸収型落石防護柵 の衝撃挙動に関する実験的研 究	小畑康隆、田 母神宗幸、小 林俊夫、藤井 智弘(1999)	リングネット防護柵の性能を確認するため、実物の柵体に岩体を衝突 させてエネルギー吸収性能の確認実験を行っている。	土木学会第54回年次学 術講演会、pp.622-623.
3	静的荷重下における落石防護 ネットの変形特性	<b>村石尚</b> 、杉山 友康、佐溝昌 彦、安藤和幸 (2001)	各種の金網(菱形金網、伸長ネット)を、幅約3mの枠に固定して球面 状の載荷板を載荷させる静的実験を行い、荷重一変形特性や吸収エ ネルギー等を求めている。	土木学会論文集、 693(53), pp.95-103
4	柔構造の落石防護柵の性能 評価と現地への適用	村石尚、佐溝 昌彦(2002)	リングネット防護柵の実地適用に至る性能上の技術判断の方法と、関 連して防護柵性能についての見解について述べている。	地すべり, Vol.39, No.1, pp.152-157, 2002.06.
		【百賀】		
5	たわみ性落石防護柵のエネル ギー吸収性能の数値解析によ る検討	<b>古賀泰之</b> (2000)	たわみ性落石防護柵の一つであるリングネットエについて、部材の材 料非線形特性、構造非線形性を取り込んだ、静的な荷重一変位関係 を求める計算法を提案し、試算を行った。	第5回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.165- 170.
6	高エネルギー吸収たわみ性落 石防護柵の設計手法について	<b>古賀泰之</b> 、門 間敬一、井村 俊則(2002)	たわみ性落石防護柵の設計手法の現状と課題について総括してい る。	地すべり, Vol.39, No.1, pp.158-165, 2002.06.
7	崩土荷重を受けるたわみ性防 護柵の構造計算法の試み	<b>古賀泰之</b> 、呉 耀華(2004)	たわみ性落石防護柵の一つであるリングネットエについて、面的荷重 が作用した場合の挙動を解析するモデルを構築し、崩土荷重を与えて 柵の動的挙動を解析している。	第7回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.65- 70, 2004.
		【吉田】		
8	高エネルギー吸収落石防護柵 の設計	柴田健次、中 田隆、 <b>吉田博</b> (1994)	既存の落石防護柵とロックシェッドの間の比較的大きな落石エネル ギーに対応可能な、高エネルギー吸収落石防護柵の開発経緯と試設 計について整理している。	第2回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.205- 211.
9	緩衝装置を配置したエネル ギー吸収型落石防護柵に関す る実験的研究	小畑康隆、藤 井智弘、小林 俊夫、野村利 充、 <b>吉田博</b> (2000)	長支間落石防止柵(LSロックフェンス)の緩衝装置の性能、実物実験 について整理している。	第5回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.147- 152.
10	落石防護柵用ネットの衝撃実 験とその解析	大森清武、塩 見昌紀 <b>・吉田</b> <b>博</b> (2002)	ASM(潜水艦捕捉用)ネットを約3mx3mの格子枠に固定し、550kgと 880kgの重錘を落下衝突させる実験とLS-DYNAによるシミュレーション 解析を行った。	第6回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.141- 146.
11	ワイヤロープを支柱に巻き付け た落石防護柵の実物衝撃実 験とその解析	園雅伊、塩見 昌紀、 <b>吉田</b> <b>博、前川幸次</b> (2002)	コンクリートを充填した鋼管支柱、支柱に円環状に巻き付けたワイヤ ロープ、緩衝装置などからなる防護柵である。支柱の静的曲げ試験、 ロープ・緩衝装置への衝撃載荷試験、3スパンの柵への重錘衝撃試験 を行っている。また、LS-DYNAによるシミュレーション解析を行ってい る。	第6回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.153- 158, 2002.
12	落石防護柵に使用する金網の 特性について	松嶋秀士 <b>、吉</b> 田 <b>博</b> (2009)	各種の金網を同一条件にて実験を行いそれぞれの金網の特性を評価し、大変形非弾性動的解析ソフトLS-DYNAを用いて実験結果との対 比を行っている。	土木学会第64回年次学 術講演会、pp.173-174.
13	既設H鋼式落石防護柵の補強 に関する研究	松嶋秀士、小 島明徳、川合 慶直、 <b>吉田</b> <b>博</b> (2014)	既設の落石防護柵の弱点となる部分を補強し、落石による衝撃力の 負担を幅広いスパンで受け持たせる分散効果の検証することを目的と して、高さ2.6m、幅3mの格子枠にポリエステル製のネットを固定し、 900kgの重錘を衝突させる実験を行うとともに、LS-DYNAによるシミュ レーション解析を行った。	第11回構造物の衝撃問 題に関するシンポジウム 論文集、土木学会、
L		【前川(金沢大	学)】	
14	溶接構造用遠心力鋳鋼管の 衝撃吸収エネルギーに関する 実験的研究	中野明、森崎 充、 <b>前川幸次</b> (2000)	中空鋳鋼管の衝撃球種エネルギーを実験的に研究し、定量的に評価 し、落石対策工の実用に供しうる資料を得ることを目的としている。	第5回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.199- 204.
15	ポリエチレンネットの静的およ び重錘衝突実験	<b>前川幸次、</b> 田 島与典、岩崎 征夫、可児幸 嗣(2004)	ポリエチレンネットについて、静的載荷実験、重錘衝突実験をおこな い、耐衝撃性能の評価を行っている。	第7回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.29- 34, 2004.
16	PEネットを用いた簡易型落石 防護柵の重錘衝突実験	<b>前川幸次</b> 、田 島与典、岩崎 征夫(2005)	ポリエチレン(PE)ネットについて、素材の引張試験、ネットの静的載荷 実験、重錘衝突実験、防護柵への重錘衝突実験の結果を詳細に報告 している。	土木学会構造工学論文 集、Vol.51A, No.3, pp.1615-1624, 2005.3.

従来/高エネルギー			実験		数值解析	簡易評価	実験検
柵·網·外	対象·特徴	緩衝装置	部材実験	実大実験	解析手法	手法	証方法
高エネルギー防 護柵	・リングネット ・ブレーキリング	0					
高エネルギー防 護柵	・リングネット ・ブレーキリング	0	緩衝金具の衝撃実験	高さ2m 幅3@10m			
従来型防護柵 (高エネルギー 網)	・ひし形金網 ・伸長ネット	-	金網の静的載荷試験	_			
高エネルギー防 護柵	・リングネット ・ブレーキリング	0		高さ5m 幅3@5m			
高エネルギー防 護柵	・リングネット ・ブレーキリング	-	_	_		静的荷重 一変位関 係の算定 法	
高エネルギー防 護柵	・リングネット ・ブレーキリング	-	_	_		0	
高エネルギー防 護柵	・リングネット ・ブレーキリング	0					
高エネルギー防 護柵	・定着具 ・PC鋼材埋め込み Co充填鋼管支柱		_	-			
高エネルギー防 護柵(LSロック フェンス)	·緩衝金具	0	緩衝装置の衝撃載荷 試験	高さ2m、幅 3@10m			
高エネルギー防 護柵	・ASMネット	-	_	3mx3m	LS-DYNA		
高エネルギー防 護柵	・コンクリート充填 鋼管支柱 ・支柱に円環状に 巻き付けたワイヤ ロープ		ワイヤロープ・緩衝装 置への衝撃載荷試験	高さ3m、幅3@6m	LS-DYNA		
			金網の静的、衝撃試 験	1m×1m	LS-DYNA		
既設H鋼式落石 防護柵	・H鋼上下部接続 金具 ・緩衝金具	0		高さ2m、幅5@3m			
							L
防護柵	•中空鋳鋼管	_	中空鋳鋼管の静的曲 げ実験、落錘式衝撃 曲げ実験				
防護柵	・ポリエチレン(PE) ネット	-	ネットの静的載荷実 験、ネット単体への重 錘衝突実験	3@3,5,6,7m 3.5@5.6m			
簡易型防護柵	・ポリエチレン(PE) ネット	-	素材の引張試験、 ネットの静的載荷実 験、ネット単体への重 錘衝突実験	高さ3m、幅3@7m			

	タイトル	著者	概要	出典
		【前川(金沢大	学)】	
17	ポリエチレンネットの落錘載荷 実験	小林真、田島 与典、 <b>前川幸</b> <b>次</b> (2007)	ポリエチレンネットについて、落錘載荷実験をおこない、耐衝撃性能の 評価を行っている。	土木学会第62回年次学 術講演会、pp.567-568.
18	ポリエチレンネットの耐候性お よび落石対策への適用事例	田島与典、 <b>前</b> 川 <b>幸次</b> (2008)	PE ネットの耐用年数、本設構造物としての適用の可能性に関する検 討を行うとともに、PE ネットを落石対策へ適用した事例を紹介してい る。	平成19年度土木学会中 部支部研究発表会講演 概要集、pp.469-470.
19	落石防護柵の衝突シミュレー ションに関する研究	舘祐介、田島 与典、 <b>前川幸</b> <b>次</b> (2008)	ポリエチレンネットを用いた防護柵について行われた重錘衝突実験(前 川ら、2005)に対して、LS-DYNAによるシミュレーション解析を行った。	土木学会第63回年次学 術講演会、pp.1003-1004.
20	落石防護柵の性能実証試験 の現状調査について	<b>前川幸次</b> (2010)	落石防護柵について行われた性能実証試験の概要を調査するため、 主要なメーカーおよび協会にアンケート調査を実施した内容である。	土木学会第65回年次学 術講演会、pp.531-532.
		【桝谷(金沢大	学)】	
21	衝撃を受けるH型鋼ばりの挙 動特性と性能評価に関する一 考察	山口大輔、前 田達哉、 <b>桝谷</b> 浩、佐藤彰、 中村佐智夫 (2008)	緩衝材を設置したH型鋼材はりの衝撃実験を行い、衝撃荷重、応答特性、エネルギー吸収について得られた知見を示し、性能照査型設計法の確立のための基礎資料を提示している。	第9回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.157- 160.
22	既設の落石防護柵を補強した 新しい落石防護柵の実規模実 験について	西田陽一、小 川亮、 <b>桝谷浩</b> (2010)	従来からの落石防護柵の柱の一つを補強方向法を考案し、補強され た柱に新しいワイヤネットの支持面を設けた供試体を用いて重錘実験 を行いその挙動を調べ、エネルギー吸収性能について実験的に明らか にしている。	土木学会第65回年次学 術講演会、pp.533−534.
23	ワイヤネットを支持面に用いた 防護柵の実規模実験とその解 析	<b>西田陽一</b> 、ベ ルゲルクリスト フ、 <b>桝谷浩</b> (2010)	長さ4mの鋼管支柱を5m間隔で4本建て込み(3スパン15m)、ワイヤ ネットを張り渡した実規模模型に重錘を落下させる実験を行うとともに、 LS-DYNAによるシミュレーション解析を行った。	第10回構造物の衝撃問 題に関するシンポジウム 論文集、土木学会、 pp.251-256.
24	Full-scale testing of rock fall barriers for small-scale impact energy	ベルゲルクリ ストフ、西田陽 ー、藤井智弘 (2010)	小規模エネルギー吸収型落石防護柵の衝撃実験を行なっている。	第10回構造物の衝撃問 題に関するシンポジウム 論文集、土木学会、 pp.271-276.
25	ワイヤネット上の敷砂の緩衝 性能に関する実験的研究	西田陽一、 <b>桝</b> <b>谷浩</b> (2011)	防護面に緩衝装置を設置することなくエネルギーを吸収できる構造の 基礎的研究として、ワイヤネット上にサンドクッションを設置した防護柵 に対し重錘落下実験を行い、その衝撃挙動について検討し、得られた 知見を示している。	土木学会構造工学論文 集、Vol.57A, pp.1145- 1154, 2011.3.
26	Fundamental study on evaluation of deflection of H- beam under impact load aimed for the performance based design	Kritsada SRIKHOW、 <b>桝</b> 谷浩、佐藤 彰、中村佐智 夫(2012)	H型鋼材はりの衝撃実験を行っている。	土木学会構造工学論文 集、Vol.58A, pp.991-999, 2012.3.
27	繰り返し衝撃作用を受ける落 石防護柵の性能評価に関する 実験的研究	西田陽一、橋 立広隆、石井 太一、 <b>桝谷</b> <b>浩</b> 、Ho Si Tam(2013)	実規模の落石防護柵に重錘衝突による繰り返し載荷実験を行い、衝 撃吸収性能の評価を行っている。	土木学会第68回年次学 術講演会、pp.945-946.
28	NUMERICAL MODELING OF ROCKFALL PROTECTION FENCE WITH SAND-PACKS CUSHION	ホーシータム、 <b>桝谷浩</b> 、西田 陽一(2013)	サンドパックを緩衝材とする防護柵への落石を対象に、実験結果を報 告するとともに数値解析による衝撃時の動的挙動の再現を目的として 検討している。	土木学会第68回年次学 術講演会、pp.947−948.
29	落石防護柵におけるサンド パックの影響に関する研究	<b>桝谷浩</b> 、ホー シータム、西 田陽一(2014)	サンドパックを緩衝材とする防護柵への落石を対象に、実験結果を報 告するとともに数値解析による衝撃時の動的挙動の再現を目的として 検討している。	土木学会構造工学論文 集、Vol.60A, pp.1056- 1065, 2014.3.
30	ワイヤネット式落石防護柵の 性能評価に関する実規模実験 と解析について	西田陽一、石 井太一、 <b>桝谷</b> <b>浩</b> (2014)	実規模の落石防護柵に重錘衝突による繰り返し載荷実験を行い、衝 撃吸収性能及び修復性の評価を行っている。また、大変形を考慮した 有限要素法による解析的検討を行い、性能評価手法の適用性につい ての知見を示している。	第11回構造物の衝撃問 題に関するシンポジウム 論文集、土木学会、
31	繊維性ネットおよびロープを使 用した落石防護柵の耐衝撃試 験	【 <u>岐阜大学】</u> 吉田眞輝、小 林洋文、荒川 源臣、奥村久 雄(2008)	柔軟で高強度の繊維部材を用いた対策工の耐衝撃性試験を実施し、 その衝撃吸収性能や衝突時の損傷の程度を確認し、対策工の有効性 を確認している。	ジオシンセティックス論文 集 Vol.23, 113-118, 2008
32	エネルギー吸収ネットを用いた 既設落石防護柵の機能向上 に関する現場実験	辻慎一郎、原 隆史、 <b>八嶋</b> 厚、吉田眞輝 (2009)	既設の落石防護柵の背面にエネルギー吸収ネットを増設することの対策効果を検証することを目的として、高さ2.6m、幅3mの格子枠にポリエステル製のネットを固定し、900kgの重錘を衝突させる実験を行うとともに、LS-DYNAによるシミュレーション解析を行った。	土木学会第64回年次学 術講演会、pp.171-172.

従来/高エネルギー			実験		数値解析	簡易評価	実験検
柵・網・外	対象·特徴	緩衝装置	部材実験	実大実験	解析手法	手法	証方法
	10.1						<b> </b>
簡易型防護柵	・ボリエチレン(PE) ネット	_	PEの落錘載荷実験	幅3.3m 長さ7.0m			
簡易型防護柵	・ポリエチレン(PE) ネット	-					
簡易型防護柵	・ポリエチレン(PE) ネット	-	-	-	LS-DYNA		
防護柵	•H型鋼	-	はりの静的載荷実 験、自由落下式衝撃 実験				
防護柵+補強柵	・H型鋼 ・ワイヤネット		振り子式載荷実験	高さ3.5m 幅2@6m			
高エネルギー防 護柵(土砂流対 策)	・ワイヤネット ・二重鋼管モルタ ル充填支柱						
高エネルギー防 護柵				高さ2,3m 幅5,7,10m			
防護柵	・ワイヤネット ・サンドクッション		重錘落下衝擊実験				
防護柵	・H形鋼		重錘衝突実験				
防護柵	・ワイヤネット ・鋼管STK400		振り子式衝撃実験	高さ3m 幅3@6m			
高エネルギー防 護柵	・ケーブルネット ・鋼管STK400 ・サンドクッション	0	重錘落下衝擊実験	高さ4m 幅15m	LS-DYNA		
高エネルギー防 護柵	・ケーブルネット ・鋼管STK400 ・サンドクッション	0	重錘落下衝撃実験	高さ4m 幅15m	LS-DYNA		
高エネルギー防 護柵	・ワイヤネット ・鋼管STK400		振り子式衝撃実験	高さ3m 幅3@6m	LS-DYNA		
防護網	<ul> <li>・無結節網</li> <li>・ラッシェル網</li> <li>(ポリエステル)</li> </ul>	-	素材の引張試験、 ネットの静的載荷実 験、ネット単体への重 錘衝突実験	高さ3m、幅3@5m			
既設防護柵の補 強対策	・ポリエステル製の ネット	-	_	高さ2.6m、幅3m の格子枠			

	タイトル	著者	概要	出典
33	エネルギー吸収ネットを用いた 既設落石防護柵の機能向上 に関する現場実験と数値解析	【岐阜大字】 辻慎一郎、原 隆史、 <b>八嶋</b> 厚、吉田眞輝 (2009)	既設の落石防護柵の背面にエネルギー吸収ネットを増設することの対 策効果を検証することを目的として、高さ2.6m、幅3mの格子枠にポリエ ステル製のネットを固定し、900kgの重錘を衝突させる実験を行うととも に、LS-DYNAによるシミュレーション解析を行った。	ジオシンセティックス論文 集、Vol.24, pp.189-192, 2009.12.
34	3次元個別要素法を用いた落 石防護ネット構造の衝撃応答 解析	【園田(九州大) 石井慎二、園 田佳巨、彦坂 熙(2001)	学)】 3次元個別要素法による衝撃解析プログラムを開発し、これをリング ネットエに適用して、解析結果の妥当性を検証している。	第45回土木学会西部支 部研究発表会講演概要 集、A24-A25.
35	3次元個別要素法を用いた鋼 製落石防護柵の衝撃応答特 性に関する基礎的考察	石井慎二、 <b>園</b> 田佳巨、村石 尚、彦坂熙 (2001)	3次元個別要素法による衝撃解析プログラムを開発し、これをリング ネットエに適用して、解析結果の妥当性を検証している。	土木学会第56回年次学 術講演会、pp.136-137.
36	リングネット落石吸収柵の衝 撃応答特性に関する解析的考 察	<b>園田佳巨</b> 、村 石尚、門間敬 一、彦坂熙 (2002)	3次元個別要素法による衝撃解析プログラムを開発し、これをリング ネットエに適用して、解析結果の妥当性を検証している。	第6回構造物の衝撃問題 に関するシンポジウム論 文集、土木学会、pp.147- 152, 2002.2.
37	鋼製落石防護ネット構造の衝 撃応答解析	<b>園田佳巨</b> 、石 井慎二、彦坂 熙、村石尚 (2002)	3次元個別要素法による衝撃解析プログラムを開発し、これをリング ネットエに適用して、解析結果の妥当性を検証している。	土木学会構造工学論文 集、Vol. 48A, pp.1525- 1530, 2002.3.
38	リングネット防護柵の衝撃応 答特性に関する研究	柴田健司、 <b>園</b> 田佳巨、彦坂 熙(2003)	3次元個別要素法による衝撃解析プログラムを開発し、これをリング ネットエに適用して、解析結果の妥当性を検証している。	第47回土木学会西部支 部研究発表会講演概要 集、pp.A176-A177.
39	SPH 法を用いたワイヤリング ネットの耐衝撃性能評価に関 する基礎的研究	畑芳宏、 <b>園田</b> <b>佳巨</b> 、福永一 基(2010)	落石防護柵の耐衝撃性能を、代表的な粒子法であるSPH法を用いて 衝撃応答解析を試みている。	第54回土木学会西部支 部研究発表会講演概要 集、pp.53-54.
40	SPH を改良した落石防護柵の 衝撃解析手法の検討	末崎将司、 <b>園</b> 田佳巨、福永 一基(2010)	落石防護柵の耐衝撃性能を、代表的な粒子法であるSPH法を用いて 衝撃応答解析を試みている。	第54回土木学会西部支 部研究発表会講演概要 集、pp.55-56.
41	落石防護柵の衝撃挙動解析 へのSPH法の適用性に関する 基礎的検討	福永一基、 <b>園</b> 田佳巨、畑芳 宏(2010)	落石防護柵の耐衝撃性能を、代表的な粒子法であるSPH法を用いて 衝撃応答解析を試みている。	土木学会第65回年次学 術講演会、pp.560-561.
42	ワイヤリング防護柵の衝撃応 答解析に関する基礎的検討	畑芳宏、 <b>園田</b> <b>佳巨、</b> 福永一 基(2010)	落石防護柵の耐衝撃性能を、代表的な粒子法であるSPH法を用いて 衝撃応答解析プログラムを開発し適用性について検討している。	土木学会第65回年次学 術講演会、pp.562-563.
43	ワイヤリング防護柵の重錘衝 突実験	福永一基、 <b>園</b> 田佳巨、畑芳 宏(2010)	3.5mx3.5mの格子枠に防護柵を固定し、550kg, 850kgの重錘を落下さ せる実験を行った。	第10回構造物の衝撃問 題に関するシンポジウム 論文集、土木学会、 pp.257-262.
44	ワイヤリング防護柵の衝撃応 答解析へのSPH法の適用に関 する基礎的検討	畑芳宏、 <b>園田</b> <b>佳巨、</b> 福永一 基(2010)	代表的な粒子法であるSPH法をベースにワイヤリング防護柵の衝撃応 答解析プログラムを解析し、静的載荷実験や重錘落下実験をシミュ レートすることで適用性について検討している。	第10回構造物の衝撃問 題に関するシンポジウム 論文集、土木学会、 pp.267-270.
45	粒子法の概念を用いたワイヤ リング防護柵の衝撃応答解析	畑芳宏、 <b>園田</b> <b>佳巨、</b> 福永一 基(2011)	落石防護柵の耐衝撃性能を、代表的な粒子法であるSPH法を用いて 衝撃応答解析プログラムを開発し適用性について検討している。	第55回土木学会西部支 部研究発表会講演概要 集、pp.41−42.
46	SPH 法を改良したワイヤリン グ防護柵の衝撃応答解析	<b>園田佳巨、</b> 畑 芳宏、福永一 基(2011)	代表的な粒子法であるSPH法をベースにワイヤリング防護柵の衝撃応 答解析プログラムを開発し、静的載荷実験や重錘落下実験をシミュ レートすることで適用性について検討している。	土木学会構造工学論文 集、Vol.57A, pp.1155- 1162, 2011.3.
47	ワイヤリング落石防護柵の重 錘衝突実験	福永一基、 <b>園</b> 田佳巨、畑芳 宏(2011)	3.5mx3.5mの格子枠に防護柵を固定し、550kg, 850kgの重錘を落下さ せる実験を行った。	土木学会第66回年次学 術講演会、pp.115-116.
48	粒子法の概念を用いたワイヤ リング防護柵の衝撃応答特性 に関する基礎的考察	畑芳宏、 <b>園田</b> <b>佳巨、</b> 福永一 基(2011)	代表的な粒子法であるSPH法をベースにワイヤリング防護柵の衝撃応 答解析プログラムを開発し、静的載荷実験や重錘落下実験をシミュ レートすることで適用性について検討している。	土木学会第66回年次学 術講演会、pp.457-458.
49	ワイヤロープの挙動に着目し たワイヤリング防護柵の衝撃 解析手法に関する基礎的検討	尾鼻秀之、 <b>園</b> 田佳巨、福永 一基(2012)	ワイヤリング防護柵の衝撃挙動を再現できる解析手法の開発を目的と し. その適応性について検討を行っている。	第56回土木学会西部支 部研究発表会講演概要 集、pp.109-110.
50	ブレーキシステムに着目したワ イヤリング防護柵の衝撃応答 解析	畑芳宏、 <b>園田</b> <b>佳巨、</b> 福永一 基(2012)	落石防護柵の耐衝撃性能を、代表的な粒子法であるSPH法を用いて 衝撃応答解析プログラムを開発し適用性について検討している。	第56回土木学会西部支 部研究発表会講演概要 集、pp.111-112.

従来/高エネルギー			実験		数値解析	簡易評価	実験検
柵・網・外	対象・特徴	緩衝装置	部材実験	実大実験	解析手法	手法	証方法
既設防護柵の補 強対策	・ポリエステル製の ネット	-	-	高さ2.6m、幅3m の格子枠	LS-DYNA		
高エネルギー防 護柵	・リングネット	_			3次元個別要 素法		
高エネルギー防 護柵	・リングネット	-	_	_	3次元個別要 素法		
高エネルギー防 護柵	・リングネット	-	_	_	3次元個別要 素法		
高エネルギー防 護柵	・リングネット				3次元個別要 素法		
高エネルギー防 護柵	・リングネット				3次元個別要 素法		
高エネルギー防 護柵	・リングネット				SPH法(粒子 法)		
高エネルギー防 護柵	・リングネット				SPH法(粒子 法)		
高エネルギー防 護柵	・リングネット				SPH法(粒子 法)		
高エネルギー防 護柵	・リングネット				SPH法(粒子 法)		
高エネルギー防 護柵	・リングネット	-	_	3.5mx3.5mの格子 枠 辺拘束条件によ る違い			
高エネルギー防 護柵	・リングネット	-	_	-	SPH法(粒子 法)		
高エネルギー防 護柵	・リングネット	_	_	_	SPH法(粒子 法)		
高エネルギー防 護柵	・リングネット	_	_	_	SPH法(粒子 法)		
高エネルギー防 護柵	・リングネット	-	-	3.5mx3.5mの格子 枠 辺拘束条件によ る違い			
高エネルギー防 護柵	・リングネット	_			SPH法(粒子 法)		
高エネルギー防 護柵	・リングネット	-	_		SPH法(粒子 法)		
高エネルギー防 護柵	・リングネット	-	_		SPH法(粒子 法)		

	タイトル	著者	概要	出典
	粒子法の概念を用いたワイヤ	【園田(九州大) 尾畠黍之 <b>岡</b>	学)] ロイヤリング防護柵の衝撃挙動を再現可能な手法の開発を日的と	十大学全第67回年次学
51	リング落石防護柵の衝撃解析に関する基礎的検討	に 田佳巨、福永 一基,畑芳宏 (2012)	SPH法に独自のkernel関数を用いた解析を行っている。	術講演会、pp.1259-1260.
52	ワイヤリング落石防護柵の衝 撃応答特性に関する基礎的考 察	福永一基、 <b>園</b> 田佳巨、尾鼻 秀之、畑芳宏 (2012)	ワイヤリング防護柵の衝撃挙動を再現可能な手法の開発を目的とし、 重錘落下実験をシミュレートすることで適用性について検討している。	土木学会第67回年次学 術講演会、pp.1261-1262.
53	SPH法の概念を適用した落石 防護ネット構造の衝撃応答解 析	尾鼻秀之、 <b>園</b> 田佳巨、福永 一基(2013)	ワイヤリング防護柵の衝撃挙動を再現できる解析手法の開発を目的と し、その適応性について検討を行っている。	第57回土木学会西部支 部研究発表会講演概要 集、pp.127-128.
54	落石防護ネット構造の衝撃挙 動に関する解析的考察	尾鼻秀之、 <b>園</b> 田佳巨、福永 一基(2013)	ワイヤリング防護柵の衝撃挙動を再現可能な手法の開発を目的とし、 重錘落下実験をシミュレートすることで適用性について検討している。	土木学会第68回年次学 術講演会、pp.965-966.
55	ワイヤリング落石防護柵の衝 撃挙動に関する基礎的考察	尾鼻秀之、 <b>園</b> 田佳巨、福永 一基(2014)	ワイヤリング防護柵の衝撃挙動を再現できる解析手法の開発を目的と し、その適応性について検討を行っている。	第58回土木学会西部支 部研究発表会講演概要 集、pp.127-128.
56	「防災・安全対策技術者のた めの衝撃作用を受ける構造物 の性能設計ー基準体系の指 針一」	<u>【土木学会】</u> 土木学会	第II編第2章 ワイヤーローブ型落石防護工の包括設計コード におい て、要求性能・性能規定・照査方法、耐久性と維持管理計画、破壊限 界・性能規定等に関して考え方が整理されている。	土木学会構造工学シリー ズ22, pp.33-52, 2013,1,31
	Funkasting of holossics of	【欧州】 Daila D S		Daala Maala Daala Fransis
57	rockfall restraining nets by full scale tests	Pelia, D., S. Pelizza, F. Sassudelli (1998) 伊	るハインの防衛価への場場実験の方法、福米を詳細に報告している。 また、静的な荷重一変位関係を導く方法と試算例を示している。ただ し、部材には動的効果によって静的載荷の場合に比べて2倍以上の 部材力が生じることがあるので、適当な安全率を考慮することが必要 であると述べている。	31(1), pp. 1–24, 1998.
58	Design of rockfall restraining nets from a discrete element modelling	Nicot, F., B. Cambou, and G. Mazzoleni (2001) <i>1</i> Д	ASMリングから構成される落石防護柵について、リングの構成則(有限 変形理論)を導いている。また、これらを従来のFEMやDDAに組み入れ るのは一部に面倒な点があるので、このような線材で構成された構造 体に適した有限差分法(FDM)による解析プログラムを開発した。研究・ 実務への利用を目的としている。論文では試算例を示した。	Rock Mech. Rock Engrg., 34(2), pp. 98-118, 2001.
59	From a constitutive modelling of metallic rings to the design of rockfall restraining nets	Nicot, F., B. Cambou, and G. Mazzoleni (2001) <i>1</i> Д	ASMリングから構成される落石防護柵について、リングの構成則(有限 変形理論)を導いている。また、これらを従来のFEMやDDAに組み入れ るのは一部に面倒な点があるので、このような線材で構成された構造 体に適した有限差分法(FDM)による解析プログラムを開発した。研究・ 実務への利用を目的としている。論文では試算例を示した。	Int. J. Numer. Anal. Meth. Geomech., 2001; 25: 49– 70
60	Dynamic finite element analysis of interceptive devices for falling rocks	Cazzani, A., L. Mongiovi and T. Frenez (2002) 伊	市販のFEMコードを防護柵への落石衝突問題に適用し、その有用性と 限界について検討している。	Int. J. Rock Mech. Min., 39(3), pp. 303–321, 2002.
61	Guideline for the Approval of Rockfall Protection Kits	<b>Gerber</b> , W. (2001) 独	「落石防護柵の技術認証ガイドライン」 ・世界で初の落石防護柵に関する技術認証・試験法を定めた公的なガ イドライン。 ・スイス連邦共和国 環境・森林・景観局(SAEFL) スイス連邦研究所	Environment in practice. Swiss Agency for the Environment, Forests and Landscape (SAEFL), Swiss Federal Research Institute WSL, Bernee, 39p.
62	Dynamic finite element analysis of interceptive devices for falling rocks	Cazzani, A., L. Mongiovi and T. Frenez (2002) 伊	市販のFEMコード(ABAQUS)を用いて、防護柵の1スパン及び3スパン モデルについて解析した結果を述べている。実験結果との比較も行っ ている。	Int. J. Rock Mech. Min., 39(3), pp. 303-321, 2002.
63	Peak forces in flexible rockfall barriers	<b>Gerber</b> & Boell(2002) 独	たわみ性落石防護柵については近年各種の製品が開発され、主にエ ネルギー吸収性能の観点から評価されてきたが、構造の安全性、すな わちそれを構成する部材に生じる応力の観点からのチェックがなされ ていないのは片手落ちであるとの認識の下で、部材に生じる最大荷重 を実務的に推定する方法を提案している。	Intl. Congrs. INTERPRAEVENT 2002 in the Pacific Rim- Matsumoto/Japan, Congress publication, Volume 2, pp. 761-771

従来/高エネルギー			実験		数値解析	簡易評価	実験検
柵∙網∙外	対象·特徴	緩衝装置	部材実験	実大実験	解析手法	手法	証方法
高エネルギー防 護柵	・リングネット	0			SPH法(粒子 法)		
		-					
高エネルギー防	・リングネット	0	重錘落下衝撃実験	幅3.0m	粒子法		
ē受1冊							
高エネルギー防	・リングネット	0			SPH法(粒子		
護柵					<b>法</b> )		
<u></u>		<u> </u>					
高エネルキー防	・リンクネット	0			SPH法(粒子 注)		
ī支1111					<i>(</i> <b>Д</b> )		
高エネルギー防	・リングネット	0			SPH法(粒子		
護柵					<b>法</b> )		
₨」。。							0
い 設備・ い 設 納 (高エネルギー吸							0
収型含)							
R4_ =++ 1m						*****	
防護柵						静的何重 一亦位即	
						一変位国	
						法	
高エネルギー防	-				〇有限差分法		
護柵					(FDM)		
高エネルギー防							
謢栅							
防護柵					0		
防護柵	・技術認証ガイドラ						0
	イン						
防護柵					ABAQUS		
高エネルギー防						0	
護柵							
				1		1	

	タイトル	著者	概要	出典
1		【欧州】		
64	Certification of rock fall barriers in Europe	<b>Spang</b> (2002) 独	EOTAの標準試験法策定作業中の検討内容の紹介。	Better Highways Through Applied Geology. 53rd Highway Geology Symposium, Aug. 14 to 16, 2002, pp. 52–62.
65	The worldwide first official approval of rockfall protection nets	<b>Baumann</b> (2002)	2001年に公表・運用が開始されたスイスSAEFLの「落石防護柵の技術 認証ガイドライン」の背景、内容、運用などの概要紹介。	Better Highways Through Applied Geology. 53rd Annual Highway Geology Symposium, Aug. 14 to 16, 2002, pp. 40–51.
66	Amendment to the Guideline for the approval of rockfall protection kits	Federal Office of the Environment (FOEN) (2006)瑞	「落石防護柵の技術認証ガイドライン」(スイス連邦環境局(FOEN)、 2001)(Gerber, 2001)への追記修正	Federal Office of the Environment (FOEN), Swiss Federal Institute for Forest, Snow and Landscape Research (SLF), Bern.
67	ETAG27 Guideline for European Technical Approval of Falling Rock Protection Kits	EOTA (2008)	2008年に発効した ETAG027「ヨーロッパ技術認証のためのガイドライン: 落石防護柵」	ETAG027, 16/06/09, 53 p., 2008.
68	Full-scale testing of draped nets for rock fall protection	Bertolo et al (2009)伊	覆式防護網の設計手法が存在しない状況に鑑み、実大試験手法の概 要、および現実に(イタリアで)多用されている防護網についての試験 結果を紹介している。	Can. Geotech. J. 46: 306–317
69	Design of rockfall net fences and the new ETAG027 European guideline	Peila & Ronco (2009) 伊	2008年に発効したETAG027(Guideline for European Technical Approval of Falling Rock Protection Kits)「ヨーロッパ技術認証のため のガイドライン : 落石防護柵」の概要を紹介している。	Natural Hazards and Eath System Sciences, 9, 1291–1298, 2009.
70	Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method : from the local scale to the structure scale	Bertrand et al (2012) {Д	フランスで開発された新たな防護柵(ワイヤロープを固定具でつないで ネットを構成、および座屈方式の緩衝装置に特徴あり)についての部 材試験結果と、これを元にDEMによる全体系についてのパラメトリック な数値実験を行った結果を紹介している。	Rock Mech Rock Eng (2012) 45:885-900
		【米国】		
71	Recommended Procedures for the Testing of Rock-Fall Barriers	<b>Higgins</b> , J.D. (2002)	「落石防護柵の標準(推奨)試験法」 ・米国交通調査協会(TRB)が2002年に示したガイドライン。	National Cooperative Highway Research Program Project 20– 7(138), Transportation Research Board, 2002.
		【その他関連】		
72	高エネルギー吸収柵の設計・ 施工事例について	磯部賢治、井 村俊則、下条 和史、門間敬 一(2002)	高エネルギー吸収タイプの落石防護柵であるリングネット工法の設計・ 施工事例を紹介している。 	地すべり, Vol.39, No.1, pp.166-175, 2002.06.
73	高エネルギー吸収落石防護柵 を用いた土石流対策ネットダ ムの施工	寺崎賢一、上 原信司(2003)	高エネルギー吸収タイプの落石防護柵であるリングネットエ法の施工 事例を紹介している。 	第52回平成15年度砂防 学会研究発表会概要集
74	落下物防止柵の実物大実験	庄司宏臣、青 柳聖、松田義 則、吉川修一 (2005)	落下物防止柵に対する静的載荷試験および支柱に衝突させた実験を 行っている。	土木学会年次学術講演 会講演集、1-150, pp. 297-298, 2005.
75	個別要素法シミュレーションに よる柔構造待受けエと待受け 擁壁エの機能比較	武藏由育、木 村佳嗣、梅沢 広幸、水山高 久(2013)	インパクトパリアと待受け擁壁工のそれぞれの得失を明確にし、状況に 応じた工法選択に資するため、個別要素法を用いたシミュレーションに より機能比較を行っている。	第62回平成25年度砂防 学会研究発表会概要集
76	柔構造待受け工の衝撃力吸 収過程に関する個別要素法シ ミュレーション	武藏由育、木 村佳嗣、梅沢 広幸、水山高 久(2014)	施設の規模や崩壊土砂量、勾配、崩壊高さ、崩壊深を変化させて、イ ンパクトバリアと待受け擁壁工に作用する力を比較した結果を示してい る。	第63回平成26年度砂防 学会研究発表会概要集
77	金網のエネルギー吸収性能に ついて(その1)	佐野翔太郎、 堀謙吾(2015)	金網に対し面外方向に静的及び衝撃試験を実施してエネルギー吸収 性能及び変形挙動を調査した結果を報告している。	土木学会第70回年次学 術講演会、pp.527-528.

従来/高エネルギー			実験		数值解析	簡易評価	実験検
柵・網・外	対象·特徴	緩衝装置	部材実験	実大実験	解析手法	手法	証方法
							0
阞謢柵	•武騻法梗討内容						0
防護柵	・技術認証ガイドラ						
	12						
防護柵	<ul> <li>技術認証ガイドラ</li> </ul>						0
	イン						
防護柵	・技術認証ガイドラ						0
	イン						
覆式防護網							0
防護柵	・技術認証ガイドラ						0
	イン						
高エネルギー防	・ワイヤネット						
謢栅	<ul> <li>・</li> <li>・</li> <li>         ・</li> <li></li></ul>						
	71氏)						
	=>=>						0
阞謢卌	・試験力法						0
ウィンシング ひち	リングナルト						
高エイルイーの	・リンクネット						
		0					
高エネルギー防	・リングネット						
護柵	・フレーキリング	0					
落下物吐止加			◇ 畑に 計す Ζ 御 穴 計	古井に海売さみ			
洛下初防止而		[	並前に対する国大武 験	大生に倒天させた事験			
高エネルギー防	・リングネット	0					
護柵	・フレーキリング						
高エネルギー防	・リングネット	0					
護柵	ブレーキリング	[					
防護柵			面外静的試験	高さ2m 幅2m			
			山711町 羊武駅	ı'n⊞∠m			

#### 共同研究報告書

COOPERATIVE RESEARCH REPORT of P.W.R.I.

No.491 March 2017

編集·発行 ©国立研究開発法人土木研究所

本資料の転載・複写の問い合わせは

国立研究開発法人土木研究所

寒地土木研究所 寒地技術推進室

〒062-8602 北海道札幌市豊平区平岸1条3丁目1番34号 電話 011-590-4046