共	同	研	究	報	告	書
整	理者	番 号	·第	5 ′	10	号

プレキャスト部材を用いた既設カルバートの 耐震性能評価と補強方法に関する 共同研究報告書(その1)

令和2年1月

国立研究開発法人 土木研究所 株式会社 高速道路総合技術研究所 国立学校法人 京都大学工学研究科

Copyright © (2019) by P.W.R.I.

All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I.

この報告書は、国立研究開発法人土木研究所理事長の承認を得て刊行したも のである。したがって、この報告書の全部又は一部の転載、複製は、国立研究 開発法人土木研究所理事長の文書による承認を得ずしてこれを行ってはならな い。

共同研究報告書 第510号2020年1月

プレキャスト部材を用いた既設カルバートの 耐震性能評価と補強方法に関する共同研究

国立研究開発法	人	土木	、研	F究所	構造物	カメ	ンテ	ナンス研究センター
上	席	研	兊	員	石田	雅	博	
主	任	研	兊	員	宇佐美	ŧ	惣 ^{※1}	(~平成28年6月)
研	-	究		員	吉田	英	_	(~平成 30 年 3 月)
研	-	究		員	山口	岳	思 ^{※1}	(平成 28 年 7 月~
								平成 30 年 6 月)
研	-	究		員	野田	翼		(平成 30 年 4 月~)
交	流	研	究	員	久保田	E	伸一	** ² (~平成 29 年 3 月)
交	流;	研	究	員	山崎	旬	也	(平成 29 年 4 月~)
株式会社 高速	道路	総合	뉝	術研究	所			
室				長	藤岡		頼 ^{※1}	(~平成30年6月)
بن ے				E	he has a start of the start of	157		(平成 30 年 7 月~
主				大	们本	শি		令和元年8月)
室				長	安部	哲	生.	(令和元年9月~)
主	任	研	究	員	藤原	優	₩3	(~平成28年9月)
主	任	研	究	員	中村	洋	丈**1	(平成 28 年 10 月~
								令和元年6月)
主	任	研	究	員	日下	寛	彦	(令和元年7月~)
研	:	究		員	細田	寿	臣**3	(平成 28 年 10 月~
								平成30年9月)
研	:	究		員	中澤	Æ	典	(平成 30 年 10 月~)
国立学校法人	京都	大学	έŢ	学研究	科			
教				授	木村	亮		
教				授	岸田	潔		
准		教		授	澤村	康	生.	
助				教	宮﨑	祐	輔	
					*	1	現	中日本高速道路株式会社
					*	2	現	ジオスター株式会社
					*	3	現	西日本高速道路株式会社

要 旨

本報告書では、まず、プレキャストアーチカルバートの構造的特徴や耐震性能評価手法について述べた. プレキャストアーチカルバートの多くは、部材同士の接合部にヒンジを用いていることや断面形状が大きいこ と等から、道路土工カルバート工指針においては従来型以外のカルバートに分類される.従来型以外のカ ルバートは、いわゆる慣用設計法が適用できないため、個別に耐震性能を評価しているが、2 ヒンジアーチ、 3 ヒンジアーチともに、縦断方向の耐震性能評価手法については具体的に示されていないのが実情であるこ とが分かった.その後、プレキャストアーチカルバートの損傷事例を収集・分析し、解析的及び実験的検討を 行うことで原因を推定した.その結果、2 ヒンジアーチの側壁部材の斜めひび割れ、3 ヒンジアーチの天井部 の剥落については、縦断方向荷重の作用によるものであることが分かった.

キーワード: プレキャストアーチカルバート,損傷事例,縦方向地震時挙動,動的遠心模型載 荷実験,耐震性能評価,耐震補強

目次

1. 研究の概要	
1.1 研究の背景と目的	
1.2 研究の流れと体制	
1.2.1 研究の流れ	9
1.2.2 研究の体制	10
1.3 報告書の構成	11
2. プレキャストアーチカルバートの特徴	
2.1 道路土工カルバート工指針における分類	
2.2 道路土工カルバート工指針おける従来型カルバートの適用範囲	
2.3 従来型以外のプレキャストボックスカルバートの特徴	
2.4 従来型以外のプレキャストアーチカルバートの特徴	
2.4.1 2 ヒンジアーチの特徴	
2.4.2 3 ヒンジアーチの特徴	
3. カルバート工法の耐震性評価手法	
3.1 ボックスカルバートの耐震性能評価手法	
3.1.1 横断方向の耐震性能評価手法	
3.1.2 縦断方向の耐震性能評価手法	
3.2 プレキャストアーチカルバート工法の耐震性能評価手法	
3.2.1 2 ヒンジアーチの耐震性能評価手法	
3.2.2 3 ヒンジアーチの耐震性能評価手法	
4. 損傷事例の分析	
4.1 東北地方太平洋沖地震によるプレキャストアーチカルバートの被災事任	列 37
4.2 地震時以外の作用によるプレキャストアーチカルバートの損傷事例…	
4.2.1 2 ヒンジアーチの損傷事例	
4.2.2 3 ヒンジアーチの損傷事例	
4.3 損傷事例の収集,分析による分類	
4.3.1 収集,分析方法	
4.3.2 2 ヒンジアーチの分析結果	
4.3.3 3 ヒンジアーチの分析結果	
4.3.4 分類結果による考察	
4.4 まとめ	

5.	プレヨ	Fャストアーチカルバートの縦断方向の地震時挙動に与える諸条件の影響			
5	5.1 連	結様式を考慮したカルバートの縦断方向の地震時挙動			
	5.1.1	実験概要			
	5.1.2	遠心模型実験装置の概要			
	5.1.3	模型地盤と土槽境界の処理			
5.1.4 カルバート模型					
	5.1.5 坑口壁のモデル化				
	5.1.6	実験ケースと計測項目			
	5.1.7	入力波形			
	5.1.8	実験結果と考察			
5	5.2 盛	土形状に着目したカルバートの縦断方向の地震時挙動	107		
	5.2.1	実験概要			
	5.2.2	模型地盤と土槽境界の処理	109		
	5.2.3	カルバート模型	110		
	5.2.4	坑口壁のモデル化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113		
	5.2.5	実験ケースと計測項目			
	5.2.6	入力波形	118		
	5.2.7	実験結果と考察	119		
5	.3 斜	角条件に着目したカルバートの縦断方向の地震時挙動	130		
	5.3.1	実験概要	131		
	5.3.2	実験結果と考察			
5	5.3 力/	ルバート縦断方向の地震時挙動に関する弾塑性有限要素解析			
	5.3.1	二次元弾塑性有限要素解析の概要			
	5.3.2	二次元弹塑性有限要素解析結果			
	5.3.3	三次元弾塑性有限要素解析の概要			
	5.3.4	三次元弹塑性有限要素解析結果			
5	5.4 ま	とめ			
6.	数值的	解析を用いた損傷事例の再現性の検証・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	183		
6	.1 概	要	183		
	6.1.1	目的			
	6.1.2	検討の手順			
	6.1.3	解析対象箇所			
	6.1.4	検討方法			
6	5.23t	ニンジに対する三次元地震応答解析	191		
	6.2.1	解析条件			
	6.2.2	解析結果	201		
6	5.3 3 E	ンジ構造に対する構造物非線形解析(地震時)			

6.3.1	解析条件	211
6.3.2	解析結果	215
6.4 2	ヒンジ構造に対する三次元地震応答解析	222
6.4.1	解析条件	222
6.4.2	解析結果	230
6.5 2	ヒンジ構造に対する構造物非線形解析(地震時)	240
6.5.1	解析条件	240
6.5.2	解析結果	244
6.5.3	部材の応力測定結果に基づく軸方向せん断力の試算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	250
6.6 ま	とめ	255

7. 重	動的這	遠心模型実験による損傷メカニズムの解明·····	258
7.1	実際	険の目的および概要	258
7.	.1.1	3 ヒンジアーチのモデル化	260
7.	.1.2	基礎地盤および裏込め地盤のモデル化	264
7.	.1.3	坑口壁のモデル化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	266
7.	.1.4	計測項目	268
7.	.1.5	入力波形	269
7.2	実際	険の結果と考察	270
7.	.2.1	3 ヒンジアーチの応答加速度	270
7.	.2.2	坑口壁の変位	273
7.	.2.3	地震時の3ヒンジアーチの挙動	275
7.	.2.4	加振後の状況	279
7.3	まる	とめ	281

参考資料

資料1. プレキャストアーチカルバートの技術の変遷

資料2. 平成28年熊本地震におけるヒンジ式アーチカルバートの被災調査

1. 研究の概要

1.1. 研究の背景と目的

近年,土木工事における現場の省力化あるいは効率化を目的として,コンクリート構造 物のプレキャスト化が進められている.土工部に用いられるカルバート構造についても, 従来の場所打ちカルバートに替えて大型のプレキャスト部材を用いたカルバート(以下, プレキャストカルバート)の採用実績が増えている.

プレキャストカルバートを大きく分けると、写真-1.1.1 に示すような矩形形状であるボ ックスカルバートと、写真-1.1.2 に示すような上部が円形形状であるアーチカルバートに 分けることができる.ここで、アーチカルバートはボックスカルバートに対し、カルバー トにより確保する道路、河川などの断面が大きい場合や土かぶりが大きい場合に経済比較 で有利となる形式である.これらのプレキャスト工法は、国土交通省の取り組む、建設現 場の生産性向上を目的とした方策「i-Construction (アイ・コンストラクション)」におい ても、今後のプレキャストコンクリート製品の活用が課題解決の手段として挙げられてい る.さらに、プレキャストコンクリート製品の中でも、大型プレキャストカルバート(例: 高さ 5m 超のボックスカルバート)は多く使用される工法¹⁾となっており、今後の需要の 増加が期待される.

そのような中,平成23年東北地方太平洋沖地震において,プレキャストアーチカルバートにひび割れや接合部のコンクリート剥離等の損傷が高速道路で生じた²⁾. 表-1.1.1 に被災したプレキャストアーチカルバートの一覧表を示す. 写真-1.1.3~写真-1.1.6 に地震後に損傷が生じたプレキャストアーチカルバートの状況を示す. 被災した9 基のプレキャストアーチカルバートは、内幅5.4m~13.2m、内高2.9m~7.3m であるため比較的大型のプレキャストアーチカルバートと言える. このようなプレキャストアーチカルバートは、構造特性が複雑であり、損傷過程、耐荷力および変形能といった破壊特性に関する技術的知見が少なく、耐震性能の評価手法が確立されていないため地震時にどのような状態になるのかを事前に評価する手法がない. また、必要に応じて耐震補強を行う必要があると考えられるが、どのような損傷に対して、どのような補強が有効なのか、具体的な対策案がないのが現状である.

プレキャストアーチカルバートの実績については、日本道路公団時代に建設されたもの を含む NEXCO 管轄の実績数を図-1.1.1 に示す.図-1.1.1 より 2 ヒンジ式プレキャストアー チカルバート(以下,2 ヒンジアーチ)と3 ヒンジ式プレキャストアーチカルバート(以下, 3 ヒンジアーチ)は、主なプレキャストアーチカルバート工法の中のおよそ 90%(2 ヒンジ アーチは全プレキャストアーチカルバートのおよそ 50%,3 ヒンジアーチは全プレキャス トアーチカルバートのおよそ 40%)を占めている²⁾.そのため、実績数を考慮し、本研究 での対象とするプレキャストカルバートは、この2 ヒンジアーチと3 ヒンジアーチの2 工 法とした. そこで本研究では、既設プレキャストアーチカルバートの耐震性能評価手法と、その耐 震性能評価の結果に応じて必要となる耐震補強対策について検討を行ったものである.

写真-1.1.1 プレキャストボックスカルバート

写真-1.1.2 プレキャストアーチカルバート

(2014.4 現在で 217 件,参考文献 2 を基に作成)

										And in case of the second	And in the second		
1 1	法 嬰 存	内쫖	内高	延長	部材厚	THULT A	土被り	重 (m)	斜角	縦断勾配	甘西田	担何命会」、	十十十日
曲石	回路白	(m)	(m)	(m)	(m)	第二小小	最大	最小	(_a)	(%)	盛焼下い	俱诱反口(1	周上年月
Θ	仙台北部道路 利府しらかし台IC~富谷ICT間	13.2	7.3	62.4	0.35	暫定	13.6	1.0	90	1. 15	連続基礎	¥	2005. 1
3		5.4	2.9	64.9	0.25	暫定	9.7	1.0	81.0	1.40	独立基礎	微少	2001.3
3		9.7	5.6	39.1	0.25	暫定	4.9	1.0	87.0	1.34	独立基礎	×	2001.4
(4)		9.6	5.2	46.6	0.25	暫定	3.7	1.0	60.5	1.23	独立基礎	¥	2001.4
2	常磐自動車道	10.2	5.3	45.9	0.25	暫定	5.7	1.4	74.5	1.57	独立基礎	1	2001.12
9	広野IC~常磐富岡IC間	8.8	5.3	28.3	0.25	暫定	3.2	1.0	70.0	1.20	連続基礎	¥	2002.2
Ð		7.8	4.7	30.1	0.25	暫定	4.1	1.0	70.0	1.90	連続基礎	₽	2002.1
0		8.2	4.7	33.4	0.25	完成	2.9	1.0	90.0	2.20	独立基礎	¥	2002.5
6		9.0	5.3	42.8	0.25	完成	2.9	1.0	90.0	0.73	連続基礎	¥	2002.9
N 161	損傷 世会 いナ・アーチ 部 対 の 多 く 1	- 7 - 11	カや風	谁が生い	7112.								

-
جو ک
刪
띮
-
،د
ч
\sim
4
挭
١. ۲
1
₩,
3K3)
11911
ᄢ
,
_ I
⊥
1
, I
~
ذ
2
R
Ŧ
-"!`
P
12
-
к
~
+
1
-
Ħ
7
プレキ
よしても
たプレキ
したプレキ
能したプレキ
ほ災したプレキ
被災したプレキ
て被災したプレキ
ト被災したプレキ
って被災したプレキ
よって被災したプレキ
こよって被災したプレキ
によって被災したプレキ
震によって被災したプレキ
0震によって被災したプレキ
地震によって被災したプレキ
沖地震によって被災したプレ オ
牟沖地震によって被災したプレ オ
:洋沖地震によって被災したプレキ
平洋沖地震によって被災したプレキ
ド平洋沖地震によって被災したプレ オ
「太平洋沖地震によって被災したプレキ
方太平洋沖地震によって被災したプレキ
也方太平洋沖地震によって被災したプレキ
;地方太平洋沖地震によって被災したプレキ
北地方太平洋沖地震によって被災したプレキ
東北地方太平洋沖地震によって被災したプレキ
東北地方太平洋沖地震によって被災したプレキ
東北地方太平洋沖地震によって被災したプレキ
1 東北地方太平洋沖地震によって被災したプレキ
1.1 東北地方太平洋沖地震によって被災したプレキ
.1.1 東北地方太平洋沖地震によって被災したプレキ
-1.1.1 東北地方太平洋沖地震によって被災したプレキ
€−1.1.1 東北地方太平洋沖地震によって被災したプレキ

凡例 損傷度合い大:アーチ部材の多くにクラックや隔離が生じている。
 中:アーチ部材の一部にクラックや隔離が生じている。
 小:アーチ部材の一部にクラックが生じている。
 微小:ほとんど損傷ないが、微小なクラックが発生している。

4

(a) 部材接合部の漏水

(b) 基礎部材のひび割れ 写真-1.1.3 被災したプレキャストアーチカルバート(その1)

(a) ひび割れ

(b) 坑口壁の変形 写真-1.1.4 被災したプレキャストアーチカルバート(その2)

(a) 坑口壁のはらみだし

(b) 天井部の接合部の損傷 写真-1.1.5 被災したプレキャストアーチカルバート(その3)

(a) 天井部の接合部の損傷

(b)剥落したコンクリート片 写真-1.1.6 被災したプレキャストアーチカルバート(その4)

1.2. 研究の流れと体制

1.2.1. 研究の流れ

本研究は、平成 27 年度~令和元年度の 5 ヶ年で計画され、研究の内容は以下のとおりで ある.また、表-1.2.1 に研究の全体計画を示す.このうち、平成 27~28 年度の研究内容に 関して、報告書(その 1)として本報告書にまとめている.

研究内容

- ① プレキャストカルバートの損傷事例の収集・分析
- ② プレキャストカルバートの損傷事例の再現性の検証
- ③ プレキャストカルバートの耐震性能評価手法の提案
- ④ プレキャストカルバートの耐震補強対策の提案

		研究分担			研究工程				
研究項目	研究細目	土研	NEXCO 総研	京都 大学	平成 27 年度	平成 28 年度	平成 29 年度	平成 30 年度	令和 元 年度
 ①プレキャスト カルバートの損 傷事例の収集・分 析 	プレキャストカル バートの損傷事例 の収集・分析	0	Ø	0	•				
②プレキャスト カルバートの損	実験的手法を用い た耐震性の検証	Ø	0	0		•	1		
傷事例の再現性 の検証	数値解析を用いた 耐震性の検証	0	Ø	0		•	1		
③プレキャスト カルバートの耐	要求性能に応じた 限界状態の設定	Ø	Ø	0			•	•	
震性能評価手法 の提案	耐震性能評価手法 の提案	0	Ø	0			•		
④プレキャスト カルバートの耐	数値解析を用いた 耐震補強方法の提 案	0	Ø	0			•		
震補強対策の提 案	実験的手法を用い た耐震補強効果の 検証	0	0	0			•		

表-1.2.1 研究の全体計画

※太枠(平成 27~28 年度)は、本報告書(その1)の対象範囲

1.2.2. 研究の体制

本共同研究の研究体制を表-1.2.2に示す.

所属名	氏名	役職名
国立研究開発法人	石田 雅博	橋梁構造研究グループ 上席研究員
土木研究所	宇佐美 惣	橋梁構造研究グループ主任研究員
構造物メンテナンス	吉田 英二	橋梁構造研究グループ研究員
研究センター	山口 岳思	橋梁構造研究グループ研究員
	野田 翼	橋梁構造研究グループ研究員
	久保田 伸一	橋梁構造研究グループ 交流研究員
	山﨑 旬也	橋梁構造研究グループ 交流研究員
株式会社高速道路総合	藤岡 一頼	道路研究部 土工研究室 室長
技術研究所	竹本 将	道路研究部 土工研究室 室長
	安部 哲生	道路研究部 土工研究室 室長
	藤原 優	道路研究部 土工研究室 主任研究員
	中村 洋丈	道路研究部 土工研究室 主任研究員
	日下 寛彦	道路研究部 土工研究室 主任研究員
	細田 寿臣	道路研究部 土工研究室 研究員
	中澤 正典	道路研究部 土工研究室 研究員
国立学校法人京都大学	木村 亮	社会基盤工学専攻 地盤力学分野 教授
大学院工学研究科	岸田 潔	都市社会工学専攻 都市基盤システム工学 教授
	澤村 康生	都市社会工学専攻 都市基盤システム工学 准教授
	宮﨑 祐輔	都市社会工学専攻 都市基盤システム工学 助教

表-1.2.2 共同研究体制

1.3. 報告書の構成

本報告書(その1)の構成は、以下のとおりである.

- 1. 研究の概要
- 2. プレキャストアーチカルバートの特徴
- 3. カルバート工法の耐震性能照査手法
- 4. 損傷事例の分析
- 5. プレキャストアーチカルバートの縦断方向の地震時挙動に与える諸条件の影響
- 6. 数値解析を用いた損傷事例の再現性の検証
- 7. 動的遠心模型実験による損傷メカニズムの解明
- 8. まとめ

参考資料

- ・ プレキャストアーチカルバートの技術の変遷
- ・ 平成28年熊本地震におけるヒンジ式アーチカルバートの被災調査

参考文献

- 1) 『建設通信新聞』: 2016 年 5 月 27 日版, 中部・北陸面
- 2) 安部哲生,中村雅範:高速道路における大型のプレキャスト部材を用いたカルバートの活用と適用上の留意点,基礎工, Vol.42, No.4, pp.8-11, 2014.4

2. プレキャストアーチカルバートの特徴

2.1. 道路土エカルバートエ指針における分類

道路土工カルバート工指針¹⁾(以下,カルバート工指針)によれば,構造形式による分類 で,剛性ボックスカルバートとパイプカルバートがある.図-2.1.1 に従来型カルバートの 種類を示す.カルバート工指針における従来型カルバートとは,長年の経験の蓄積により 慣用設計法を適用できるものとしている.ここで,カルバート工指針における慣用設計法 とはカルバート工指針に示される設計法・施工法及び構造細目に従い,カルバートの安定 性や部材の安全性の照査を行うことで,常時の作用及びレベル1 地震動に性能1を,レベ ル2 地震動に対して性能2を確保するとみなせるものとされている.カルバートの要求性 能の例を表 - 2.1.1 に示す.カルバートの要求性能は重要度と呼ばれる区分によって,上部 道路の交通機能への影響と,隣接する施設等に及ぼす影響の重要性を総合的に勘案して定 めることとされている.カルバートの要求性能の水準を表-2.1.2 に,重要度の区分を表 -2.1.3 に示す.

アーチカルバートはカルバートの頂版部がアーチ形状をした土工構造物であり,鉛直土 Eおよび水平土Eを曲げに対する拘束力として利用することで部材厚を薄くしたものであ る.また,アーチ形状の構造物においては,応力の流れが急激に変化し応力集中を引き起 こす隅角部が少ないため,部材内に発生する応力をスムーズに伝達することができ,局所 的な損傷の少ない合理的な構造物を作ることが可能となる.このような構造的特性から, 土かぶりが大きい場合には,ボックスカルバートに比べて経済的な断面となる場合もある. しかし,アーチカルバートは頂版部がアーチ形状をしているため,ボックスカルバートに 比べ内空断面が小さくなるといったデメリットも有している.

カルバート工指針では、これらの特徴を理解し合理的かつ経済的となるよう構造形式を 選定することを求めている.

12

図-2.1.1 従来型カルバートの種類(道路土エカルバートエ指針¹⁾ P.7 抜粋)

想定する作用	重要度	重要度1	重要度2
常時0	D作用	性能1	性能1
地雷動の佐田	レベル1地震動	性能 1	性能 2
地長到の作用	レベル2地震動	性能 2	性能 3

表-2.1.1 カルバートの要求性能の例(カルバート工指針¹⁾ P.53 抜粋)

表-2.1.2 カルバートの要求性能の水準(カルバートエ指針¹⁾ P.51を基に作成)

性能1	想定する作用によってカルバートとしての健全性を損なわない性能
本45.0	想定する作用による損傷がカルバートとして限定的なものにとどまり、カルバー
1生肥 2	トとしての機能の回復を速やかに行い得る性能
性能 3	想定する作用による損傷がカルバートとして致命的とならない性能

表-2.1.3 カルバートの重要度の区分(カルバートエ指針¹⁾ P.51を基に作成)

重要度1	万一損傷すると交通機能に著しい影響を与える場合,	あるいは隣接する施
	設に重大な影響を与える場合	
重要度2	上記以外の場合	

2.2. 道路土エカルバートエ指針おける従来型カルバートの適用範囲

平成 22 年 3 月に改訂されたカルバート工指針では、それまで明確でなかった従来型カル バートの適用範囲について明示され、適用範囲内のカルバートを従来型カルバート、適用 範囲外のカルバートを従来型以外のカルバートとしている.従来型カルバートの適用範囲 を表 - 2.2.1 に示す.また、これ以外に以下の条件 1) ~7) に適合している必要があると されている.

- 1) 裏込め・埋戻し材料は土であること
- 2) カルバート縦断方向勾配が 10%程度以内であること
- 3) 本体断面にヒンジがないこと
- 4) 単独で設置されていること
- 5) 直接基礎により支持されること
- 6) 中柱によって多連構造となっていないこと
- 7) 土かぶり 50cm を確保すること

		項目	適用土か	作うりょう (m)
カルバートの種類			ぶり(m)	町町のくらら(三)
剛性ボックス カルバート		場所打ちコンクリ	0.5~20	内空幅 B:6.5 まで
	ボックス	ートによる場合		内空高 H : 5 まで
	カルバート	プレキャスト部材	0.5~6	内空幅 B:5 まで
		による場合		内空高 H : 2.5 まで
	門型カルバート		0.5~10	内空幅 B:8 まで
		場所打ちコンクリ	10 N F	中空値 P·0 キズ
	アーチ	ートによる場合	10 以上	内空幅 D・೦ まで
	カルバート	プレキャスト部材	0.5~14	内空幅 B:3 まで
		による場合		内空高 H:3.2 まで

表-2.2.1 従来型カルバートの適用範囲(カルバート工指針¹⁾ P.10 抜粋)

2.3. 従来型以外のプレキャストボックスカルバートの特徴

従来型以外のプレキャストボックスカルバート工法は、数多く存在するが、代表的な工 法としては接合部を PC 圧着工法により剛結合と評価したもの²⁾ や機械式継手により剛接 合と評価したもの³⁾ がある.また、隅角部にループ継手を配置し剛接合と評価したもの⁴⁾ などがあり、多くの工法でプレキャスト部材同士やプレキャスト部材と場所打ちコンクリ ートとの接合部は、剛接合と評価している.これらのプレキャストボックスカルバートは 断面形状が大きく、**表-2.2.1** の適用範囲を超えるため、従来型以外のカルバートに分類さ れる.プレキャストボックスカルバートの構造図(例)を図-2.3.1 に示す.

(a) PC 圧着工法の例(参考文献2より転載)

図-2.3.1 プレキャストボックスカルバートの構造図(例)

2.4. 従来型以外のプレキャストアーチカルバートの特徴

従来型以外のプレキャストアーチカルバート工法は、数種類存在するが、代表的な工法 としては、継手の接合部をヒンジと評価したアーチカルバートがあり、アーチ肩部 45°付 近にヒンジを有する2ヒンジアーチ⁵⁾と、脚部とアーチクラウンにヒンジを有する3ヒン ジアーチ⁶⁾などがある.これらのプレキャストアーチカルバートは前述のように本体断面 にヒンジがあることや表-2.2.1 に示す適用範囲を超えるため、従来型以外のカルバートに 分類される.また、図-2.4.1 に国土交通省、NEXCO、地方自治体、公団、民間の実績も含め た2ヒンジアーチおよび3ヒンジアーチの施工実績数を示す.2ヒンジアーチについてはモ ジュラーチ工法協会に、3ヒンジアーチについては日本テクスパン協会にヒアリングを行っ た結果を集計したものである.2ヒンジアーチと3ヒンジアーチを合わせて平成26年まで に約800件の実績がある.

図-2.4.1 2 ヒンジアーチおよび 3 ヒンジアーチの施工実績数

2.4.1.2 ヒンジアーチの特徴

2 ヒンジアーチはフランスで考案され実用化されたプレキャスト部材からなる分割式ア ーチカルバートトンネルである. 写真-2.4.1 に供用状況および施工状況を示す. このアー チの構造は図-2.4.2 に示すように,主にプレキャストコンクリート製の頂版部材と左右の 側壁部材,場所打ちコンクリートによる底版部材の計 4 部材で構成される. 場所打ち鉄筋 コンクリート製インバートによって閉合断面としたインバートタイプと左右の基礎が独立 しているフーチングタイプがある. インバートタイプを標準としているが,地盤が良好で 偏土圧や盛土条件に偏りが無い場合にはフーチングタイプが合理的となる場合がある ⁵⁾ と されている.

図-2.4.2 (c) に示すように部材間の継手は、頂版部材と側壁部材はナックル形状のヒンジ接合となっており、底版部材と側壁部材とは図-2.4.2 (d)、(e) に示すように機械式継手による剛接合となっている. ヒンジ部は頂版部材の脱落防止対策としての曲がりボルト(M24 (10.9))を挿入しており、ボルト周りは発錆防止のためのモルタルを充填している.

縦断方向は図-2.4.2に示すように、1.0m~2.0mにリング状に分割された頂版部材と側壁 部材は、PC 鋼棒によって連結を行っているが、これはリング同士を引き寄せることにより、 リング間に設置された防水用のシール材を圧縮変形させ、止水性を確保するためであり、 PC 鋼棒の緊張力や伸び量の管理を行っておらず、プレストレスが有効に作用しているとは 言い難い.一方、底版部材は10m~15m程度に1ヵ所伸縮目地があるものの、伸縮目地間は 横方向鉄筋によって剛結合されており、縦断方向の剛性はプレキャスト部よりも高いもの と考えられる.

(a) 供用状況

(b)施工状況 写真-2.4.1 2ヒンジアーチカルバート

2.4.2. 3 ヒンジアーチの特徴

3 ヒンジアーチは、フランスから導入された分割式アーチカルバートトンネルである. 写真-2.4.2 に供用状況および施工状況を示す.構造は図-2.4.3 に示すように、左右に分割 されたコンクリート製プレキャストアーチ部材と場所打ちコンクリート製の基礎で構成さ れる.基礎形状により、インバート基礎タイプと独立基礎タイプに分けられ、これらは使 用用途、地形、土質、荷重条件、施工方法、工程等を考慮して適切に決定すること⁶⁾とさ れている.

このアーチの構造には頂部に1箇所,基礎部に2箇所のヒンジが存在し,頂部のヒンジ は平成22年に改良された新タイプと,それ以前に採用されていた旧タイプがある.新タイ プは図-2.4.3(c)に示すように頂部の接合部を凹凸に加工した部材を突き合わせること によってヒンジ接合とされており,旧タイプは図-2.4.3(d)に示すように,左右のアー チ部材の接合部に対称の半円状の切欠きを設け,そこにクラウンパイプと呼ばれる鋼製の 円形パイプを設置する構造である.クラウンパイプ内は補強鉄筋を配置し,パイプ内外の 隙間にグラウト材を注入することで,ヒンジ構造としている.脚部ヒンジについては図 -2.4.3(e)に示すように脚部に設置される目地材によってヒンジ接合とされている.

縦断方向は1.25mに分割されたフルサイズのアーチ部材と端部に設置される0.625mのハ ーフサイズのアーチ部材によって千鳥に配置されている. PC 鋼材やボルト等により,リン グ同士を引き寄せ,リング間に設置された防水用のシール材を圧縮変形させることにより 止水性を確保する構造である.さらに,図-2.4.3 に示すような,場所打ち鉄筋コンクリー ト製の頂部ビーム工が平成11年に導入され,平成15年には同じく場所打ち鉄筋コンクリ ート製の脚部ビーム工が導入され,縦断方向の一体化が図られている.頂部ビーム工は常 に設置することとされ,脚部ビーム工はアーチ,上載盛土の形状・規模等により必要に応 じて設置するもの⁶とされている.

(a)供用状況

(b)施工状況写真-2.4.2 3 ヒンジアーチカルバート

図-2.4.3 3 ヒンジアーチの構造

参考文献

- 1) (社)日本道路協会:道路土工カルバート工指針,平成22年3月
- 2) 旭コンクリート工業株式会社ホームページ(最終閲覧日 2019 年 5 月 8 日) URL:http://www.asahi-concrete.co.jp/product/25-04.html
- 3) ジオスター株式会社ホームページ(最終閲覧日 2019 年 5 月 8 日)
 URL:https://www.geostr.co.jp/product/?pca=2&ca=3&id=1488163903-168355
- 4) FA 工業会ホームページ(最終閲覧日 2019 年 5 月 8 日)
 URL:http://fabox.jp/products/
- 5) (一財)地域地盤環境研究所,モジュラーチ工法協会: Modularch 技術マニュアル, 平成 29 年 10 月
- 6) (財)先端建設技術センター,テクスパン工法設計施工マニュアル検討委員会:テ クスパン工法設計施工マニュアル(案),1998.12.

3. カルバートエ法の耐震性能評価手法

カルバートの耐震性能を検討するに当たり,ボックスカルバートに代表される地中構造物の耐震性能についての現状を以降に述べる.

参考文献 1) では、一般的にカルバートのような地中構造物は、横断面の耐荷力により上部の地盤を支えており、縦断面には上載荷重の支持機能は無いとされている.ここで、横断面とは図-3.1.1 に示すように函軸直角方向のことで、縦断面とは函軸方向のことである.

土田ら²⁾は3連のボックスカルバートを対象に2軸方向の振動による解析を行なってい るが、横断方向の照査のみで構造物の安全性を確保することが可能としている.実務的な 設計に関すれば、道路土工カルバート工指針³⁾では、実績を考慮し、一般にカルバートの 延長は短く、また縦断方向に適切な間隔で継手を設けるため、地震動の照査は横断方向に ついてのみ行えばよいとしている.また、鉄道構造物の開削トンネルの設計⁴⁾では、縦断 方向の検討は、地層構成などが縦断方向で大きく変わるような場合を除き、構造細目を守 ることで、検討の省略が可能とされている.このような背景から、カルバートの耐震性能 は、横断方向が耐震性能に関する重要な要素であり、縦断方向の設計は実施されていない ことが多いため、横断方向に対する研究が優先されてきた.

3.1. ボックスカルバートの耐震性能照査手法

3.1.1. 横断方向の耐震設計手法

地中構造物における主な設計指針での耐震設計手法を表-3.1.1,表-3.1.2 に示す.本来 は動的な地震力を静的な作用に置き換えて構造物に作用させる,静的解析が主に使用され, 地盤の影響を考慮する方法として,主に応答変位法や応答震度法が採用されている.応答 変位法は,構造物を地盤ばねで支えられた骨組み構造でモデル化し,自然地盤の応答変位 を地盤ばねを介し構造物へ作用させるものである.これに対し,応答震度法は,簡略モデ ルである地盤ばねを使用しない方法として提案されている方法で,2次元 FEM を用いて設 計地震動作用時の地盤応答加速度を算出し,構造物へ作用させる設計方法である.

$\sum_{i=1}^{n}$	下水道施設の耐震対策指針と解説 5)	鉄道構造物等設計標準・同解説 耐震設計 4)
照査方法の概	管路施設や地中埋設線状構造物においては, 原則として応答変位法を用いる.	動的解析により設計地震動に対する応答値 を算定する.ただし,詳細な検討を必要とせ ず,静的な地震動を設定できる場合には,静 的解析法によってもよい.静的解析は一般に 応答変位法を用いてよい.
要		
地震動の作用	対象とする地震動は,施設の供用期間内に1 ~2度発生する確率を有する地震動(レベル 1地震動)及び陸地近傍に発生する大規模な プレート境界地震や,直下型地震による地震 動のように,供用期間内に発生する確率は低 いが大きな強度を持つ地震動(レベル2地震 動)の二段階の地震動を想定する.	 地震動の作用としては、L1地震動及びL2 地震動の2種類の地震動を想定する. ここで、 L1地震動:構造物の建設地点で設計耐用期 間内に数回程度発生する確率を有する地震 動 L2 地震動:構造物の建設地点で考えられる 想定される最大級の地震動(対象とする構造
		物に最大級の影響を与える地震動)

表-3.1.1 主な設計指針におけるボックスカルバートの横断方向の耐震性能照査手法(その1)

	設計要領第二集 6)	道路土工カルバート工指針 3)
照查士	下記2通りの照査方法が示されている.	カルバートの種類,想定する作用および限界
	I)震度法による地震時応力の照査方法	状態, 必要となる地盤調査, 必要とされる精
	応答変位法による静的解析で,部材剛性は線	度等を考慮して, 適切な手法を選定する必要
	形としている.	がある.
	Ⅱ)地震応答解析による照査方法	(1) 動的照查法
万	応答変位法による静的解析で,部材剛性は非	(2)静的照查法
伝の	線形特性を考慮している.	(2·1) 応答変位法 (共同溝設計指針 ⁸⁾ や
		駐車場設計・施工指針 %に示される地盤の変
斑		形を考慮)
安		(2-2) 応答震度法を始めとする FEM 系
		静的解析手法 (近年地下構造物への適用事
		例が多い)
	地震動の作用は、レベル1地震動およびレベ	地震動の作用としては、レベル1地震動及び
	ル2地震動の2種類を想定するものとし、そ	レベル2地震動の2種類の地震動を想定す
	の詳細は,道路土工要綱 ?) 巻末資料 資料	る. さらに、レベル2地震動としては、プレ
地	-1 地震動の作用を参考にするとよい.	ート境界型の大規模な地震を想定したタイ
震		プ I の地震動, 及び, 内陸直下型地震を想定
動		したタイプⅡの地震動の2種類を考慮する
の		こととする.
作		レベル1地震動及びレベル2地震動として
用		は、「道路橋示方書・同解説 V耐震設計編
		10)」に規定される地震動を考慮するものと
		し,その詳細は「道路土工要綱 7) 巻末資
		料」を参照するのがよい.

表-3.1.2 主な設計指針におけるボックスカルバートの横断方向の耐震性能照査手法(その2)

3.1.2. 縦断方向の耐震設計手法

前述のように、カルバート工指針や鉄道構造物の開削トンネルの設計では、適切な間隔 で継手を設けることや構造細目を守ることで、縦断方向の耐震設計は省略してよいとされ ており、詳細な設計手法は記載されていない.カルバートのような地中構造物の縦断方向 の耐震設計手法に関しては、応答変位法が基本であるとされている¹⁾.具体的には構造物中 心深さでの地盤変位を軸方向に連ねた変位分布を求め、これを構造モデルに与えて、断面 力や継手の目開きを算定する方法で、構造物は 1 本の梁、地盤はばねとした弾性床上の梁 モデルとなる. 表-3.1.3 に縦断方向の耐震設計手法¹⁾の分類を示す.

		地盤変位の算定	構造物の解析	
応答震度法 (例えば共同溝指針)		HERE H	超な場下構造的 地盤はわ (a) 抽度時が超くな (b) 抽力内ののモデル (b) 動力内のモデル	
2 次 元 解 析	ばね質点モデル	and	同上	
	FEM モデル		同上	
3 次 元 解 析	ばね質点モデル		同上	
	FEM モデル		同上	
3次元一体解析		ト ネ ル 部 秋弱地盤 硬質地盤		

表-3.1.3 縦断方向の耐震設計手法[参考文献1より転載]

3.2. プレキャストアーチカルバート工法の耐震性能評価

2 ヒンジアーチと3 ヒンジアーチの耐震性能についても,これまで数多くの研究^{例えば11)12)} ¹³⁾ が行なわれてきたが、これらはカルバート横断方向に作用する地震動に対してのもので あり、カルバート縦断方向に対する耐震性能に関する研究事例は少ない.これは一般的な カルバートと同様の傾向である.

縦断方向の耐震性能に関しては、プレキャストアーチカルバート工法が、およそ1.0m~ 2.0mのリング状の部材をトンネル軸方向に接続している構造であり、縦断方向の剛性が場 所打ち構造のカルバートとは異なることが考えられ、また、参考文献14)では、プレキャ スト部材の構造解析を場所打ち構造と同じ前提で行うためには、部材剛性が同等でなけれ ば、部材に生じる力を適切に評価できないとしている.これらのことから、プレキャスト 構造の縦断方向の剛性評価は、耐震性に対する重要な事項と考えられる.澤村ら¹⁵⁾の研究 では、縦断方向の剛性の評価に注目し、図-3.2.1および図-3.2.2に示すような模型を用い て遠心模型実験を行っている.これにより、プレキャストカルバートの縦方向のリング間 の連結の有無が、カルバートへの間の目地の開きを誘発する要因であることを明らかにし ているが、その剛性評価手法までの知見は得られていない.

図-3.2.2 プレキャストアーチカルバート模型の寸法[参考文献 13 より転載]

3.2.1. 2 ヒンジアーチの耐震性能照査手法¹⁶⁾

2ヒンジアーチの耐震性能照査手法は供用中に発生する確率が高いレベル1地震動と供用 期間中に発生する確率は低いが大きな強度をもつレベル 2 地震動について検討することと されており、横断方向および縦断方向のそれぞれについて、最も不利な条件に検討を行う こととされている.図-3.2.3に2ヒンジアーチの耐震設計フローを示す.

横断方向の検討では、応答震度法を用いることを標準としており、動的振動台実験¹⁷⁾の 結果より、2 ヒンジアーチの損傷位置が周辺地盤に強制変位を与える静的解析により表現可 能であることを確認していることから、静的解析の適用が可能であるとしている.図−3.2.4 に横断方向の耐震設計フローを示す.また、図−3.2.5 に応答震度法による横断方向の耐震 設計モデルを示す.

縦断方向の検討では,詳しい照査手法は決定していないが,前述のボックスカルバートの照査手法と同様に応答変位法による方法が一般的に採用されている.

図-3.2.3 2 ヒンジアーチの耐震設計フロー[参考文献 16 より転載]

図-3.2.4 2 ヒンジアーチの横断方向の耐震設計フロー[参考文献 16 より転載]

図-3.2.5 応答震度法による横断方向の耐震設計モデル[参考文献 16 より転載]

3.2.2. 3 ヒンジアーチの耐震性能照査手法¹⁸⁾

3 ヒンジアーチも2 ヒンジアーチと同様に供用中に発生する確率が高いレベル1 地震動 と供用期間中に発生する確率は低いが大きな強度をもつレベル2 地震動について検討する こととされているが、横断方向に対する検討方法のみが記載され、縦断方向に対する検討 方法の記載は無い.横断方向の検討は応答変位法により行うことを原則としている.図 -3.2.6 に3 ヒンジアーチの応答変位法による検討のフロー(例)を示す.また、速度応答 スペクトルを図-3.2.7 に示す.

図-3.2.6 3 ヒンジアーチの応答変位法による検討のフロー(例)[参考文献 18 より転載]

図-3.2.7 速度応答スペクトル[参考文献 18 より転載]

参考文献

- 1) (公社)土木学会:続・実務に役立つ耐震設計入門(実践編),平成26年10月
- 2) 土田恭平,伊藤悟郎,渡辺伸和,米澤健次:水平二方向地震動に対する地下構造物の耐震性能評価手法の提案,土木学会第70回年次学術講演会,I-192,平成27年9月
- 3) (社)日本道路協会:道路土工カルバート工指針,平成22年3月
- 4) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説 耐震設計,平成24年9月
- 5) (公社)日本下水道協会:下水道施設の耐震対策指針と解説 2014 年版 , 2014 年 6 月
- 6) 東日本高速道路(株),中日本高速道路(株),西日本高速道路(株):設計要領第二集, 平成 26 年 7 月
- 7) (社) 日本道路協会:道路土工要綱, 平成 21 年 6 月
- 8) (社) 日本道路協会: 共同溝設計指針, 昭和 61 年 3 月
- 9) (社) 日本道路協会: 駐車場設計·施工指針 同解説, 平成4年11月
- 10) (公社) 日本道路協会:道路橋示方書・同解説 V耐震設計編,平成29年11月
- 11) 久保田伸一, 篠原聖二, 藤原慎八, 大谷義則, 石田雅博: ヒンジ式プレキャストア ーチカルバートの正負交番載荷実験による耐震性能評価,構造工学論文集 Vol.62A, pp.926 - 938, 2016.3
- 12) 松下麗菜,澤村康生,岸田潔,木村亮:2 ヒンジプレキャストアーチカルバートの 強地震時における損傷形態に関する振動実験,土木学会第70回年次学術講演会, Ⅲ-132,2015.9
- 13) 澤村康生,石原央之,岸田潔,木村亮:強地震時における3ヒンジプレキャストア ーチカルバートの損傷形態に関する実験的検討,第50回地盤工学研究発表会, No.575,2015.9
- 14) (公社)日本コンクリート工学会:プレキャストコンクリート製品の性能設計と利用技術検討委員会報告書, p.19, 2011.11
- 15) 澤村康生, 荒居旅人, 岸田潔, 木村亮: 壁面工を有する盛土内に設置されたアーチ カルバートにおける縦断方向の地震時挙動に関する遠心模型実験, 地盤工学ジャー ナル Vol.9,No.1,41-57, 2014
- 16) (一財)地域地盤環境研究所,モジュラーチ工法協会: Modularch 技術マニュアル, 平成 29 年 10 月
- 17) 木村 亮,井上 晋,岸田 潔,長屋 淳一,澤村 康生:大型実験および数値解析に よる連続アーチカルバート盛土の設計規範の構築に関する研究,道路政策の質の向 上に資する技術研究開発成果報告レポート, No.24 - 4,

http://www.mlit.go.jp/road/tech/jigo/h24/pdf/report24-4.pdf, 2015.

18) (財) 先端建設技術センター、テクスパン工法設計施工マニュアル検討委員会:テクスパン工法設計施工マニュアル(案),1998.12.

4. 損傷事例の分析

4.1. 東北地方太平洋沖地震によるプレキャストアーチカルバートの被災事例

前述のとおり、プレキャストアーチカルバートはこれまで多くの建設工事で使用されて きたが、平成23年東北地方太平洋沖地震において、高速道路として初めて地震により損傷 が発生したプレキャストアーチカルバートが確認された¹⁾.損傷を受けたプレキャストアー チカルバートは9基確認されており、全てにおいて図-4.1.1¹⁾と写真-4.1.1²⁾に示すような、 アーチ天井部のヒンジ部に角欠けが生じ、コンクリート片の剥落が発生したとのことであ った.また複数のアーチ部材には、微細なひび割れやカルバート背面の防水シートの損傷 による漏水なども確認された.ここで、損傷が報告されている9基のアーチは、アーチ天 井部にヒンジを有していることより全て3ヒンジアーチであり、2ヒンジアーチの東北地方 太平洋沖地震による損傷は報告されていない.しかしながら、2ヒンジアーチの実績数は3 ヒンジアーチと同程度に存在することや、損傷が発生した3ヒンジを有したプレキャスト 構造であることなどを考慮すると、2ヒンジアーチについても損傷を調査する必要があると 考えられる.

図-4.1.1 高速道路に発生したアーチカルバートの損傷[参考文献1より転載]

写真-4.1.1 アーチ天井部のコンクリート片の剥落[参考文献2より転載]

4.2. 地震時以外の作用によるプレキャストアーチカルバートの損傷事例 4.2.1. 2 ヒンジアーチの損傷事例³⁾

(1). 事例1 過少な平面交差角および基礎地盤条件に起因して損傷が生じた事例

図-4.2.1 (a) のような,内空幅 8.8m,内空高 7.0m のフーチングタイプの 2 ヒンジ アーチを,図-4.2.1 (b) に示すように,深さ方向 10m 地盤改良を行ったのちに設置 し,最大土かぶり 7.5m まで盛土を行った事例である.縦断勾配は 0.07%と小さいが, 上部道路と 2 ヒンジアーチとの平面交差角が 62°と小さく,地盤改良部より深い位置 に N 値 10 以下の洪積粘土層がある.図-4.2.1 (c) に平面図を示す.

損傷は盛土施工中に発生しており,押え盛土側の側壁部材内側に斜め方向のひび割 れおよび頂版部材内側中央にひび割れが発生(ひび割れ幅1~2mm程度),また,一部 コンクリート片の剥落が生じた.図-4.2.2 に損傷位置図を示す.また,損傷状況を写 真-4.2.1 に示す.

頂版部材の内側中央に発生したひび割れについては、地盤改良範囲よりも深い位置 に軟弱地盤が存在することで、沈下が生じ、2 ビンジアーチ直下よりも周辺盛土の沈下 量が大きいことで、鉛直土圧が増加し、設計で想定していた以上の大きな曲げモーメ ントが作用したことが原因と考えられる.一般的にカルバートのような地中構造物は 内部が空洞になっているため、周辺盛土よりも重量が小さく沈下しにくい構造物のた め、周辺盛土との沈下量に差が生じたものと考えられる.

側壁部材に発生したひび割れについては, 沈下と偏土圧の複合的な要因によるもの であると考えられる. 図-4.2.3 に当該現場における 2 ヒンジアーチの沈下量の実測値 を示す. 土かぶりが大きくなる中央部に向かって大きく沈下しており, 坑口部との相 対沈下量は約 27cm と大きな値を示している. 図-4.2.4 に示すように, 中央部に向か って弓なりに沈下することにより, 2 ヒンジアーチの頂部が接触し, 坑口方向の反力に よりひび割れが発生したものと考えられる. 中央部を境界に左右でひび割れの発生位 置が異なるのは, 図-4.2.5 に示すように, 偏土圧の影響によるものと考えられる.

これらの損傷の要因は、軟弱地盤の圧密沈下と平面交差角による偏土圧であると考 えられるため、下記のようにマニュアルを改訂した.

- N 値だけで適用や改良範囲を判断せず,圧密沈下が懸念されるような明らかな軟 弱層が存在する場合には処置が必要である旨をマニュアルに明記した.
- ・ 過大な偏土圧を避けるため,平面交差角 70°以上を厳守するよう変更した.また, 平面交差角の大きさによらず偏土圧が作用する場合は,偏土圧の検討を行うもの とした.

図-4.2.1 事例1の図面(参考文献3より転載)

(a) 側壁部材のひび割れ
 (b) 頂版部材のひび割れ
 写真-4.2.1 事例1の損傷状況(参考文献3より転載)

図-4.2.3 事例1の2ヒンジアーチの沈下量の計測結果(参考文献3より転載)

図-4.2.5 偏土圧による損傷メカニズム(参考文献3より転載)

(2). 事例 2 過大な縦断勾配に起因して損傷が生じた事例

図-4.2.6 (a) のような,内空幅 11.6m,内空高 9.3m のフーチングタイプの 2 ヒン ジアーチの事例を示す.この事例は,図-4.2.6 (b) に示すように縦断勾配が 11.0%で, 上部道路との平面交差角は 81°である.図-4.2.6 (c) に平面図を示す.

損傷は盛土施工中に発生しており、下流側の側壁部材内側に斜め方向のひび割れ(ひび割れ幅0.05~0.3mm程度)が発生した.また、中央部で頂版部材のコンクリート片の剥落が発生した.図-4.2.7に損傷位置図を示す.また、損傷状況を写真-4.2.2に示す.地震後の調査によると上流側にひび割れの発生が確認されている.なお、支持地盤は火山性の岩盤の表層を除去して、砕石により置き換えを施しており、地盤沈下などは観測されていない.

側壁部材に発生したひび割れと頂版部材のコンクリート片の剥落については,縦断 勾配と上部盛土による縦断方向への作用によるものであると考えられる. 図-4.2.8 に 示すように,坑口に向かって,2ヒンジアーチの頂部が変形することで,頂版部材の接 触や側壁部材の斜め方向のひび割れが発生したものと考えられる. なお,側壁部材の 斜め方向のひび割れは,左右どちらの側壁部材にも発生しており,偏土圧の影響が小 さいものと考えられる.

これらの損傷の要因は,過大な縦断勾配と盛土による縦断方向荷重の作用であると 考えられるため,下記のようにマニュアルを改訂した.

- 過大な縦断方向の荷重を回避するため、縦断勾配は 10%以下を厳守するものとした。
- 縦断方向の曲げ(トンネル軸方向の倒れ)に対して有効に働く補強用鉄筋を追加した。

(c) 平面図図-4.2.6 事例2の図面(参考文献3より転載)

図-4.2.7 事例2の損傷位置図(参考文献3より転載)

写真-4.2.2 事例2の図面(参考文献3より転載)

図-4.2.8 縦断勾配と上部盛土の縦断方向荷重による損傷メカニズムの推定 (参考文献3より転載)

(3). 事例3 基礎地盤条件に起因して損傷が生じた事例

図-4.2.9 (a) のような,内空幅 8.6m,内空高 6.4m のインバートタイプの 2 連 2 ヒンジアーチを,図-4.2.9 (b) に示すように,地盤改良を行ったのちに設置し,最大 土かぶり 2.0m まで盛土を行った事例である.縦断勾配は 1.25%と小さく,上部道路 と 2 ヒンジアーチとの平面交差角も 80°と大きい.地盤改良部より深い位置に N 値 2 程度の洪積粘土層がある.図-4.2.9 (c) に平面図を示す.

損傷は盛土施工中に発生しており,中壁下部のハンチ部に 0.05mm~0.75mm 程度の ひび割れが発生した.図-4.2.10 に損傷位置図を示す.また,損傷状況を写真-4.2.3 に,左坑口部の損傷状況図を図-4.2.11 に示す.

図-4.2.12 (a) に示すように、左右の側壁と中壁の沈下量に大きな差が生じており、 横断方向に不同沈下が発生している.この沈下の要因であるが、図-4.2.9 (b) に示す ように、地盤改良部以深に N 値 2 程度の軟弱な沖積粘土層があり、この層に圧密沈下 が生じているものと考えられる.さらに、当該現場のようなカルバート外幅が広くな る 2 連構造であると、左右の側壁下部と中壁下部に生じる反力が異なり、その結果、 不同沈下に至ったと考えられる.また、図-4.2.12 (b) に示すように、不同沈下が発 生した場合には側壁部および底版部の鉄筋の引張応力が大きな値を示している.ひび 割れが多く確認されている中壁下部のハンチ部での鉄筋の引張応力は計測されていな いが、より大きな引張応力が発生しているものと推察される.

この損傷の要因は、軟弱地盤の圧密沈下であると考えられるため、下記のようにマ ニュアルを改訂した.

N 値だけで適用や改良範囲を判断せず、圧密沈下が懸念されるような明らかな軟弱層が存在する場合には処置が必要である旨をマニュアルに明記した。

図-4.2.9 事例3の図面(参考文献3より転載)

写真-4.2.3 事例3の損傷状況(参考文献3より転載)

図-4.2.11 事例3の左坑口部の損傷状況図(参考文献3より転載)

図-4.2.13 事例3の損傷メカニズムの推定(参考文献3より転載)

4.2.2. 3 ヒンジアーチの損傷事例

3 ヒンジアーチの損傷の報告である参考文献4)では、盛土施工時の不具合や盛土形状に よりカルバートに作用した偏土圧、カルバート周辺の締固め不足が原因となり、アーチカ ルバートに変形が発生したとされている.変状は、図-4.2.14 に示すようなアーチ天井部の コンクリート片の剥落やアーチ部材の 0.1 mm以下の微細なひび割れが確認されており、地 震荷重を受けた場合と同様の変状となっている.当該の 3 ヒンジアーチは、縦断方向へ最 大 106 mmの変位が確認されていることから、3 ヒンジアーチに縦断方向への荷重の作用があ ったことが考えられ、この縦断方向への挙動が変状につながったものとみられる.このこ とから、地震荷重によって動的に縦断方向への荷重を受けた場合の損傷と、盛土の変状の 様な静的な荷重を縦断方向に受けた場合に生じる損傷は、同様の傾向になることが考えら れる.

図-4.2.14 地震荷重以外で発生した損傷の例(参考文献4より転載)

4.3. 損傷事例の収集,分析による分類

前述のように、3 ヒンジアーチでは地震時、地震時以外の作用によってアーチ天井部のコ ンクリート片の剥落が確認されており、これらの要因は縦断方向荷重の作用によるものと 考えられる.また、2 ヒンジアーチについては地震時以外の作用によって損傷が確認されて いる.2 ヒンジアーチの損傷要因は沈下、偏土圧、縦断方向荷重の3つに大別でき、縦断方 向荷重が作用していると思われる損傷事例には、側壁部材の斜め方向のひび割れが確認さ れている.

これらのことから、より詳細な損傷の実態を把握するため、プレキャストアーチカルバートの実績を収集し、損傷の分析を行った.また、損傷事例の収集は、地震荷重が原因のものだけではなく、地震荷重以外で発生したものについても含めたものとした.

4.3.1. 収集, 分析方法

分析に使用したデータは2ヒンジアーチがモジュラーチ工法協会から、3ヒンジアーチは 日本テクスパン協会からの提供である.調書の整理は損傷の発生した事例に対し、損傷の 分類、断面形状、敷設仕様、架設年、地震の影響について行った.なお、損傷の分類は後 に述べる.損傷数と実績数は、2ヒンジアーチ 37件/483件(8%)、3ヒンジアーチは55件/332 件(17%)であった.

ここで損傷物件数について述べる.カウントした損傷数は,損傷の大きさや構造物への 影響度,損傷の原因や損傷に対しての補修や補強の必要性などは考慮していないものであ る.また,地震被害についても,地震後の供用の有無や損傷の大きさは考慮していない. 例えば,発生した損傷がその物件に1箇所だけの場合や,延長の半数以上の部材に損傷が 出ていた場合であっても,その区別をせず,それぞれを損傷物件1とカウントして集計し た.また,舗装面のひび割れや面壁の損傷などもカウントした.土木構造物へ発生した損 傷を定量的に評価する指標は存在していないため,集計はこのような考え方を採用した.

次に損傷の分類について述べる.分類は図-4.3.1 に示すように,損傷が発生している部 位を「ヒンジ」「抗口」「基礎」「部材」の4種類に分けてそれぞれを分析した.

整理したアーチカルバートの条件項目はそれぞれアーチカルバートの内空幅,内空高, 内空断面積(内空幅×内空高),縦横比(内空高/内空幅),最大土かぶり,最小土かぶり, 縦断勾配,抗口交差角,敷設年,基礎構造とした.

(a) 2 ヒンジアーチ

(b) 3 ヒンジアーチ図-4.3.1 ヒンジ式アーチカルバートの損傷分類方法

4.3.2.2 ヒンジアーチの分析結果

図-4.3.2に2ヒンジアーチの内空幅による分析を示す.図-4.3.2(a)は内空幅と損傷物 件数による分析,図-4.3.2(b)は内空幅と損傷個所の部位による分析となる.損傷の物件数 は37件,損傷の部位数(同じ物件に複数個所の損傷があるケースのため,物件数より多い) は48箇所である.図-4.3.2(a)から内空幅8mと11mに損傷を受けた物件が多いこと,図 -4.3.2(b)から全体の損傷個所数は,部材に発生した損傷が多いこと,基礎に発生した損 傷が少ないことが伺える.また損傷個所数は8mと12mに多いことが伺える.

図-4.3.3 に内空高による分析を示す.図-4.3.3(a)から内空高 6m から 9m にかけて損傷を 受けた物件が多いこと、図-4.3.3(b)から損傷個所数も、同範囲での発生が多いことが伺 える.

図-4.3.4 に内空断面積による分析を示す.アーチカルバートの内空断面積は円形断面であるが,分類は(内空幅×高さ)の矩形断面積を分類のパラメータとした.図-4.3.4(a)から内空断面積 60m²から 100m²にかけて損傷を受けた物件が多いこと,図-4.3.4 (b) から損傷個所数も,同範囲での発生が多いことが伺える.

図-4.3.5 に内空高/内空幅の縦横比による分析を示す.図-4.3.5(a)から縦横比は 0.8 に 損傷を受けた物件が多いこと、図-4.3.5(b)から損傷個所数も、同範囲での発生が多いこ とが伺える.

図-4.3.6 に最大土かぶりによる分析を示す.図-4.3.6(a)から最大土かぶり 4m に損傷を 受けた物件が多いこと、図-4.3.6(b)から損傷個所数も、同範囲での発生が多いことが伺 える.

図-4.3.7 に最小土かぶりによる分析を示す.図-4.3.7(a)から最小土かぶり 1m 以下に損傷を受けた物件が多いこと、図-4.3.7 (b) から損傷個所数も、同範囲での発生が多いことが伺える.

図-4.3.8 に縦断勾配による分析を示す.図-4.3.8(a)から縦断勾配 0.5%以下に損傷を受けた物件が多いこと、図-4.3.8(b)から損傷個所数も、同範囲での発生が多いことが伺える.

図-4.3.9 に抗口交差角による分析を示す.図-4.3.9(a)から抗口交差角 90° に損傷を受けた物件が多いこと、図-4.3.9(b)から損傷個所数も、同範囲での発生が多いことが伺える.

図-4.3.10 に敷設年別による分析を示す.図-4.3.10(a)から2000年,2001年,2006年に 敷設された物件に損傷が多いこと,2010年以降には損傷物件が確認されていないこと,図 -4.3.10(b)から損傷個所数も,同年代の敷設に多いことが伺える.

図-4.3.11 に基礎構造別による分析を示す.図-4.3.11 (a) からインバートが無い構造に損傷を受けた物件が多いこと,図-4.3.11 (b) から損傷個所数もインバートが無い構造での発生が多いことが伺える.

以上より、2 ヒンジアーチの分析をまとめた結果を示す.

- ・ 内空幅 8mと 11mに損傷を受けた事例が多い
- ・ 内空高 6m~9mに損傷を受けた事例が多い
- ・ 内空断面 60 m²~100 m²に損傷した事例が多い
- ・ 内空高/内空幅(縦横比)で0.7~0.9 が多く, 0.8 が最も多い
- ・ 最大土かぶり 4m に損傷を受けた事例が多い
- ・ 最小土かぶり 1m 以下に損傷を受けた事例が多い
- ・ 縦断勾配 0.5%以下に損傷を受けた事例が多い
- ・ 坑口交差角 90° に損傷を受けた事例が多い
- ・ 敷設 1999 年~2009 年に損傷を受けた事例が多い
- ・ 敷設 2010 年以降は損傷なし
- ・ インバート無構造に損傷を受けた事例が多い
- ・ 損傷物件と損傷個所数が多く発生する分類の範囲はおおむね一致する
- ・ 部材に発生した損傷個所数は少ない

(a) 損傷物件数と内空幅との関係

(b) 損傷発生部位数と内空幅との関係 図-4.3.2 2 ヒンジアーチの損傷分析(内空幅との関係)

(a) 損傷物件数と内空高との関係

(a) 損傷物件数と内空断面積との関係

(a) 損傷物件数と内空断面比との関係

(a) 損傷物件数と最大土かぶりとの関係

(a) 損傷物件数と最小土かぶりとの関係

(a) 損傷物件数と縦断勾配との関係

(a) 損傷物件数と坑口交差角との関係

(a) 損傷物件数と敷設年との関係

(b) 損傷発生部位数と敷設年との関係 図-4.3.10 2 ヒンジアーチの損傷分析(敷設年との関係)

(a) 損傷物件数と基礎構造との関係

(b) 損傷発生部位数と基礎構造との関係

図-4.3.11 2 ヒンジアーチの損傷分析(基礎構造との関係)

4.3.3.3 ヒンジアーチの分析結果

図-4.3.12に3ヒンジアーチの内空幅による分析を示す.図-4.3.12(a)は内空幅と損傷 物件数による分析,図-4.3.12(b)は内空幅と損傷個所部位数による分析を示す.損傷の物 件数は55件,損傷の部位数(同じ物件に複数個所の損傷があるケースのため,物件数より 多い)は117箇所である.図-4.3.12(a)から内空幅10mと14mに損傷を受けた物件が多い こと,図-4.3.12(b)から損傷個所数も内空幅10mと14mに多いこと,損傷個所の全体数 では,抗口に発生した損傷が少ないことが伺える.

図-4.3.13 に内空高による分析を示す.図-4.3.13(a)から内空高 6m に損傷物件の数が, 内空高 9m の損傷物件の比率が多いこと,図-4.3.13(b)から内空高 6m に損傷個所数が多 いことが伺える.

図-4.3.14 に内空断面積による分析を示す.図-4.3.14(a)から内空断面積 40m², 60m²に損 傷を受けた物件が多いこと,発生頻度は内空断面積 40m²から 140m²にわたり損傷を受けた物 件が多いことが,図-4.3.14 (b)から内空断面積 60m²に損傷個所数が多いことが伺える.

図-4.3.15 に内空高/内空幅の縦横比による分析を示す.図-4.3.15(a)から縦横比は 0.6 に損傷を受けた物件が多いこと、図-4.3.15(b)から縦横比は 0.6 に損傷個所数が多いことが伺える.

図-4.3.16 に最大土かぶりによる分析を示す.図-4.3.16(a)から最大土かぶり 6m に損傷 を受けた物件が多いこと,最大土かぶり 16m と 22m での損傷発生の比率が高いこと,図 -4.3.16(b)から最大土かぶり 6m に損傷個所数が多いことが伺える.

図-4.3.17 に最小土かぶりによる分析を示す.図-4.3.17(a)から最小土かぶり 1m 以下に 損傷を受けた物件が多いこと、図-4.3.17 (b) から、最小土かぶり 1m 以下に損傷個所数が 多いことが伺える.

図-4.3.18 に縦断勾配による分析を示す.図-4.3.18(a)から縦断勾配 2%,6%に損傷を受けた物件が多いこと、図-4.3.18(b)から、縦断勾配 2%で損傷個所数が多いことが伺える.

図-4.3.19 に抗口交差角による分析を示す.図-4.3.19(a)から抗口交差角 90°と 70°に 損傷を受けた物件が多いこと,図-4.3.19(b)から,その角度での損傷個所数が多いこと が伺える.

図-4.3.20 に敷設年別による分析を示す.図-4.3.20(a)から 1999 年から 2003 年に敷設さ れたものに損傷が多いこと,2012 年以降には損傷物件が確認されていないこと,図-4.3.20 (b)から,損傷個所数もその年代の敷設に多いことが伺える.

図-4.3.21 に基礎構造別による分析を示す.図-4.3.21 (a)から独立フーチング構造に損傷を受けた物件が多いこと、図-4.3.21 (b)から、損傷個所数も独立フーチング構造に多いことが伺える.

以上より、3 ヒンジアーチの分析をまとめた結果を示す.

内空幅 10mと 14mに損傷を受けた事例が多い

・ 内空高 6mに損傷を受けた事例が多い

- 内空断面 40 m²~100 m²に損傷した事例が多い
- ・ 内空高/内空幅(縦横比)で 0.5~0.7 が多く, 0.6 が最も多い
- ・ 最大土かぶり 6m に損傷を受けた事例が多い
- ・ 最小土かぶり 1m 以下に損傷を受けた事例が多い
- ・ 縦断勾配 2%, 6%に損傷を受けた事例が多い
- ・ 坑口交差角 70°, 90°に損傷を受けた事例が多い
- ・ 敷設 1999 年~2003 年に損傷を受けた事例が多い
- ・ 敷設 2012 年以降は損傷なし
- ・ 独立フーチング構造に損傷が多い
- ・ 損傷物件と損傷個所数が多く発生する分類の範囲はおおむね一致する
- ・ 抗口に発生した損傷個所数は少ない

(a) 損傷物件数と内空幅との関係

(b) 損傷発生部位数と内空幅との関係 図-4.3.12 3 ヒンジアーチの損傷分析(内空幅との関係)

(a) 損傷物件数と内空高との関係

(a) 損傷物件数と内空断面積との関係

(a) 損傷物件数と内空断面比との関係

(a) 損傷物件数と最大土かぶりとの関係

(a) 損傷物件数と最小土かぶりとの関係

図-4.3.17 3 ヒンジアーチの損傷分析(最小土かぶりとの関係)

(a) 損傷物件数と縦断勾配との関係

(a) 損傷物件数と坑口交差角との関係

(a) 損傷物件数と敷設年との関係

(b) 損傷発生部位数と敷設年との関係 図-4.3.20 3 ヒンジアーチの損傷分析(敷設年との関係)

(a) 損傷物件数と基礎構造との関係

4.3.4.分類結果による考察

2 ヒンジアーチと3 ヒンジアーチとの分類結果から、両工法に共通する考察を示す.

- ・ 閉合断面ではない場合(2 ヒンジアーチはインバート構造としない場合,3 ヒンジアーチ は独立フーチング構造とした場合)に損傷が多いという,感覚的に一致した傾向がある.
- ・ その反面,縦断勾配が小さい場合や平面交差角が 90° に近い場合に損傷が多いなど,感 覚と異なる傾向も見られる.
- ・ 感覚とは異なる結果となったことは、損傷の大きさや箇所数、損傷の原因(地盤,施工, 設計,工法、製品のどれが損傷の原因となったのかを考慮してないこと)、実績数(実績 の多い断面や土かぶりに損傷が多くなることが考えられる)、損傷の定義(損傷の判定が 定量的ではないこと)など、それらの複雑な要素を考慮せずに損傷物件としてカウント したことが原因と思われる。
- ・ 両工法とも施工実績の多い時期(1999年~2009年あたり)に多くの損傷が発生している.
- ・ 近年の損傷事例は少なくなっている.この理由としては工法の改良や新規物件数の減少 などが考えられる.

4.4. まとめ

2 ヒンジアーチの損傷事例 1,2 については、大きな沈下量、大きな縦断勾配、上載盛土 による作用によって、縦断方向荷重が発生もしくは過大となり、側壁部材に斜め方向のひ び割れが発生したと考えられる.3章で述べたように、一般的にカルバートのような地中構 造物は、横断面の耐荷力により上部の地盤を支えており、縦断面には上載荷重の支持機能 は無いとされているが、縦断方向の作用によって、損傷が生じた2 ヒンジアーチは、横断 方向の必要な耐震性能が確保できているのか疑問である.

3 ヒンジアーチの天井部のヒンジの損傷については、補強によるヒンジ機能の回復が困難 であることやコンクリート片の剥落による第三者被害が発生する可能性があることなどか ら、このような損傷は許容できない.

これらの損傷は、2 ヒンジアーチ、3 ヒンジアーチともに縦断方向荷重によるものである と考えられているが、どのような大きさの荷重が、どのように作用しているかが分かって いない.よって、縦断方向荷重による損傷メカニズムの解明を行うこととし、さらに、既 設プレキャストアーチカルバートの耐震性能評価手法と、その結果に応じて必要となる耐 震補強対策の提案を行うこととした.

参考文献

- 1) 安部哲生,中村雅範:高速道路における大型のプレキャスト部材を用いたカルバートの活用 と適用上の留意点,基礎工, Vol. 42, No. 4, pp. 8 - 11, 2014.4
- 2) 小島均,佐藤光男:プレキャストアーチカルバートの被災,論文番号 4003,第 29 回日本道 路会議,2011
- (一財)地域地盤環境研究所,モジュラーチ工法協会: Modularch 技術マニュアル,平成 29 年 10 月
- 4) 許晋碩ら:コンクリートカルバートの実施工に伴う変状の原因と対策に関する事例研究,土
 木学会論文集 A2(応用力学), Vol. 68, No. 2(応用力学論文集 Vol. 15), I_361 I_372, 2012

5. プレキャストアーチカルバートの縦断方向の地震時挙動

に与える諸条件の影響

本章では、プレキャストアーチカルバートの損傷に大きく寄与したと考えられる連結条件、盛土形状、斜角条件の設計条件がカルバート縦断方向の地震時挙動に及ぼす影響を動 的遠心模型実験、有限要素解析により解明することで、損傷メカニズムの解明や補強設計 法の確立することを目的とした.

5.1. 連結様式を考慮したカルバートの縦断方向の地震時挙動

本節では、カルバート縦断方向の連結様式に着目して、同方向の地震時挙動に及ぼす影響 を動的遠心模型実験により検討した結果と考察を述べる.本実験は2 ヒンジアーチを対象 として実施した.実験の結果、遠心加速度載荷時において、カルバートの内力状態および 底版に作用する土圧分布、加振中のカルバートの挙動が縦断方向の連結条件により異なる ことが分かった.この初期の応力状態と振動モードの差が、カルバート縦断方向の繰り返 しの振動に伴い顕著となり、結果として同じ地震動の強度に対して連結条件によりカルバ ートの損傷状態が異なることが明らかとなった.

5.1.1. 実験概要

本実験では、カルバートの連結様式がカルバート縦断方向の振動特性に与える影響を明 らかにするために、遠心力50G場において振動台実験を実施した.実験対象は、5.0mの 砂質地盤上に建設された、それぞれ独立した壁面を有するカルバートを含む両面盛土であ る.盛土高さは5.0mである.図-5.1.1に、実験模型の概略図を示す.以下では、模型地 盤と土槽境界の処理、カルバート模型、補強土壁のモデル化、実験ケース及び計測項目、 そして入力波形について述べる.

Dimension in mm, model scale (m, prototype scale)

図-5.1.1 実験模型の概略図

5.1.2. 遠心模型実験装置の概要

土材料は粒状体であるため、その強度および変形特性は拘束圧依存性を示す.そこで、 取り扱いやすい縮小地盤模型において、幾何的相似と力学的相似を同時に満たす模型実験 手法として提案されたのが、遠心模型実験¹⁾である.遠心模型実験においては、1/N スケー ルの模型に対して N 倍の遠心加速度を付与することで、模型と実物の間において応力ひず み関係が一致するように相似則を決定している(表-5.1.1 参照).長さの縮尺が全て N 倍 になることから、粒子寸法効果などのデメリットがあげられるが、実物と同じ自重応力状 態を再現できることからその有用性は高い.本実験においても、カルバート模型に作用す る拘束効果を実物と一致させることに主眼を置き、遠心模型実験を採用した.

遠心模型実験の実施には、京都大学防災研究所所有の遠心力載荷装置を用いた.この遠 心力載荷装置の概略図を図-5.1.2 に示す.アームの先端は、プラットフォームがヒンジを 介して連結しており、アームの回転速度の上昇とともに模型装置に作用する遠心力が大き くなって、プラットフォームが起き上がる機構となっている.

表-5.1.2 に本装置の概要を示す.アーム回転軸より模型中心までの有効回転半径は2.50 m,モーターの容量は37 kW,最大遠心加速度は静的載荷の場合200 G,振動載荷装置を用いた動的載荷の場合50 G であり、プラットフォームの最大積載重量は24 G・tonである.アームの先端のプラットフォームには振動台が搭載されており、変位制御にて加振することが出来る.

	実物	模型
長さ・変位	1	1/N
面積	1	$1/N^{2}$
体積	1	$1/N^{3}$
応力	1	1
ひずみ	1	1
力	1	$1/N^{2}$
時間(圧密現象)	1	$1/N^{2}$
時間(動的現象)	1	1/N

表-5.1.1 遠心模型実験における相似則

図-5.1.2 遠心力載荷装置の構造

<u> </u>		的教育的世际	
項目		単位	仕様
有効半径		[m]	2.5
最大載荷容量		[G • ton]	24
最大遠心加速度	静的実験	[G]	200

動的実験

[G]

50

表-5.1.2 遠心力載荷装置の仕様

5.1.3. 模型地盤と土槽境界の処理

本実験では、地盤材料として湿潤江戸崎砂を用いて、地盤は締固め度 92 %以上を目標に 締固め管理をして作製した. 江戸崎砂の物性値を表-5.1.3 に、締固め曲線及び粒径加積曲 線を図-5.1.3 に示す. ヒンジ式アーチカルバートは、本体断面に有するヒンジ構造上、周 辺地盤の変形の影響を受けやすいため、アーチ構造として安定させるために基礎地盤及び 盛土に一定の締固め管理基準が要求される.2 ヒンジアーチ²⁰においては、アーチカルバー トを直接設置する場合、基礎地盤は N 値 15 以上の良好な地盤を前提としている.また、裏 込め土については締固め度 92 %以上で施工管理することが求められている.このように、 2 ヒンジアーチにおいては基礎地盤及び裏込め土に良好な条件が求められているため、本実 験においては、基礎地盤及び盛土を締固め度 92 %以上で作製することとした.

地盤は、角材を用いた突き固めにより作製した. 基礎地盤の作製においては、30 mm×30 mm, 0.25 kgの角材を用い、カルバート近傍の盛土においては、15 mm×1.5 mm, 0.080 kgの支圧部の面積の小さい角材を用いた. このように、重量と支圧部の面積の異なる角材を使い分けて、突き固めによる衝撃がカルバート模型に与える影響を小さくした. 含水比は最適含水比である 15.85 %を目標に調整して地盤を作製した.

本研究では、写真-5.1.1に示す剛性土槽(幅 450 mm× 高さ 340 mm× 奥行 300 mm)を用 いて動的遠心模型実験を実施した.剛性土槽を用いると、加振方向に垂直な土槽壁面から の反射波が、模型の地震時挙動に影響を及ぼすことが考えられる.そこで、本実験におい ては土槽境界の影響を緩和することを目的に、地盤と土槽の境界部分に所定の厚みと強度 を有するゲルシートを貼付することとした.

このゲルシートの選定に当たっては、実験で用いる剛性土槽により既往の研究³⁾を参考に 予備実験を実施した.予備実験の概略図を図-5.1.4、実験ケースを表-5.1.4に示す.実験 では、土槽側壁にゲルシートを貼付し、プロトタイプ1 Hz、2 波の正弦波を所定の最大加 速度で入力した際の地盤内の応答加速度を計測した.実験の結果、厚さ2 mm,10%圧縮時 の圧縮強度が 0.07 N/mm²のゲルシートを用いた場合に、土槽側壁近傍と土層中央の地盤の 応答加速度の差が最も小さくなった.この結果から、以後の実験においては加振方向に対 して垂直な土槽壁面に緩衝材として上記のゲルシートを貼付することとした.

諸元		単位	値
土粒子密度	Gs	[g/cm ³]	2.73
平均粒径	D50	[mm]	0.20
最適含水比	W _{opt}	[%]	15.85
最大乾燥密度	<i>ρ_{dmax}</i>	[g/cm ³]	1.654

表-5.1.3 江戸崎砂の諸元

図-5.1.3 江戸崎砂の締固め曲線及び粒径加積曲線

Dimensions in mm

写真-5.1.1 剛土槽

図-5.1.4 緩衝材選定実験の概略図

実験	經漸社の	毎粘	加垢古法
ケース	版 191 19 0 2	1里天只	加加力伝
Case-1	土槽右壁面:ゲルシート	(硬度 30, <i>t</i> = 5 mm)	正弦波 1 Hz, 2 波,
	土槽左壁面:ゲルシート	(硬度 30, <i>t</i> = 2 mm)	400 gal
Case-2	土槽右壁面:ゲルシート	(硬度 15, <i>t</i> = 2 mm)	正弦波 1 Hz, 2 波,
	土槽左壁面:盛土材	(緩衝材無し)	1000gal

表-5.1.4 緩衝材選定実験における実験ケース

5.1.4. カルバート模型

2 ヒンジアーチの模型を作製するにあたって、2 ヒンジアーチの技術マニュアル²⁰を参考 に、土被り 0.7 m、高さ 4.3 m、幅 6.4 m としてアーチカルバートの寸法を決定した.ア ーチカルバートの基礎形式としてインバートタイプを採用している(図-5.1.6).ただし、 実際のヒンジ式アーチカルバートが、本体断面にヒンジ機能を有する構造であるのに対し、 本実験で用いたアーチカルバート模型はヒンジ機能を再現せず一体型の構造とした.

図-5.1.5 に、2 ヒンジアーチの構造の概略図を示す.2 ヒンジアーチにおいてはアーチ カルバートを縦断方向に連続的に設置し、アーチ断面に PC 鋼棒を挿入して縦断方向に全 体的に連結する.さらにヒンジ部には曲がりボルトが挿入され、ヒンジ機能を保持しつつ、 分割された部材同士のずれを防止する構造条件となる.これらの理由から、2 ヒンジアー チにおいては、縦断方向の振動特性に及ぼすヒンジの影響は小さいと考えられる.そこで、 本研究では、カルバート模型にヒンジ機能を再現せず、縦断方向の連結条件のみを考慮し た実験を行った.

遠心力 50 G 場の実験において力学的な相似則を満足させるためには、模型寸法は実物 の 1/50、模型の剛性は実物と等しくする必要がある.ただし、実際のカルバート構造物は、 鉄筋コンクリート製であるが、実物の 1/50 の模型に配筋を施すのは非常に困難であるため、 模型はモルタルのみを用いて作製した.そのため、模型と実物の剛性は一致しておらず、 本実験における模型は幾何学的な相似則のみを満たしている.アーチカルバート模型は形 状、部材厚共に実物の 1/50 スケールとした.模型の作製は、珪砂 6 号:早強セメント:水 =2:1:0.65 の配合比のモルタルで作製した⁴⁾.カルバート模型は打設後 24 時間で脱型 し、28 日間水中養生した後、気中と 60 °C の乾燥炉でそれぞれ 24 時間乾燥させて使用し た.モルタルの物性に関しては別途材料試験を実施した.その結果を表-5.1.5 に示す.

本研究では、カルバートの縦断方向の連結様式が地震時挙動に与える影響を検討するた め、カルバート同士を縦断方向に連結した模型と分離した模型の2種類を用意した(写真 5.1.2).実験時には、上述したモルタル製のアーチカルバート模型を奥行方向に 42 mm になるよう整形し、それらの模型を縦断方向に5体設置した.カルバートを連結する場合 は、コンクリート用接着剤で隙間なく接着した後、継ぎ目部分にマスキングテープを貼付 している.一方、カルバートを連結しない場合は、各模型の端面の形を整え、カルバート 間が隙間なく接するように留意した.

その後,透明のポリプロピレンシートを用いてカルバート上面の継ぎ目を覆うように貼 付した.なお,このシートは隣接するカルバート模型のどちらか一方にのみ貼付しており, これによってカルバート模型同士を連結するものではない.また,この処理は砂がカルバ ート内部に侵入することを防ぎ,加振終了後に目開きを観察できるようにするためである. 左の坑口壁から前方3体のカルバート模型の頂部,両肩部,両脚部及び底版にひずみゲー ジを貼付している.ひずみゲージは,カルバート内側と外側の面にそれぞれ貼付しており, 計21か所のひずみを測定している(図-5.1.6).

図-5.1.5 2 ヒンジアーチの構造の概略図

Strain gauge in culvert transverse direction

Strain gauge in culvert longitudinal direction

図-5.1.6 カルバート模型の概略図

諸元		単位	値
ヤング率	Ε	$[kN/m^2]$	2.07×10^7
単位体積重量	γ	[g/cm ³]	19.35
圧縮強度	f_c	[kN/m ²]	$4.92~\times~10^4$
曲げ強度	f_b	[kN/m ²]	1.17×10^4
引張強度	f_t	[kN/m ²]	5.76×10^{3}
ポアソン比	V	_	0.18

表-5.1.5 アーチカルバート模型の物性値

(a) 連結模型

(b)分離模型

写真-5.1.2 カルバート模型

5.1.5. 抗口壁のモデル化

カルバートにおける坑口の構造は、盛土形状や景観設計などの諸条件により様々である が、ヒンジ式アーチカルバートでは、盛土側面に壁面工を施したものが一般的である ⁵⁾. また、補強土壁に関する遠心模型実験⁶⁾などにより、壁面工については実験条件に応じて 様々なモデル化が行われている.本研究では、図-5.1.7(a)に示す連接型の帯鋼補強土壁を 参考にして⁷⁾、それぞれ独立した壁面を有する両面盛土を作製することとした.帯鋼補強 土壁の実構造における標準的なコンクリートスキンは 1.5 m×1.5 mの十字型をした版状 で、背面には幅 60 mm、厚さ 5 mmのストリップが4本設置される.これをそのまま模 型サイズに縮小すると、コンクリートスキンは 30 mm×30 mm、ストリップの幅は 1.2 mmとなる.模型の作製上このような壁面をモデル化するのは極めて困難であるため、本 実験では、壁面材を厚さ 5 mmのアクリル製のパネルを用いてモデル化し、ストリップは 厚さ 0.1 mm、幅 10 mmのアルミ製の板で作製した.

写真-5.1.3 に坑口壁模型と補強材模型を示す.補強材の配置関係と壁面基礎の構造は, 図-5.1.8 に示す.ストリップの表面には,乾燥状態の江戸崎砂を付着させ,盛土とストリ ップの間に作用する摩擦力を増大させる処理を施した. 龍岡 ⁹⁰は壁面の剛性による力学的 効果を図-5.1.9 に示す5種類に分類しており,これによれば,本実験の坑口壁模型は,局 所的剛性,全体的せん断剛性,および全体的曲げ剛性を考慮できる壁面のタイプに相当す る.壁面の単位面積当たりのストリップ幅を補強材密度と定義すると,実際の構造ではお およそ 60 mm×4/(1.5 m×1.5 m) = 107 mm/m²となる.一方,実験模型の補強材密度は, プロトタイプで 500 mm×10/(15 m×5 m) = 67 mm/m²となり実際の構造よりも疎な配 置となる.しかし,実験模型の壁面は1枚のアクリル板でモデル化しており,小さな補強 材密度でも十分に安定性を保つと考えられる.そして計測器の配置等を鑑みるに,ストリ ップの本数をこれ以上増やすことは難しい.これらの理由から,上記の条件で坑口壁をモ デル化した.

図-5.1.7 両面盛土のテールアルメ補強土壁工法の例[↑]

図-5.1.9 壁面構造の力学的分類⁸⁾

5.1.6. 実験ケースと計測項目

連結状態によるカルバート縦断方向の振動特性の違いを適切に評価するため、カルバートの有無とカルバート間の連結状態をパラメータとして三種類の実験ケースを設定した. 実験ケースとして、盛土のみのケース、カルバート間を連結したケース、分離したケースの計3ケースに対して動的遠心模型実験を実施した(図-5.1.10).図-5.1.11に計測器の配置と加速度及び壁面の水平変位の正負の向きを示す.加速度については右向きを正、壁面変位は盛土のはらみ出す方向を正と定義している.なお、本実験では、5体設置したカルバート模型を、左の壁面から近い順にそれぞれ Ring 1~5と定義する.本実験における計測項目は以下の通りである.

- 1) カルバート,壁面および周辺地盤の応答加速度
- 2) 壁面の水平変位
- 3) 壁面に作用する土圧
- 4) カルバートに作用する縦断および横断方向のひずみ
- 5) カルバート底版に作用する鉛直土圧

土圧計を用いて接地圧を精度良く計測するには、種々の留意点がある⁹. 土圧計自体が 突出する影響を低減するために、カルバート模型に溝を切り、土圧計を隙間なくはめ込み、 底版と水平な状態にする. 今回の実験では、カルバート模型底版の厚みが5mmと薄く、カ ルバート模型の強度を損なうことなく溝を切ることが難しいことから、底版に土圧計を直 接貼り付ける措置をとった. また、支持地盤表面を可能な限り水平にし、土圧計設置前に 少し地表面を乱すことで、地盤と土圧計が均一に接触するようにした.

図-5.1.11 計測器の配置と計測値の正負の定義

5.1.7. 入力波形

本実験で用いた入力波を図-5.1.12 に示す.本実験では,壁面の変位の経時変化に伴うカ ルバートを含む盛土の地震時挙動の変化を確認するため,ステップ加振法を採用した.本 実験では,遠心力 50 G 場に到達した時点を STEP 0 とし,STEP 0 におけるカルバートの 応力や壁面の変位を本実験における初期状態と定義する.その後,1ステップごとに最大 入力加速度を 0.5 m/s² ずつ増やし,最大入力加速度を 0.5~5.0 m/s² とする 10 ステップで 加振を行った.兵庫県南部地震(1995 年)でのJR 西日本鷹取駅構内地盤における地震波で は,卓越周期が約 0.9 秒である¹⁰⁾.この卓越周期を参考に,入力波形の周波数を1 Hz と した.各ステップでは,所定の最大加速度でテーパー付き正弦波を 30 波入力した.たと えば,STEP 5 は,最大入力加速度 2.5m/s² のテーパー付き正弦波を 30 波入力している. 地震動は,遠心力載荷装置に取り付けられた振動載荷装置を変位制御して入力した.

図-5.1.12 入力波形 (STEP 5: 最大入力加速度 2.5 m/s²)

5.1.8. 実験結果と考察

以下では、地震動の継続に伴う盛土の変形やカルバートに作用する応力の蓄積について 検討するため、残留変形がある状態で結果を考察する.以下の実験結果においては、特に 記述が無い限りプロトタイプ換算した値を用いる.

(1). 初期の応力状態

図-5.1.13 には、加振前の初期状態、すなわち遠心加速度 50G 到達時(STEP 0) における曲げモーメント分布図を示す.まずカルバート同士を連結している Case-1 に着目すると、坑口から中央にかけて Ring 1, 2, 3 の順に曲げモーメントが大きくなっていることが確認できる。一方、カルバート同士を分離した Case-2 では、頂部においてやや差が見られるが、その他の位置においてはリング間で明確な差異は確認できない.さらに、ケース間で比較した場合には、Case-1 に比べて Case-2 の方が全体的に大きな曲げモーメントが発生しており、特にインバートの中央では Case-1 の 2 倍以上の値を示すリングもある.

この原因について詳しく調べるため、図-5.1.14にSTEP 0におけるカルバート底版に作 用する鉛直土圧の分布を示す.ここでカルバート底版の鉛直土圧については、図-5.1.11 に示すように、上載荷重の影響を受けやすいと考えられる脚部直下で計測している.本実 験対象であるアーチカルバートは、内空を有していることに加えて部材厚が薄く、底版を 含めたカルバート全体が変形することが予想されることから、発生する接地圧は剛体基礎 のそれとは異なることが考えられる.しかし、剛体基礎の接地圧については種々の研究が 行われており、一般的に接地圧は基礎の端部で大きく、中央で小さくなることが知られて いる¹¹⁾.

Case-1では,鉛直土圧は計測位置ごとに異なる.初期状態の土圧分布こそばらついたが, 図-5.1.13(a)の曲げモーメント値を考慮すると,5体のカルバートの端部で曲げが発生す るようなモードになっている.このことから,Case-1では,カルバートは縦断方向に弓な りに変形するようなモードで上載荷重を支持していると考えられる.一方,Case-2におけ る底版の鉛直土圧分布をみると,Case-1とは対照的に全ての位置においてほぼ同様の鉛直 土圧が作用していることが確認できる.Case-2においては,図-5.1.13(b)の曲げモーメ ント値と底板に作用する鉛直土圧の値が良い相関を示しており,両者ともにリング間でそ れぞれの値に違いが生じない結果となった.これは,Case-2ではそれぞれのカルバートが 分離して設置されており,個々のカルバートが独立して上載荷重を支持するためである.

(2). 加振後の模型の変形状態

図-5.1.15 には、STEP 1~10 (最大加速度 0.5~5.0 m/s²) における壁面の転倒率 R及 び滑動量 Sの推移を示す.ここで、転倒率 Rとは壁面上部 (Δ_1) と下部 (Δ_2) の変位量の 差 ($\Delta d = \Delta_1 \cdot \Delta_2$)を計測点の間の距離 (H) で除した値 ($R = \Delta d/H \times 100$)、滑動量 Sとは 壁面上部と下部の変位量の平均で定義する.図-5.1.15(a)より、カルバートを含まない Case-0 のみ、遠心加速度 50 G 到達時 (STEP 0) から Wall B が 0.5 %程度転倒している. 加振ステップ全体では、いずれのケースにおいても STEP 3 (最大加速度 1.5 m/s²) まで は顕著な変化は見られないが、STEP 4 (最大加速度 2.0 m/s²) 以降に壁面の転倒が発生し はじめ、その後はほぼ一定の割合で変位が蓄積している.この傾向については、滑動量に ついても同様である.

全ケースについて壁面の変位量を比較すると、転倒率・滑動量ともに、Case-1 (カルバ ート連結) < Case-2 (カルバート分離) < Case-0 (盛土のみ)の順で大きくなる傾向を示 す.カルバートの有無 (Case-0 と Case-1, 2)に関しては、補強材の密度や実験における モデル化の範囲などの理由により、実構造においては同様の傾向を示さない可能性がある. しかし本実験では、カルバートを設置しない Case-0 において、カルバート部分の土塊の 重量が増えたこと、そしてカルバート覆工と土の摩擦抵抗が無くなること、というこれら 二つの影響により壁面の転倒率・滑動量が大きくなったと考えられる.カルバートの連結 の有無 (Case-1 と Case-2)については、Case-1と比べて、カルバート同士を分離した Case-2 において壁面の転倒率・滑動量が大きくなり、坑口壁の変位モードとしては Case-0 と近くなった.これは、カルバート縦断方向のせん断剛性が、連結条件よりも分離条件に おいて低下するため、カルバートを含む盛土全体としての変形量が増大したと考えられる.

写真-5.1.4には、加振後のカルバートの様子を示す.写真に示す通り、Case-1ではカルバートに目立った損傷は確認できなかった.一方、Case-2では、坑口付近のカルバートが盛土のはらみ出す向きに前傾しており、カルバート間に目地の開きが発生していることを確認した.さらに、写真-5.1.4(c)に示すように、ひずみゲージを貼付していなかったRing 4、5のインバート中央、脚部、肩部でひび割れを確認した.ひずみゲージを貼付していた Ring 1~3 でひび割れが確認されなかったのは、ひずみゲージの貼付の際に用いたコーティング剤が原因だと考えられる.これにより、Ring 4、Ring 5 と比べて部材の強度が増加し、ひび割れが発生しなかったと考えられる.坑口部にある Ring 4、Ring 5 でひび割れが発生する原因としては、カルバート底版に作用する曲げモーメントが主な原因だと考えられる.この原因については、加振中の挙動に注目して考察する.

100

図-5.1.15 坑口壁の水平変位の経時変化

写真-5.1.4 最終加振後のカルバートの状態

(3). 加振中の挙動

加振中のカルバートの挙動を精査するため、本項では坑口壁の変位が明瞭に生じ始めた STEP 5 (最大応答加速度が 2.5 m/s²) における地震時挙動に着目した.最大入力加速度に 到達して十分に時間が経過した t = 20.00 ~ 21.25 s の時刻帯に注目して、カルバート底版 に作用する土圧の時刻歴を整理する.図-5.1.16 には、Cases-1,2 においてカルバート底 版に作用する鉛直土圧の時刻歴とカルバート頂部で計測した応答加速度の時刻歴をそれぞ れ示す.図中の灰色の領域は、各カルバートに設置した2つの土圧計のうち、左側の土圧 計(Wall A 側)の値が増加している時間帯を示している.つまり、同時刻においては、カ ルバートが Wall A の向きに倒れるように挙動している時刻と考えられる.まず、Case-1 について図中の灰色の領域に注目すると、脚部前後の土圧計の値が同位相で増減している ことが確認できる.また、Ring 1 と比較して Ring 3 では土圧の増減が小さい.これは、 カルバート同士を連結している Case-1 では、カルバート 5 体は一体となって挙動してい るため、Ring 3 を中心として、カルバート 5 体が前傾・後傾を繰り返すためであると考え られる.

一方, Case-2 について, 図中の灰色の領域に注目すると, Ring 1 の左側の土圧計の値が 増加する時刻においては, 右側の土圧計の値が減少しており, 同一のカルバートにおいて 土圧の増減が逆位相になっていることが確認できる. つまり, Ring 1 が, Wall A の向き に倒れこむことで, 底版前方の土圧が増加し, 逆に底版後方の土圧が減少しているのだと 考えられる. さらに, Case-1 では Ring 3 における土圧の増減が小さかったのに対し, Case-2 では Ring 1 と同程度の増減が確認できる.

以上の結果より, Case-1 および Case-2 におけるカルバートの変形挙動を模式的に示す と図-5.1.17 のようになる. Case-1 のようにカルバート同士を連結した場合には, カルバ ートが一体となって応答し, 底版全体に荷重が作用する. 一方, Case-2 のようにカルバー ト同士を分離した場合には, それぞれのカルバートが独立して応答し, それぞれのカルバ ートの底版前方あるいは後方に荷重が集中する.

カルバートの頂部に設置した加速度計の値より, Case-1 と比較して Case-2 では加速度 の振幅が大きくなっており, Case-2 ではカルバートに大きな加速度が作用している. これ は、カルバートそれぞれを分離することで、各リングが盛土内で大きく振動しているため と考えられる. 結果として、カルバート同士を分離した Case-2 では、個々のカルバート が自由に振動し、カルバート縦断方向のせん断剛性が低下した結果、坑口壁の転倒率・滑 動量が Case-1 に比べて増大したのだと考えられる.

図-5.1.18 には、STEP 10 (最大加速度 5.0 m/s²) において、ひずみ計測位置における最 大曲げモーメントと曲げひび割れモーメントの比を示す。各ケースに着目すると、Case-1 では、上述した通り初期段階からリング毎に発生する曲げモーメントの値が異なっていた が、その傾向は加振中の最大曲げモーメントでも同様であり、坑口付近に近づくほど増大 している。一方、Case-2 についても、初期状態の曲げモーメント分布同様、加振中につい ても各リングでほぼ同様の最大曲げモーメントが発生している.両ケースを比較すると, 特にインバートの中央において大きな違いが確認できる.同位置における曲げモーメント は, Case-1 では曲げひび割れ発生モーメントのおよそ半分程度であるが, Case-2 では曲 げひび割れ発生モーメントに近い値が計測されている.

Case-1 では、カルバート同士が連結されており、図-5.1.17 のように、加振中 Ring 3 が 中心になってカルバート全体が振動することを先に述べた.このように、中央のカルバー トに比べて、坑口部のカルバートの挙動が大きいため、坑口部に近づくにつれて、基礎地 盤からカルバートの底版に大きな反力を受けていたと考えられる.その結果, Case-1 では、 坑口部に近い順に、カルバート底版に大きな曲げが作用したと考えられる.

一方で、Case-2では、繰り返しの加振に伴い壁面の変位が大きく発生したことで、盛土 の拘束効果が小さくなり、カルバートそれぞれが盛土内で大きく振動したため、Ring 1~3 で底版に一定に大きな曲げが発生したと考えられる.坑口部にある Ring 4、5 でひび割れ が発生した原因としては、カルバート底版に作用する曲げモーメントが主な原因だと考え られる.図-5.1.18 に示したように、Case-2 ではカルバート底版にひび割れ発生モーメン トに近い曲げモーメントが作用している.これより、坑口部のカルバートが、盛土のはら み出す変形に追従して前傾し、地盤から底版に大きな反力を受けていたことが伺える.推 測される破壊状況としては、まず、カルバート底版に作用した大きな曲げモーメントによ り、底版にひび割れが生じ、次いで曲げモーメントの大きいカルバート脚部にひび割れが 発生し、最後に頂部のひび割れにつながった可能性がある.

図-5.1.16 カルバート底版に作用する鉛直土圧と頂部における応答加速度の時刻歴波形

図-5.1.18 STEP 10 (最大入力加速度 5.0 m/s²) における曲げモーメント状態

(4). 実験結果のまとめ

本実験では、5.0 mの砂質地盤上に建設された、それぞれ独立した壁面を有するカルバートを含む両面盛土を対象に、遠心加速度 50 G 場で振動台実験を実施した.実験においては、カルバート間の連結様式とカルバート縦断方向の地震時挙動の関係を観察した.以下には、1 Hz の地震動を入力して得られた知見を整理する.

- 連結様式により、盛土内に設置されたカルバートの応力状態は異なる.これは、カルバートの連結条件に伴い上載荷重の支持の仕方が異なるためである.そのため、連結条件では坑口に近づくにつれて底版に作用する曲げモーメントが大きくなり、分離条件では設置位置ごとの差は小さくなる.
- 2) カルバート同士が分離されている場合,盛土全体の応答に追従してカルバートそれぞれが前傾あるいは後傾を繰り返す.その結果,カルバート各々が盛土内で自由に振動するため、カルバート縦断方向のせん断剛性が低下し、同方向の地震動に伴う盛土の変形量が増加した.また、その過程で、カルバートへ作用する上載荷重や接地圧のバランスが崩れ、カルバート覆工に大きな曲げモーメントが発生する.坑口付近に位置するカルバート覆工において、曲げモーメントが加振を繰り返すことで増大し、壁面付近のカルバートの頂部、肩部及び底版にひび割れが生じた.
- 3) カルバート同士が連結されている場合、カルバート全体が地震時において一体的な挙動を示す.本実験条件下では、カルバート間の連結は、カルバート間の目開き、縦断方向の地震に伴う盛土の変形量、アーチカルバートに作用する内力をそれぞれ抑制あるいは低減することができた.カルバート間の連結はカルバート縦断方向における耐震性向上の観点で、重要な対策と考えられる.

5.2. 盛土形状に着目したカルバートの縦断方向の地震時挙動

本節では、カルバート縦断方向の振動特性に及ぼす盛土形状の影響に着目した動的遠心模型実験について述べる.本研究は3ヒンジアーチを対象として実施した.実験においては、 主として坑口壁の水平変位、カルバートの応答加速度を計測し、その挙動を評価した.実 験の結果、カルバート縦断方向の地震時挙動は、拘束効果を与える土被りに大きく依存し、 その影響は坑口付近で現れることが明らかとなった.坑口部における地震応答の安定化を 図るという観点においては、大きな土被りを施すことが重要と考えられる.

5.2.1. 実験概要

本実験は遠心力 50 G 場において動的遠心模型実験を実施した.実験対象は、5.0 m の砂 質地盤上に、3 ヒンジアーチを含む盛土が建設された場合とした.図-5.2.1 に、実験模型 の概略図を示す.以下では、前節と共通する項目については説明を簡略化しながら、カル バート模型のモデル化と実験ケースを中心に述べる.

5.2.2. 模型地盤と土槽境界の処理

本実験では、地盤材料として湿潤江戸崎砂を用いて、地盤は締固め度 92 %以上を目標に 締固め管理をして作製した.本研究に用いた江戸崎砂の物性値を表-5.2.1 に、締固め曲線 及び粒径加積曲線を図-5.2.2 に示す.地盤の作製方法は、前節と同じく角材を用いた突き 固めにより作製し、含水比は最適含水比を目標に調整して地盤を作製した.

実験に用いた土槽は,前節と同じ剛性土槽(幅 450 mm× 高さ 340 mm× 奥行 300 mm) であり,予備検討の結果を踏まえて,土槽境界の影響を緩和するため加振方向に対して垂 直な土槽壁面に緩衝材として,厚さ 2 mm, 10%圧縮時の圧縮強度が 0.07 N/mm²のゲル シートを貼付している.

			-
諸元	Ē	単位	値
土粒子密度	G_s	[g/cm ³]	2.73
平均粒径	D_{50}	[mm]	0.20
最適含水比	Wopt	[%]	17.62
最大乾燥密度	ρ_{dmax}	[g/cm ³]	1.684

表-5.2.1 江戸崎砂の諸元

5.2.3. カルバートの模型

本研究では、3 ヒンジアーチのモデル化として、アルミ製カルバート模型を作製した.前 節で用いたモルタル製模型は加振後のクラックの発生状況を観察できる点で優れている. 一方で、端面の整形が難しく、長大なカルバート構造の模型を作製する場合、同じ品質で 複数の模型を作製することが必要になり、端面の整形を複数の模型に同一に施すことは困 難である.そのため、長大なカルバート構造をモデル化する本研究では、品質管理が容易 なアルミ製カルバート模型を用いた.

3 ヒンジアーチ模型の断面サイズの選定にあたり、1994 年 1 月以降の 3 ヒンジアーチの 施工件数を調べ、内空断面ごとの施工件数を調査した¹²⁾. 図-5.2.3 に 3 ヒンジアーチの施 工件数と内空幅の関係を示す. 図より、主として東北地方太平洋沖地震において被災した のは、内空幅 8.1~11.0 m のタイプであることがわかる. これを 1/50 の模型スケールとし たとき、内空幅は 162~220 mm となる. ここで、実験に用いる剛性土槽の横幅は 300 mm であり、上記の内空幅の模型を用いると、カルバートと土槽側壁の幅が 69~40 mm と狭 くなる. 結論として、カルバートに作用する側方土圧を十分に確保するために、剛性土槽 の制約を考慮して、内空幅が上述のものより小さく、準じて良く用いられている内空幅 5.1 ~6.0 m のタイプのカルバートをモデル化することとした. このようにして、アーチカルバ ート模型の寸法は、プロトタイプ寸法で、土被り 4.0 m、内空幅 5.0 m、内空高さ 2.8 m と して決定した.

図-5.2.4に、3 ヒンジアーチの構造を示す.3 ヒンジアーチの架設手順は、はじめに、キ ーウェイと呼ばれる基礎工を打設し,その後左右のアーチ部材を千鳥状に配置し,ヒンジ 部分にグラウト工を行う. これらの構造的特徴を考慮した上で, 3 ヒンジアーチの模型を作 製した.図-5.2.5 に実構造と実験模型の比較図を示す.実際の 3 ヒンジアーチの頂部ヒン ジ構造は、凹凸の突合せ構造であるが、模型における頂部ヒンジの構造は単純な突合せ構 造とした.また,基礎形式としてインバート基礎を採用した.3ヒンジアーチは,奥行1.0~ 2.0 m 程度のアーチ部材を奥行方向に連続的に設置する. 実験では, 奥行 25 mm の部材 22 個とその半分の奥行 12.5 mm の部材 2 個の計 24 個のアーチ部材を左右に 12 個ずつ用いて, 実際と同様に千鳥構造のアーチカルバート模型を作製した.実施工では、頂部ビームと呼 ばれるコンクリート梁をアーチ頂部に接合して,縦断方向に全体的に連結する. 模型では 同じくアーチ頂部にマスキングテープを貼付することでカルバート間の連結を図った. そ の後、透明のポリプロピレンシートを、カルバート間の継ぎ目を覆うように貼付して、砂 がカルバート内部に侵入することを防ぐよう処置した. 抗口壁近傍のカルバートを Ring 1, 以後, 順に Ring 2~12 と定義する. 2 ヒンジアーチと同じく 3 ヒンジアーチも RC 構造物 であるが、遠心力 50 G 場の実験において、実物の 1/50 の模型に配筋を施すのは非常に困 難である. そこで本実験では, 実際の RC 構造のアーチカルバートの曲げ剛性と可能な限り 一致するように部材の厚みを調整したアルミ合金によりカルバート模型を作製した.実際 の RC 構造物とアルミ合金模型の剛性の関係を表-5.2.2 に整理する.

図-5.2.3 3 ヒンジアーチ 施工件数と内空幅の関係 ^{12)を基に作成}

図-5.2.5 3 ヒンジアーチの実構造と模型の比較

諸元	1	単位	RC構造	アルミ合金模型
比重	_	—	2.40	2.70
ヤング率	Ε	$[kN/m^2]$	2.95×10^{7}	7.06×10 ⁷
リング幅	а	[mm]	1250	1250 (25)
部材厚	b	[mm]	250	200 (4)
曲げ剛性	EI	[kN • m ²]	4.80×10 ⁴	5.88×10 ⁴
軸剛性	EA	[kN]	9.22×10 ⁶	1.77×10^{7}

表-5.2.2 実際の RC 構造とアルミ合金模型の物性値

※表中,()内の数値は1/50 縮尺の模型寸法である

5.2.4. 抗口壁のモデル化

本研究で用いた壁面工のモデル化と壁面の基礎の構造を図-5.2.6 に示す.また,ストリッ プの取り付け位置および本数を図-5.2.7 に示す.なお,ストリップの表面には,乾燥状態 の江戸崎砂を付着させ,盛土とストリップの間に作用する摩擦力を増大させる処理を施し ている.帯鋼補強土壁の設計基準 つにおいては,上載盛土高に応じてストリップ長は変化す るが,本実験では実験条件を単純化するため,上載盛土の形状に関わらず,全ての補強材 の長さは一定(プロトタイプ換算で 5.0 m)としてモデル化している.本実験で用いた壁面 パネルは,前節と同じく,局所的剛性,全体的せん断剛性,および全体的曲げ剛性を考慮 できる壁面のタイプに相当する[®].補強材の密度に関しては,実際の構造では 107 mm/m² となるが,実験模型の補強材密度は,プロトタイプで 500 mm × 10 /(15 m × 4.3 m) = 76 mm/m²となり実際の構造よりも疎なモデル化となっている.

図-5.2.6 抗口壁模型の概略図

図-5.2.7 抗口壁の補強材配置

5.2.5. 実験ケースと計測項目

盛土形状をパラメータとして設定するにあたり、最小土被り厚、最大土被り厚と盛土の り面勾配を決める必要がある.先の震災で損傷を受けた3ヒンジアーチの設計条件¹⁴⁾から、 最小土被り厚は1.0m、最大土被り厚は5.7m未満で重度の損傷が集中していた.最小土被 り厚については、3ヒンジアーチの設計基準⁵⁾によると、交通荷重を考慮する場合の最小土 被りを1.0mを最小土被りとして、これらを参考に、実験ケースにおいても、プロトタイプで 1.0mを最小土被りとした.最大土被り厚に関しては、プロトタイプで5.7m未満かつ、土 層の制約上最大限大きくできる土被り厚として、プロトタイプで4.0mとした.盛土のり 面勾配に関しては、道路土工盛土工指針¹⁵⁾に準じて決定した.表-5.2.3に、同指針におけ るのり面勾配の目安を示す.表より、盛土高が0~5.0mで、粒度の良い砂で締固める場合 ののり面勾配は、1:1.5~1:1.8としている.これを参考に、実験においては、盛土のり 面勾配を1:1.8とした.

上述した最小土被り,最大土被りおよび盛土のり面勾配により,4種類の実験ケースを設定した.実験ケースを表-5.2.4,写真-5.2.1 に示す.実験ケースでは,最小土被りをプロトタイプ寸法で1.0mで一定に施したケース (Case-1),抗口壁から上載盛土法尻までをプロトタイプ寸法で5.0mとしたケース (Case-2),同じく法尻までの距離を0.5mとしたケース (Case-3),最大土被りを4.0mで一定に施したケース (Case-4)として4種類設定した. Case-1と Case-4 では土被りの影響を比較し, Case-2 と Case-3 では抗口壁から上載盛土の法尻までの距離の影響を比較する関係とそれぞれなっている.

図-5.2.8, 5.2.9 に計測器の配置を示す.加速度については右向きを正,壁面変位は左向き(盛土のはらみ出す向き)を正と定義する.本実験における計測項目は以下の通りである.

- 1) Ring 3, 11, 地盤, 盛土及び壁面の応答加速度
- 2) 壁面の水平変位
- 3) 壁面に作用する水平土圧
- 4) カルバートに作用する縦横断方向のひずみ

カルバートにおいて,ひずみを計測しているのは,Ring 2,3,7,11 の計4体である.各リ ングにおける頂部と脚部において縦断方向のひずみを計測し,3ヒンジアーチの構造上曲げ が最も大きく作用する肩部において横断方向のひずみを計測している.本実験で用いたカ ルバートを含む盛土模型は,カルバート縦断方向に左右対称な構造であるため,アーチの 半断面でひずみを計測することとした.

盛土材料	盛土高 (m)	勾配	摘要
粒度の良い砂(S), 礫及	5 m以下	1:1.5 ~ 1:1.8	
び細粒分混じり礫(G)	$5 \sim 15 \text{ m}$	1:1.8 ~ 1:2.0	
粒度の悪い砂(SG)	10 m以下	1:1.8 ~ 1:2.0	基礎地盤の支持力が十分にあ り,浸木の影響がなく,5章に 示す締固め管理基準値を満足 する盛土に適用する. ()の統一分類は代表的なもの を参考に示したものである. 標準のり面勾配の範囲外の場 合は安定計算を行う.
岩塊(ずりを含む)	10 m以下	$1:1.5 \sim 1:1.8$	
	$10\sim 20\ m$	$1:1.8 \sim 1:2.0$	
砂質土(SF),硬い粘質 土,硬い粘土(洪積層の 硬い粘質土,粘土,関 東ローム等)	5 m以下	1:1.5 ~ 1:1.8	
	$5 \sim 10 \text{ m}$	1:1.8 ~ 1:2.0	
火山灰質粘性土(V)	5 m以下	1:1.8 ~ 1:2.0	-

表-5.2.3 盛土材料及び盛土高に対する標準のり面勾配の目安15)

※盛土高は、法尻と法高の高低差をいう

表-5.2.4 実験ケース

(a) Case-1

(b) Case-2

(d) Case-4

写真-5.2.1 実験模型の完成状態

図-5.2.8 計測器配置 (Case-1~Case-3)

図-5.2.9 計測器配置 (Case-4)

5.2.6. 入力波形

本実験で用いた入力波の波形を図-5.2.10 に示す.本実験では、盛土の変形量の経時変化 とカルバートの応答加速度の推移を観察するため、ステップ加振により繰り返し地震動を 入力した.遠心加速度 50 G に到達した時点を STEP 0 とし、STEP 0 を初期状態と定義す る.その後、1 ステップごとに最大入力加速度を 0.5 m/s²ずつ増やし、最大入力加速度を 0.5~5.0 m/s² とする 10 段階に分けて加振した.各加振ステップでは、所定の最大加速度 で 1 Hz の正弦波にテーパーを付けて 20 波入力した.例えば、STEP 5 は、最大入力加速 度 2.5 m/s²、1 Hz の正弦波を、テーパーを付けて 20 波入力している.地震動は遠心力載荷 装置に取り付けられた振動載荷装置に変位制御で入力した.

5.2.7. 実験結果と考察

本実験においては、縦断方向の振動特性に及ぼす影響を明らかにするため、3 ヒンジアー チを含む盛土を対象に、動的遠心模型実験を実施した.盛土形状を考慮した縦断方向の振 動特性を評価するにあたり、抗口壁の壁面変位、カルバートと地盤の応答からその影響の 評価を試みた.以下の実験結果においては、特に記述が無い限りプロトタイプ換算した値 を用いる.

(1). 坑口壁の変形量

図-5.2.11 に,STEP 1 ~ 10 (最大加速度 0.5 ~ 5.0 m/s²) について坑口壁の変位モードを 整理する.図-5.2.11 (a) に最大入力加速度に対する壁面の通過面積を示す.図-5.2.11 (b) に,壁面の転倒率と滑動量の関係について示す.ここで,転倒率は,壁面上部 (Δ_1) と下部 (Δ_2)の変位量の差 ($\Delta d = \Delta_1 - \Delta_2$)を計測点の間の距離(H)で除した値 ($\Delta d / H$),滑動量は 壁面下部の水平変位量(Δ_2),移動面積は 壁面中央の水平変位量($\Delta_m = (\Delta_1 + \Delta_2) / 2$) に壁高 (H)を乗じた値で定義する.図より,全加振終了後の転倒率,滑動量,移動面積は,以下 の順に大きくなった.

- 転倒率 : Case-4 > Case-3 > Case-2 > Case-1 滑動量 : Case-3 > Case-4 \Rightarrow Case-2 > Case-1
- 移動面積 : Case-4 > Case-3 > Case-2 > Case-1

移動面積は、振動に伴う壁面の通過面積であり、盛土の変形量とみなせる.ここで、Case-4 の変形量は、補強材の長さを実施工の条件に合わせた場合に変化する可能性がある.しか しながら、定性的には盛土の総重量に比例して、盛土の変形量も増大する結果となったと いえる.

図-5.2.11(b)より,壁面の転倒率と滑動量の関係については, Case-1から Case-4の順に, 壁面は転倒モードが優勢であり, Case-4において最も顕著な傾向を示す. Case-1と Case-4 の関係からは,盛土高が高くなると,縦断方向の地震時において,抗口壁の変位は転倒モ ードが優勢になる. Case-1,-2,-3の関係から,上載盛土が抗口壁近傍に造成されると,抗 口壁の変位は転倒モードが優勢になる.盛土の応答加速度は,盛土天端および法肩におい て大きく増幅することが知られている^{16),17)}. したがって,いずれの関係についても転倒モ ードが優勢になるのは,盛土高が大きくなるほど,また,上載盛土の法尻と抗口壁の距離 が近づくほど,抗口壁上部の応答が増幅するに従って,変位が大きくなったことが原因と 考えられる.

(2). カルバートと地盤の応答スペクトル

カルバートが盛土全体の加速度応答に及ぼす影響を評価するために、カルバートの振動特性を予備実験により確認した.予備実験においては、本実験条件と同じ基礎地盤上にカルバート模型を設置し、Ring 3 と基礎地盤において加速度を計測した.実験では、50 G 場においてカルバート縦断方向にホワイトノイズを入力した.図-5.2.12 に、基礎地盤上の入力に対する Ring 3 のフーリエスペクトルの増幅率を示す.フーリエスペクトルの算出には、高速フーリエ変換を用いた.計算データ数は 65536、サンプリング間隔は 0.005 s である.同図より、Ring 3 の応答倍率は、6.2 Hz でピークを迎えた.

つぎに、図-5.2.13に STEP 5 における Ring 3 (A_{Ring 3}), Ring 11 (A_{Ring 11})と Ring 3 近 傍の盛土 A₃,基礎地盤 A_fの加速度応答について、時間領域表示と周波数領域表示をそれぞ れ示す.周波数領域表示には予備実験と同様に高速フーリエ変換を用いた.計算データ数 は 8192,サンプリング間隔は 0.005 s である.図より、Case-1 から Case-4 における加速 度応答の違いは、主に周波数領域において現れており、Case-4 から Case-1 に向かうにつ れて 3 Hz 以上のフーリエスペクトルが増大していることがわかる.これは、図-5.2.12 で 示したようにカルバートの固有振動数が 6.2 Hz にあるため、カルバートの応答が入力波の 2 次以降のモードである 3 Hz, 5 Hz, 7Hz など 6.2 Hz 付近の振動数において増幅し、盛土 模型の全体積に占めるカルバートの割合が増加するにしたがって、この増幅の影響が大き く現れたためと考えられる.

図-5.2.14 に,全加振域における A₃, Ring 3, 11 の応答加速度の最大値の推移を示す.こ こで,応答加速度の最大値は,時刻 *t* = 10.00 ~ 20.00 秒の間に現れる正負のピーク値をそ れぞれの加速度方向に対して平均して算出した.

各ケースの応答加速度に注目すると、Case-1からCase-4に向かうにつれて、応答加速度の 増幅が小さくなり、また $A_{Ring 3}$ と $A_{Ring 11}$ の応答の差が小さくなる.これは土被りの増大によ り、カルバートに作用する盛土の拘束効果が大きく働き、地震時の応答が小さくなるため と考えられる. 一方、Case-1においては、 $A_{Ring 11}$ と比較して $A_{Ring 3}$ の応答が大きくなり、 さらに、STEP 8, 9, 10において、 $A_{Ring 3}$ の応答値が A_3 の値を上回る.この大小関係が変化 した原因を応答加速度の履歴から考察する.

図-5.2.14に示したように、 Case-1におけるA₃, Ring 3, 11の応答加速度の大小関係は、 STEP 8の時点で変化した. そこで、図-5.2.15には、STEP 8について、*t* = 13.50 ~ 14.48 秒 における、基礎地盤の応答加速度に対するA₃, A_{Ring 3}, A_{Ring 11}の応答加速度の履歴をそれぞれ 示す. 同図には、履歴曲線の開始・終点位置と、履歴曲線がピークを迎える順番を併記し ている.

図より,各ケースにおけるA₃,A_{Ring 3},A_{Ring 11}の履歴曲線の相互関係について,図中3番の ピーク位置 (左向きの応答加速度が最大となる時)に注目して整理する.Case-1では,A_{Ring 3} の応答が A₃ を上回る.一方Case-2とCase-3では,土被りの増大に応じてA_{Ring 3}の応答が A₃ を下回っており,A_{Ring 3}と A_{Ring 11}の応答差は小さい.また,Case-1と比較して,それ ぞれの履歴曲線の形状が近づく. さらにCase-4では, A₃, A_{Ring 3}, A_{Ring 11}の履歴曲線が殆ど 一致する.

A₃, A_{Ring 3}, A_{Ring 11}の履歴曲線の相互関係がこのように変化するのは,図-5.2.13, 5.2.14 で示した通り,盛土形状に応じて,カルバートを含む盛土の地震時応答が変化するためで ある.図-5.2.15より, Case-1のように,カルバートの土被りが1.0 mで一定である場合, 盛土の拘束効果が小さく,カルバートの地震時応答は周辺盛土の応答を卓越し,その傾向 は最も変形が生じやすい坑口部において顕著である.そのため,坑口部に位置するRing 3 と奥に位置するRing 11における振幅の差が最も大きくなる. Case-2と Case-3では, Ring 3 とRing 11について地震時応答の差が確認できるが,土被りの増大により,その差が減少す る.一方, Case-4のように,カルバートの土被りが4.0 mで一定である場合,盛土の拘束効 果が大きくなり,カルバートは周辺盛土と一体的に応答する.

図-5.2.16に、1 Hz の連続波を入力地震動とした本実験において、Case-1 ~ Case-4 の加 速度応答から推測されるカルバートを含む盛土の地震時モードと上載盛土の拘束効果の関 係を示す.図より、土被りが小さい場合、最も盛土の拘束効果が小さくなる坑口部でカル バートの応答が大きく増幅し、周辺地盤の応答を卓越すると考えられる.土被りが大きい 場合、盛土の拘束効果も大きいため、カルバートは周辺地盤の応答に追従し、坑口部にお ける応答の増幅が抑制されると考えられる.ただし、図-5.2.11 で示した通り、土被りが大 きくなるにつれて、盛土の総重量の増大に伴って、カルバート縦断方向の地震時における 坑口壁の変位量が増加することに留意する必要がある.

図-5.2.12 カルバートの固有振動数

図-5.2.13 A_{Ring 3}, A_{Ring 11}と A₃の加速度応答(STEP 5:最大入力加速度 2.5 m/s²)

図-5.2.14 応答加速度の最大値の推移

図-5.2.15 A_{Ring 3}, A_{Ring 11}と A₃の応答加速度履歴 (STEP 8: 最大入力加速度 4.0 m/s²)

図-5.2.16 1 Hzの入力に対するカルバートを含む盛土のカルバート縦断方向の地震時応答

(3). 加振後の盛土模型の状態

写真-5.2.2に、加振後の盛土地表面の状態を示す.写真には、抗口壁近傍のクラックの発生状態を赤線で示している.写真より、Case-1から Case-3 に共通して、被りの小さい坑口部付近で縦断方向のひび割れが発生している.このひび割れは、カルバート頂部の位置に、カルバート軸方向に沿って発生していることから、カルバートの地震時応答により発生したものと考えられる.

Case-4 では、補強材の敷設位置において、カルバート縦断方向にクラックが発生している. さらに、盛土中央部では、写真においてカルバート横断方向に大きくクラックが発生している. これは、盛土天端の変位が大きくなった結果、盛土天端に強い引張力が作用し、カルバート横断方向に大きなクラックが発生したと考えられる. 土被りの増大は、カルバート縦断方向の地震時において、カルバートの応答を抑制する観点からは有効だが、盛土地表面の変位が大きくなることに留意する必要がある.

写真-5.2.3に,各ケースにおける加振前後のヒンジ部の状態を示す.本実験においては, 頂部ヒンジを単純な突合せ構造としたため,実施工における凹凸の突合せ構造よりもアー チは崩壊に至り易い条件だと考えられる.しかし,図より,盛土が大きく変形しても,被 災に見られたように頂部ヒンジがずれ落ちることはなかった.

(a) Case-1(b) Case-2(c) Case-3(d) Case-4写真-5.2.2加振後の盛土地表面の状態

(a) Case-1_加振前

(b)Case-2_加振前

(c)Case-3_加振前

(d) Case-4_加振前

(d)Case-1_加振後

(e)Case-2_加振後 (f)Case-3_加振後

写真-5.2.3 加振前後のヒンジ部の状態

(g)Case-4_加振後

(4). 実験結果のまとめ

本研究では、3ヒンジアーチを含む盛土模型に対して、1 Hz,20波の正弦波を、最大入力 加速度を0.5 m/s²ずつ段階的に増大させて計10回入力した.本実験で得られた、盛土形状が カルバート縦断方向の振動特性に及ぼす影響に関する知見は以下の通りである.

- カルバート縦断方向の地震動に伴う盛土の変形量は、概ね盛土の総重量に比例する.
 その変位モードは、上載盛土の形状に依存し、盛土高が大きくなるほど、また、上載 盛土の法尻と抗口壁の距離が短いほど、坑口壁は転倒モードに近づく.
- 2) カルバート縦断方向の地震時応答は、盛土の拘束効果に大きく影響を受ける.カルバートの土被りが小さい場合、最も盛土の拘束効果が小さくなる坑口部で、カルバートの応答が大きく増幅し周辺地盤の応答を卓越する.カルバートの土被りが大きい場合、盛土の拘束効果も大きいため、カルバートは周辺地盤に追従した応答になり、坑口部における応答の増幅も抑制される.
- 土被りの小さな坑口部では、坑口部近傍に位置するカルバートの応答が大きくなることから、坑口部に縦断方向の地盤のクラックが大きく発生する可能性がある.
- 4) 縦断方向の土被りが一定に大きな場合,縦断方向の地震時に伴い,盛土天端の変位が 大きくなったことが原因と考えられる地盤のクラックが発生した.土被りの増大はカ ルバートの応答を抑制する観点からは有効だか,盛土地表面の変位が大きくなること に留意する必要がある.
- 5) 最小土被りを 1.0 m 以上施し,頂部ヒンジを単純な突合せ構造とした本実験の範囲内では,縦断方向の繰り返しの地震動により盛土が大きく変形しても,頂部ヒンジがずれ落ちることはなかった.連結条件に関する検討結果を踏まえると,カルバート縦断方向の地震時挙動による被害に関しては,盛土形状よりも連結条件の影響が大きいと考えられる.

5.3. 斜角条件に着目したカルバートの縦断方向の地震時挙動

本節では、5.2 の盛土形状の影響に着目した動的遠心模型実験の検討条件を踏まえて、カ ルバート縦断方向の振動特性に及ぼす偏土圧の影響に着目した遠心模型実験について述べ る.本実験では、道路本線に対して平面交差角70°で設置された3ヒンジアーチを含む盛土 を対象に、その半断面を遠心模型実験によりモデル化した。縦断方向の振動特性を評価す るにあたり、0.5 m/s²刻みで1 Hz、20 波の正弦波を 10 段階入力した.以下では、5.2 の盛 土形状に着目した遠心模型実験から更新した実験条件の概要を述べ、このステップ加振に より得られた、盛土模型の変形状態、地震時応答、アーチの力学状態をそれぞれ考察した 結果について示す.

5.3.1. 実験概要

図-5.3.1 に実験模型と計測項目の概略図,写真-5.3.1 に実験のモデル化にあたり参考に した被災事例¹⁴⁾をそれぞれ示す.写真-5.3.1 より,抗口壁が左右非対称に変状しているこ とがわかる.この被災現場は,上部道路とカルバートの交差角が70°として設計された現場 である¹⁴⁾.そのため,抗口壁右側では斜角のため左側に対して土被りが小さく,坑口部に おいてカルバートに不均等な上載荷重が作用する構造である.補強土壁における左右非対 称な変状は,このような不均一な土被りが原因で発生したものと考えられる.そこで,本 実験では,写真-5.3.1 に示す被災現場を参考にした.写真-5.3.2,5.3.3 に示すように被 災現場の斜角条件を再現するような実験ケースを,均等に盛土した Case_Even と不均等に 盛土した Case_Uneven としてそれぞれ設定した.なお,Case_Even と Case_Uneven の土 総重量は同じである.さらに,3ヒンジアーチの抗口壁においては,常時の安定性や地震時 の相互作用を考慮して,図-5.3.2 のように中央で分割した壁面構造を抗口壁に採用する¹³⁾. 本実験では,斜角条件を再現するとともに,このような抗口壁の構造についても考慮する ため,二枚のアクリル板によって中央で分割された壁面構造を模擬した.

図-5.3.1 計測器配置

写真-5.3.1 参考にした被災事例¹⁴⁾ 写真-5.3.2 Case_Even 写真-5.3.2 Case_Even

写真-5.3.3 Case_Uneven

坑口壁は補強土壁で構築

図-5.3.2 坑口壁のモデル化

5.3.2. 実験結果と考察

以下の実験結果においては、特に記述が無い限りプロトタイプ換算した値を用いる.

(1). 盛土模型の変形状態

図-5.3.3 に、分割壁面上部において計測した、加振後の水平変位を示す.図より、 Case_Even と Case_Uneven のいずれのケースにおいても、繰り返しの加振によって、Wall R の変位量が大きくなったが、Case_Uneven においてその傾向が特に顕著であった.次に、 図-5.3.4に分割壁面の変位モードの推移を示す.同図は、STEP 1 ~ 10 (最大加速度 0.5 ~ 5.0 m/s²) について、各加振後における分割壁面の転倒率と滑動量の関係を示したものである. ここで、転倒率は、壁面上端 (Δ_1) と下端 (Δ_2) の変位量の差 ($\Delta d = \Delta_1 - \Delta_2$) を壁高 (H) で 除した値 ($\Delta d \mid H$)、滑動量は壁面下部の水平変位量 (Δ_2)でそれぞれ定義する.図より、 Case_Even と Case_Uneven において、Wall L と Wall R の転倒率は同様の傾向を示した. 一方、Case_Uneven においては、Wall L と Wall R の転倒率は同様の傾向を示した. 一方、Case_Uneven においては、Wall L と Wall R の転倒率は同様の傾向を示した. 本切り、Wall R が大きく平行移動していることがわかった.最後に、図-5.3.5 に、上 載盛土法尻で計測した沈下量の経時変化を示す.上載盛土法尻の沈下量は、Case_Even に おいて Wall L と Wall R 側で同様の傾向を示したが、Case_Uneven において Wall R 側で 「カルバート縦断方向の繰り返しの地震動により、坑口壁の変形と上載盛土法尻の変 化量が増大することがわかった.この原因を、地盤内の応答加速度の状態から考察する.

(2). カルバートを含む盛土模型の地震時応答

図-5.3.6 に、Case_Even と Case_Uneven について、振動台と、基礎地盤中央を計測点 とする A_fにおける加速度波形の時間領域表示と周波数領域表示を示す.なお、同図は坑口 壁の変形が生じた STEP 6 (最大入力加速度 3.0 m/s²)の加速度応答に注目したものである. 周波数領域表示には、高速フーリエ変換を用いた.用いたデータ数は 8192、サンプリング 間隔は 0.005 s である.以降、すべての周波数領域表示は同じデータ数・サンプリング間隔 を用いた.図より、いずれのケースにおいても、基礎地盤と振動台の振幅・位相は、3 Hz の応答が基礎地盤において少し増幅するものの、概ね一致した.

図-5.3.7, 5.3.8 に, Case_Even と Case_Uneven の STEP 6 における分割壁面背面の地 盤(AR₁, AL₁) と上載盛土法肩 (AR₃, AL₃) で計測した加速度応答を示す. なお,時間領域表 示は $t = 10.0 \text{ s} \sim 15.0 \text{ s}$ とし,応答の関係が明瞭に判別できるよう 1 Hz の波が 5 波入力さ れる時間に注目した.以降,時間領域表示は同様に整理する.同図には,AL のフーリエス ペクトルを AR のフーリエスペクトルで除した値で定義する,スペクトル比 Sr を記載して いる.図-5.3.7 より,Case_Even では,AR と AL の応答が位相のずれもなく概ね一致す るが,Sr の値に注目すると,AR₁, AR₃の 1 Hz と 3 Hz の応答が AL₁, AL₃より大きく,特 に AR₁ の 1 Hz の応答が AL₁ より 10 %程大きくなっている.これが,均等に盛土した Case_Even の Wall R の変位量が大きくなった理由と考えられる.一方,図-5.3.8 より, Case_Uneven では,AR₃ と AL₃の応答が振幅・位相ともに大きくなり,1 Hz の応答が AL₃ より 16 %, 3 Hz の応答が 25 %増加している.

つぎに、図-5.3.9、5.3.10に、カルバートを含む盛土模型全体の1Hzにおける応答倍率 を示す.なお、応答倍率は、基礎地盤Afにおける1Hzのフーリエスペクトルで、任意の 地盤内加速度における1Hzのフーリエスペクトルで除したもので定義する.図より、 Case_Even と Case_Uneven のいずれにおいても、Wall Lに比べて Wall R 側で大きくな り、坑口壁の残留変位と上載盛土法尻の沈下量の経時変化の大小関係と良く一致した.以 上のことから、Case_Uneven では、上載盛土左右において、振幅だけでなく、位相の応答 も異なり、さらに土被りが大きい側で応答が増幅することで、坑口壁に不均一な変形をも たらしたといえる.

図-5.3.11, 5.3.12に, STEP 9 (最大入力加速度 4.5 m/s²)における, Wall R 側の坑口 部アーチ (Cul R)と Wall R 背面地盤 (AR₁)における加速度応答を示す.図より,いずれの ケースにおいても, Cul R と AR₁の位相は一致するが, Cul R の応答は AR₁より小さくな った. そのため,盛土模型が大きく変形している STEP 9 においてもなお,上載盛土の拘 束効果によって,カルバートは周辺地盤の応答に支配されているといえる.つぎに,図 -5.3.13に,坑口部における左右のアーチ部材 (Cul L, Cul R)における,減衰定数を5%と したときの変位応答スペクトルを示す.図より,いずれのケースにおいても,左右のアー チ部材の変位応答スペクトルはほとんど一致していた.そのため,本実験条件では,土被 りの形状によって,左右のアーチ部材における縦断方向の変位が大きくずれる傾向は確認 できなかった.これは、本実験模型において3ヒンジアーチの改訂マニュアル¹⁸⁾を参考に アーチ頂部を一体的に連結したことが、地震時に有利に働いたためと考えられる.既設構 造物においては、縦断方向に全体的に連結されていない条件も存在するため、縦断方向の 地震時変形と連結条件の照査は重要な問題である.

図-5.3.13 坑口部の左右のアーチ部材の変位応答スペクトル(減衰乗数5%)

(3). アーチの力学状態

図-5.3.14,5.3.15 に Case_Even と Case_Uneven における加振後のアーチ模型の軸力分 布を示す. 図中, Arch Mouth は坑口に位置する Ring 1L と Ring 2R, Arch Toe は上載盛 土法尻直下に位置する Ring 2L と Ring 3R, Arch Slope は斜面の直下に位置する Ring 4L と Ring 5R をそれぞれ組み合わせたものとする. 図より,いずれの位置のアーチも,繰り 返しの加振に伴い,初期の軸力分布状態と相似形に軸力が増加する傾向がみられる. Arch Mouth はいずれのケースにおいても, Ring 2R 側で軸力が小さくなる傾向がみられた. Arch Toe は,上載盛土法尻の沈下の影響を受けていると考えられるが,発生した沈下量と比較し て, Case_Uneven の Ring 3R の軸力は Case_Even と比べて小さい. Arch Slope の軸力は, いずれのケースにおいても, Ring 5R で大きくなった.

次に、図-5.3.16, 5.3.17に Case_Even と Case_Uneven における加振後のアーチ模型の 曲げモーメント分布を示す.図より,加振による曲げモーメント分布の変動は,土被りの 大きな Arch Slope で顕著であることがわかる.特に,Case_Uneven では,Arch Slope に おける Ring 4L と Ring 5R の曲げモーメントの大小関係が繰り返しの加振によって入れ替 わっており,斜面直下では,カルバート縦断方向の地震動により,盛土の変形とそれに伴 う偏土圧の影響を受けやすいと考えられる.Arch Mouth と Arch Toe など坑口部のアーチ の曲げモーメントと軸力は,初期状態の影響が支配的である.ここで曲げモーメントの発 生状況と軸力の発現状態の関係を整理すると,曲げモーメントが大きくなると軸力も大き くなり,曲げモーメントが小さいと軸力も小さくなっており,いずれの設置位置において もアーチ機構が発現しているといえる.一方,Case_Uneven の Arch Toe では,Ring 3R において内空側に大きな曲げモーメントが発生しており,偏土圧の影響を大きく受けてい ることが伺える.先の被災では,斜角が 60.5°の現場において,坑口アーチの頂部ヒンジが ずれた¹⁴⁾.本実験から得られた変形モードを鑑みると,常時から偏荷重が坑口のアーチに 作用しており,さらに,アーチ部材地震動による大きな慣性力が働いたことで,部材同士 がねじれて,ヒンジのずれにつながった可能性が高いといえる.

(a) Arch Mouth (Ring 1L&2R)

(a) Arch Mouth (Ring 1L&2R)

(b) Arch Toe (Ring 2L&3R)

図-5.3.14 アーチの軸力分布 Case_Even

(b) Arch Toe (Ring 2L&3R)

(c) Arch Slope (Ring 4L&5R)

600 300 0

600 300 0 ↔ Step 0 Axial force [kN] ↔ Step 5 ↔ Step 10

(c) Arch Slope (Ring 4L&5R)

図-5.3.15 アーチの軸力分布 Case_Unven

(a) Arch Mouth (Ring 1L&2R)

Bending moment \bigcirc Step 0 [kN*m] Step 5 \bigcirc Step 10

(a) Arch Mouth (Ring 1L&2R)

-30 0 30

[kN*m]

[kN*m]

(b) Arch Toe (Ring 2L&3R)

図-5.3.16 アーチの曲げモーメント分布 Case_Even

(b) Arch Toe (Ring 2L&3R)

アーチの曲げモーメント分布 Case_Uneven 図-5.3.17

(c) Arch Slope (Ring 4L&5R)

(c) Arch Slope (Ring 4L&5R)

(4). 実験結果のまとめ

本研究では、道路盛土本線との平面交差角が 70°となるカルバート構造を再現した、3 ヒ ンジ式を含む盛土模型に対して、1 Hz、20 波の正弦波を、最大入力加速度を 0.5 m/s² ずつ 段階的に増大させて計 10 回入力した.本実験で得られた、不均等な盛土形状がカルバート 縦断方向の振動特性に及ぼす影響に関する知見は以下の通りである.

- 道路盛土本線とカルバートが一定の交差角を有すると、カルバート縦断方向の地震時において、盛土及び坑口壁の不均一な変形に大きく寄与する.不均一な変形が生じる 原因は、平面交差角を有する場合、上載盛土法肩の応答が坑口壁の分割位置を境に大きく異なるためである.
- 2) アーチの力学状態は、坑口部においては初期状態の影響が大きくなるが、斜面直下な ど土被りの大きな位置では地震時の影響が大きくなる.
- 3) 上載盛土の形状がアーチ断面に対して左右不均一である場合,坑口部に位置するアー チの曲げモーメントおよび軸力の初期状態は,偏土圧により不均一になる.そのため, 平面交差角と地震動の入射方向の関係によっては,常時から偏荷重が作用しているア ーチ部材がねじれ変形し,目地の開きや部材の損傷などの被害が発生する可能性が高い.一方,斜面直下など土被りの大きなアーチは,カルバート縦断方向の地震動により,不均一な盛土の変形によりもたらされる偏土圧の影響により,アーチが力学的に 不安定化する可能性が高い.
- 4) 本実験結果から鑑みるに、平面交差角が90°未満の既設構造物への対策として、坑口部 にウィング壁や抑え盛土を構築するなどして、アーチに偏土圧が作用しないようにす ること、ねじれ変形を抑止するために、アーチ頂部においてカルバート間の連結を補 強することが考えられる。

5.4. カルバート縦断方向の地震時挙動に関する弾塑性有限要素解析

本節では、これまで模型実験により確認したカルバート縦断方向の地震時挙動における 連結条件と盛土形状の影響について数値解析により検証する.本解析は、地盤の非線形化 を考慮するため弾塑性有限要素解析により実施した.カルバート間の連結条件については、 ペナルティ法を用いて接触解析によりその影響を考慮した.以下では、二次元解析および 三次元解析による解析結果とその考察を述べる.

5.4.1. 二次元弾塑性有限要素解析の概要

カルバート間の連結条件に着目した遠心模型実験の結果,分離されたカルバートは縦断 方向の揺れに対して盛土内で個々に挙動することを確認している(図-5.4.1).このような 挙動を再現する場合,部材同士の衝突を伴う接触解析を実施する必要がある.接触問題の 解法は格子法や粒子法を用いて種々の手法が提案されている^{19,20)}.特に,ペナルティ法は 接触点間においてばね要素を挿入することと等価であり,比較的実装が容易である.ただ し,接触時の剛性を高めることで高次モードの振動が生ずるなど²¹⁾,取り扱いに注意が必 要であるが,物理的な意味がシンプルなモデルである点を考慮して,本解析においては, ペナルティ法によりアーチ部材間の接触条件を考慮することとした.

本解析では、弾塑性有限要素解析コード DBLEAVES ²²⁾を用いて、アーチ部材間の連結条 件を接触解析により考慮した、カルバート縦断方向の地震時挙動に関する 2 次元弾塑性解 析を実施した. DBLEAVES は、Kimura and Zhang²³⁾により開発された 3 次元弾塑性有限 要素解析コード DGPILE3D を元に、Ye, et al. ²²⁾により改良されたものであり、 有限変形 解析により大変形問題を考慮できるようになっている. 本解析コードの地盤の変形問題に 対する適用性は、 杭基礎^{24)~26)}やトンネル²⁷⁾, 地下構造物²⁸⁾などの様々な事例解析を通 じて十分に検証されている. 以下では、解析条件について述べた後、解析結果について考 察する.

図-5.4.1 カルバート縦断方向の地震時挙動とそのモデル化

(1). 解析メッシュと解析ケース

図-5.4.2に、本解析で用いた解析メッシュを示す.解析メッシュについては、いずれのケースについても、5.0 mの砂質地盤上に奥行 1.0 mのカルバートを 20 体含む盛土が建設された場合とした.解析ケースは、完全連結・完全分離と上載盛土の有無をパラメータとした4ケースである.図に示すように、土被りが 1.0 mのケースを Case-1、土被りが 4.0 mのケースを Case-2 と設定した.さらに、それぞれのケースについて、カルバート間を連結したケースを Case-1c、Case-2c、カルバート間を分離したケースを Case-1s、Case-2s とした.カルバートの延長距離は、ヒンジ式プレキャストアーチカルバートが道路盛土のアンダーパスとして用いられることから、標準的な法面勾配 1:1.8¹⁵⁾を満たす上載盛土の天端において二車線以上確保可能な距離として設定した.

図-5.4.2 解析メッシュ

(2). モデル化と入力波形

1) 地盤のモデル化

地盤については締固め管理可能な江戸崎砂の物性値を使用し、その力学特性は、Cyclic mobility model²⁹⁾を用いてモデル化した.本構成モデルでは、土の力学挙動に大きな影響を与える土の密度や過圧密比、自然堆積過程に形成された構造、および各種応力履歴を受けることで発生した土の応力誘導異方性を一つのモデルでパラメータを変えることなく表現することを目的に開発された構成式である.

Cyclic mobility model は 8 つのパラメータによりコントロールされている. 8 つのパラメ ータの内, 5 つのパラメータ (*Rcs, λ, κ, N, ve*) はカムクレイモデルと全く同じであり, 室内三軸試験により決定できる. 他の 3 つのパラメータ (*a, m, br*) は三軸試験の結果に対 してトライ&エラーによるフィッテイングを行う必要があるが, それぞれ明確な物理的意味 を持ちシンプルに定義されている. それぞれのパラメータの力学的意味は以下の通りであ る.

R_{cs}: 三軸圧縮条件下における破壊時主応力比であり、下記の式で表現される

$$R_{cs} = \left(\frac{\sigma_1}{\sigma_3}\right)_{CS(comp.)}$$

λ : 圧縮指数

等方圧密載荷・除荷試験により決定されるパラメータで,正規圧密状態から載荷過 程にある時の e~lnp[,] 関係の直線の傾き

- κ : 膨潤指数
 等方圧密載荷・除荷試験により決定されるパラメータで、過圧密状態から除荷過程にある時の e~lnp¹
 関係の直線の傾き
- N: 大気圧下 (p'=98 kPa, q=0 kPa) の間隙比
- v_e : ポアソン比
- a : 構造喪失の速度をコントロールするパラメータ
- m: 過圧密の解消の速度をコントロールするパラメータ
- br : 応力誘導異方性の発達速度をコントロールするパラメータ

これらのパラメータは、江戸崎砂に対して実施した等方圧密試験と室内三軸試験の結果 から決定した.等方圧密試験の結果を図-5.4.3 に、三軸試験とそのシミュレーションの結 果を図-5.4.4 に示す.拘束圧の影響は、初期構造に関する状態変数 *R*o*を変化させること で調整した.シミュレーションでは小さな軸ひずみレベルにおいて体積ひずみが大きく変 化する傾向があるが、全体としては比較的良く実験結果を再現できている.このシミュレ ーション結果に基づき、解析では**表**-5.4.1 のようにパラメータと状態変数 (*R*o*, *ço*)を決 定した.

2) カルバートのモデル化

本来, カルバートは, 盛土高さや土被りを考慮して常時の安定計算により設計される³⁰. しかし,本解析では,問題の単純化のため,奥行 1.0 m,高さ 3.0 m のカルバートとした. また,モデル化に際しては弾性ソリッド要素を用いることとした. 表-5.4.2 に,解析に用 いたパラメータを示す.

カルバート間の連結の有無を表現するために、ペナルティ法を用いた.図-5.4.5 に、カ ルバート間に配したばね要素の荷重変位関係を示す.カルバート間が分離されている場合 のばね要素の剛性は、カルバート間が接触するまでは非常に小さい剛性、接触後はカルバ ート躯体の剛性を有するモデルとした.一方、カルバート間が連結されている場合につい ては、ばね要素の剛性を常にカルバート躯体と等価な剛性を有するモデルにすることで表 現した.また、カルバートと地盤の境界部分については、Joint 要素を用いることで、滑り 及び剥離を表現している.Joint 要素の材料定数は、モルタルと豊浦砂を用いた一面せん断 試験の結果を参考にして決定した(図-5.4.6).表-5.4.3 に Joint 要素の材料定数を示す.

3) 初期応力の設定

本解析においては、地盤と構造物の初期応力は自重解析により決定した.

4)入力波形

図-5.4.7に、本解析で用いた入力波形を示す.入力波形は1 Hz,3波,100 galの正弦 波とした. 地震動は基礎地盤底面から入力し、計算時間間隔は 0.001 秒とした. 時間積分 は Newmark- β 法 (β = 1/4, γ = 1/2) を用いた.

Principal stress ratio at critical state $Rcs = (\sigma l / \sigma 3)_{CS(comp.)}$	4.0
Compression index λ	0.08194
Swelling index κ	0.01014
$N = e_{NC}$ at $p = 98$ kPa & $q = 0$ kPa	1.06
Poisson's ratio v_e	0.276
Degradation parameter of overconsolidation state <i>m</i>	0.02
Degradation parameter of structure a	0.65
Evolution parameter of anisotropy b_r	0.4
Wet unit weight (kN/m ³) γ_t	17.738
Initial degree of structure R^{*}_{0}	$0.1491 \sim 0.1584$
Initial anisotropy ζ_0	0.5

表-5.4.1 解析で用いた地盤パラメータ

表-5.4.2	カルバー	トの材料定数
---------	------	--------

材料定数		カルバート
ヤング率 E _e	[kN/m ²]	3.10×10 ⁷
単位体積重量 y	[kN/m ³]	24.5
ポアソン比 ν		0.20
減衰定数 h	+	0.02

図-5.4.5 連結工の表現に用いたばね要素のモデル

u_n

-*1.0* m

[kN/m]

[kN/m]

150

表-5.4.3 Joint 要素の材料定数

Shear stiffness K _s [kN/m ²]	1.55×10 ⁵
Normal stiffness Kn [kN/m²/m]	1.55×10 ⁵
Cohesion c [kN/m ²]	5
Internal friction angle ϕ [deg]	28

5.4.2. 二次元解析結果

加振後の変形状態

図-5.4.8に、加振後における盛土の水平変位量に関するコンター図を変位出力 10 倍にし て示す.図より、盛土の変形量は、連結条件より、分離条件において増大することがわか る.さらに、土被りが大きいほど、その増大量は増える.分離条件においては、盛土の変 形に伴うカルバートの転倒が表現されており、特に Case-2sにおいて、盛土の変形に伴う目 開きが明瞭に表現できていることがわかる.連結条件に関する盛土の変形量の傾向は、5.1 で示した連結条件に着目した動的遠心模型実験の結果と一致している.すなわち、ペナル ティ法による本解析結果は、カルバート間の連結条件とカルバート縦断方向の地震動に伴 う、盛土およびカルバートの変形状態に関する傾向を定性的に再現できているといえる.

図-5.4.8 加振前後の状態(変位出力10倍)

(2). 連結部の地震時挙動

図-5.4.9に、カルバート頂部の連結部における地震時挙動を示す. 同図は、全ケースにお けるカルバート要素頂部に配したばね要素の変位・力学挙動にそれぞれ注目している. 図 -5.4.9(c),(d)より、分離条件における、ばね要素の変位挙動は土被りによらず互いに同じ 傾向を示している. 目開き量は、カルバートの坑口に近づくにつれて大きくなり、SP₂にお いて目開き量が最大となった. 図-5.4.9(e),(f)より、連結条件においては、Case-1c にお ける、連結部の軸力は加振中にやや引張側に大きくなり、最終的に引張力が残留した. Case-2cにおいては、加振開始から加振後を通して、引張力が大きく発生し、SP₃において Case-1cの5倍程度大きな残留力が発生した.

図-5.4.10 に、カルバート頂部における連結部に作用した最大引張力の分布を示す.同図 における最大値はいずれのケースも、SP₃において発生しており、土被りの増大に伴って、 引張力が大きくなる傾向を示した.これは、土被りの増大に伴いカルバートに作用する拘 束効果が大きくなり、躯体に発生したせん断力が増大したためである.

(3). 解析結果のまとめ

本解析では、カルバート縦断方向の耐震性能評価手法の構築を目標に、連結様式・盛土 形状をパラメータとしたカルバート縦断方向の地震時挙動に対する二次元弾塑性解析を実 施した.本解析により得られた知見は以下の通りである.

- 1) ペナルティ法を用いた弾塑性有限要素解析により,盛土の変形に伴ってカルバートの 目開きが生じる様子を再現できた.
- 2) 上載盛土の有無による連結部の軸力変動を比較した結果,上載盛土が存在する場合加 振中に生じる軸力が増大した.
- 3) 特に、盛土法面直下の軸力が大きく増加したことから、上載盛土がカルバート縦断方向の地震時挙動に及ぼす影響は法面直下において大きくなり、結果としてカルバート 頂部に働く面内せん断力が増大すると考えられる。

5.4.3. 三次元弾塑性有限要素解析の概要

本解析においては、旧型の3ヒンジアーチ^{5,13,18}(図-5.4.11参照)を対象とした.その 設計条件は東日本大震災における被災事例¹⁴⁾を参照した.図-5.4.12に、3ヒンジアーチの施 工事例³¹⁾に基づき、内空幅、最大土被り、カルバートの延長距離の観点から、被災条件の特 徴を整理した.被災したカルバートは、内空幅10.0 m、最大土被りが5.0 mの条件に集中し ていた.そこで、本解析においてもこれらの断面規模を対象とすることとした.カルバー ト縦断方向の延長距離に関しては、ほとんどの場合20.0 m – 40.0 mの場合に該当する.本 解析においては、計算コストを考慮し、延長距離20.0 mのカルバートをモデル化すること とした.

図-5.4.12 3 ヒンジアーチの施工条件(施工年月 1994 年 1 月以降の 127 件を対象)^{31)を基に作成}

(1). 解析メッシュと解析ケース

図-5.4.13, 図-5.4.14に,盛土形状の異なる二種類の解析メッシュを示す.3 ヒンジ式ア ーチカルバートの実構造条件を基に,千鳥配置,坑口壁をそれぞれ考慮している.解析ケ ースの設定は二次元解析と同様の規則で,土被り1.0 mのケースを Case-1,5.0 mのケー スを Case-2 とし,それぞれに連結・分離条件を考慮した計4ケースを設定した.基礎地盤 は良好な条件を前提とし,延長距離は20.0 m とした.

図-5.4.13 三次元解析における解析メッシュ (Case-1)

図-5.4.14 三次元解析における解析メッシュ (Case-2)

(2). アーチ部材の境界条件

図-5.4.15 に、アーチ部材における境界条件を示す.アーチ部材の諸元は二次元解析と同様である.図より、アーチ部材と周辺地盤間における滑り・剥離表現のためジョイント要素を配置している.その諸元は、二次元解析の条件と同様である.また、バイリニア型のばね要素をアーチ部材の縦断方向の連結およびアーチ頂部のヒンジ構造の表現のため、それぞれの部材間に挿入している.縦断方向の連結条件に関する剛性パターンは二次元解析と同様であるが、頂部ヒンジについては接線方向の剛性を殆どゼロとするモデル化とした. 脚部ヒンジについては、浮き上がりを表現するため、ジョイント要素をアーチ脚部と基礎の間に配置した.

(3). 坑口壁のモデル化

3 ヒンジアーチの坑口壁は、一般的に補強土壁工法により垂直な壁面が構築される⁵⁾. こ れまで帯鋼補強土壁をモデル化した、連結条件ならびに盛土形状に着目した動的遠心模型 実験の結果を踏まえると、補強土壁と周辺地盤の一体性は、カルバート縦断方向の繰り返 しの加振により損なわれなかった. そのため、坑口壁は補強材を有さない弾性体としてモ デル化し、坑口壁背面と盛土の間に配置したジョイント要素の摩擦により、地震時におい て背面盛土と一体性を保つ条件とした.

(4) 地盤材料と初期応力

本解析における基礎地盤と盛土部の諸元は、二次元解析と同様である.初期応力に関して は、基礎地盤とカルバートは盛土部を弾性体とした自重解析により決定した.盛土部のヤ ング率は江戸崎砂の三軸シミュレーションから計算された初期剛性の4倍とした値を用い た¹⁰⁾.盛土部の初期応力は、解析の安定性を考慮し、水平成層地盤を仮定して、K0状態と して算出した.

(5). 入力波形

入力波は,基本的な地震時挙動を確認するため、1 Hz,3 波の正弦波とし,その振幅は 300 gal とした (図-5.4.16). 地震動は基礎地盤底面から入力し,計算時間間隔は 0.001 秒とした.時間積分は Newmark-β法 (β=1/4, γ=1/2) を用いた.

5.4.4. 三次元弾塑性有限要素解析の結果

(1). カルバートと盛土の変形状態

図-5.4.17に、全ケースにおける盛土の沈下量に関する推移を示す.図より、盛土の沈下 量は連結条件より分離条件において増大していることがわかる.さらに、坑口壁の変形状 態に注目するため、図-5.4.18に、坑口部正面図におけるY方向の変位分布図を示す.図よ り、カルバート間を分離すると、カルバート直上の変位量が坑口壁から外側に向かって増 大することがわかる.また、盛土形状の違いに注目すると、壁面の位置とその変位量の差 は土被りが大きくなるほど減少することがわかる.図-5.4.19に、坑口壁上端におけるY方 向の変位分布を整理する.図より、カルバート間の連結条件はカルバート直上の坑口壁の 変位量に、また盛土形状は壁面位置における変位量の差に影響を及ぼすといえる.

カルバート間の連結条件が坑口壁の変形に及ぼす影響を精査するため、図-5.4.20に、 Case-1s, Case-2sについて、振動中におけるカルバートのY方向の変位コンターの推移を示 す.図より、カルバート縦断方向の振動に伴い、坑口に位置するアーチ部材の変位が増大 し、最終的に坑口から外側に向かう変位が残留することがわかる.加振中の詳細な挙動に ついては、図-5.4.21に、アーチ頂部のみに注目してY方向の応答変位に関する時刻歴を整 理した.図より、図-5.4.20と同様に、分離条件においては加振に伴いアーチ頂部が坑口か ら外側に向かう変位が増大することがわかる.連結条件においては、いずれのアーチ部材 も同じ応答変位を示し、一体的な挙動を示した.全体の傾向としては、図-5.4.22に示す通 りである.

すなわち,分離されたアーチ部材は、カルバート縦断方向の加振に伴い、坑口から外側に 向かう変位が増大する.盛土の変形、坑口壁の変位はそれぞれ同時的に発生すると考えら れるが、個々のアーチ部材が変位することで、アーチカルバート全体としてのカルバート 縦断方向のせん断剛性が連結条件と比べて低下し、結果として、盛土および坑口壁の変位 が増加したといえる.

図-5.4.17 カルバートを含む盛土の沈下量に関する推移(変位出力10倍)

Case-1s

図-5.4.20 カルバートにおける Y 方向の変位コンター(変位出力 10 倍)

図-5.4.21 アーチ頂部における Y 方向の応答変位に関する時刻歴

(2). 地震時におけるカルバートの応力状態

カルバート縦断方向の地震時におけるカルバートの応力状態を議論するにあたり,図 -5.4.23に,解析メッシュにおける原点座標の位置を示す.また,図-5.4.24に、カルバー トに作用する *xy*の推移を示す.ここで,*xy*は、カルバート縦断方向にアーチ部材をせん断 させる力である.図より、カルバート間を分離すると、坑口部においてアーチ頂部におけ る応力集中が確認できる.カルバート間を連結すると、アーチ全部材でせん断応力に抵抗 するため、アーチ肩部を中心に広い範囲でせん断応力の増大が確認できる.

つぎに、図-5.4.25に、カルバートに作用する*t*_{ax}の推移を示す.ここで、*t*_{ax}は、カルバート横断方向にアーチ部材をせん断させる力である.図より、分離条件では個々のアーチ部材にせん断応力が集中していることがわかる.この個々のアーチ部材に作用する、カルバート横断方向のせん断応力が、アーチ部材のねじれ変形をもたらし、結果としてカルバート間の目開きを引き起こすと考えられる.また、連結条件の場合では、アーチ断面全体でせん断応力に抵抗するため、応力値が分離条件より大きいことに加えて、特に坑口における応力集中が顕著となった.

これらの三次元応力状態を踏まえて、カルバートの連結部に作用する力を考察する.図 -5.4.26 に、Case-1c、Case-2c について、連結部に作用する Y 方向の軸力に関する時刻歴を 示す.図より、Ring 1-2 においては、いずれのケースも、肩部における軸力の変化が大き いが、Ring 7-8 のように、坑口から遠ざかると、アーチ頂部における引張力が顕著に増大 する.この傾向は、図-5.4.24、5.4.25 で確認した三次元の応力状態と一致しており、つま り、3 ヒンジ式アーチカルバートのアーチ部材間の連結部に作用する力を適切に評価するた めには、三次元解析が必要と言える。その原因に関しては、周辺地盤の滑り破壊の状態を 含め、地盤の破壊および応力状態に関する考察が必要となる。

図-5.4.23 解析メッシュにおける原点座標の位置

図-5.4.24 カルバートに作用する *txy*の推移(変位出力 10 倍)

図-5.4.25 カルバートに作用する *zxx*の推移(変位出力 10 倍)

図-5.4.26 連結部に配したばね要素における変位および力の時刻歴

(3). ねじれ方向の変形に対する動的解析

東日本大震災の被災事例においては、旧型の3ヒンジアーチは坑口壁の左右非対称な変状 や、アーチ部材の角欠けといった特徴的な被害が生じた.これらの被害は、カルバート縦 断方向の地震時挙動のみでは十分説明できない部分が多い.地震動や施工条件の実態を考 えると、現実には、ねじれ方向の地震動が入射する、あるいは斜角の厳しい条件で設置さ れるといったことが想定される.そこで、本解析では、ねじれ方向の変形挙動を再現する ことを目的に、縦横断方向の動的挙動解析を実施した.解析メッシュなど基本的な条件は 前項と同様である.ただし、入力波形は、入射角度が45°かつ、1 Hz,3波、300galの振動 となるように調整した入力波(図-5.4.27)を、メッシュ底面においてX方向とY方向に同時 入力した.以下に、解析結果を示す.

図-5.4.28に、坑口壁頂部におけるY方向の変位分布を示す.図より、Case-1sにおいて坑 口壁の不均一な変形が明瞭に生じており、土被りが増大したCase-2sにおいてはその不均一 性が減少する.地震時における坑口壁の変状は、カルバート縦断方向の動的解析結果と連 結様式に関する動的遠心模型実験結果と同様に、カルバート躯体における縦断方向のせん 断剛性に依存するといえる.図-5.4.29に、カルバートにおけるY方向の変位コンターを示 す.図-5.4.29からもわかるように、分離条件では坑口壁付近のアーチ部材においてずれが 生じており、特に坑口壁の変状が大きかったCase-1sにおいて部材のずれが顕著である.図 -5.4.30に、アーチ頂部におけるY方向の応答変位に関する時刻歴を示す.図より、土被り の増大に応じて応答変位振幅が増大するが、各々のアーチ部材における変位量の差は土被 りが小さい条件で増大することがわかる.すなわち、ねじれ変形の挙動においても、カル バート間が分離され、かつ土被りが小さい条件において、目開き被害が生じやすいといえ る.

つぎに、図-5.4.31に、カルバートに作用する τ_{ax}の推移を示す.ここで、τ_{ax}は、カルバート横断方向にアーチ部材をせん断させる力である.図より、カルバート縦断方向の動的解析と同様に分離条件では個々のアーチ部材にせん断応力が集中していることがわかる.さらに、分離条件では、連結条件と比較してより明確にねじれ方向の応力集中が生じている. アーチ部材端部における応力集中を確認するため、図-5.4.32に、カルバート内空に作用する τ_{xy}の推移を示す.ここで、τ_{xy}は、カルバート縦断方向にアーチ部材をせん断させる力である.図より、同じ応力レベルで比較すると、Case-1sでは、アーチ頂部のみにおいて連続的な応力集中が確認できるが、Case-2sでは、アーチ頂部・脚部において対角方向に応力集中が生じていることがわかる.

図-5.4.33 に、これらの応力状態と、安部・中村が示した損傷メカニズムの図¹⁴⁾を整理 する.図より、ねじれ方向の動的解析により、損傷メカニズムに示されるアーチ部材の変 形モードが再現できており、また応力集中の発生している箇所と角欠け・剥離が生じた箇 所が良く一致していることがわかる.被害が生じた旧型の3ヒンジアーチにおいては、頂 部ビームが設置されておらず、比較的縦断方向のせん断剛性が弱い条件であった.加えて、 本解析のようにねじれ方向の変形が生じたことで,アーチ部材の角欠けや基礎の剥離など 特徴的な被害が生じたと考えられる.

Case-1s

図-5.4.29 カルバートにおける Y 方向の変位コンター (変位出力 10 倍)

図-5.4.30 アーチ頂部における Y 方向の応答変位に関する時刻歴

図-5.4.31 カルバートに作用する *zzx*の推移(変位出力 10 倍)

図-5.4.32 カルバートに作用する *xy*の推移(変位出力 10 倍)

(4). 三次元解析結果のまとめ

本解析では、弾塑性有限要素解析によりペナルティ法を用いて、3 ヒンジ式アーチカルバートの連結条件を考慮したカルバート縦断方向の動的解析を実施した.本検討では、基本的な地震時挙動の把握のため、1 Hz の正弦波を用いた.本解析で得られた知見は以下の通りである.

- カルバート間の分離条件における非線形挙動を再現するために、ペナルティ法を用いて二次元および三次元弾塑性解析を実施した.その結果、いずれの解析においても、 盛土の変形に伴うアーチ部材の目開きや、連結条件に伴う盛土形状の変化など、連結 条件を考慮した動的遠心模型実験の結果と定性的な傾向が一致することが分かった.
- 2) 分離されたアーチ部材は、カルバート縦断方向の加振に伴い、坑口から外側に向かう 変位が増大する.盛土の変形、坑口壁の変位、アーチ部材の変位はそれぞれ縦断方向 の地震時において同時的に発生すると考えられるが、個々のアーチ部材が変位するこ とで、アーチカルバート全体としてのカルバート縦断方向のせん断剛性が連結条件と 比べて低下し、結果としてカルバート、坑口壁を含む盛土全体の変形が大きくなると 考えられる.
- 3) 三次元解析の結果,アーチ部材に生じる応力状態はアーチ部材の位置によって大きく 異なる.加えて,アーチ部材間の連結条件により,個々のアーチ部材における応力状 態もまた異なる.そのため、3ヒンジ式アーチカルバートのアーチ部材および連結部に おける応力照査を適切に行うためには、三次元解析が必要と言える.
- 4) アーチ部材の応力状態に関しては、周辺地盤の変形状態と密接に関係していると考えられる。そのため、三次元解析においては、盛土部や補強土壁で構成される坑口壁を 適切なモデルを用いて、その地震時挙動を評価する必要がある。

ねじれ方向の動的解析を実施した結果,分離条件のカルバートにおいて,ねじれ方向のせん断変形に伴い,個々のアーチ部材頂部・脚部における対角位置に応力集中が発生することが確認され,東日本大震災におけるアーチ部材の損傷パターンと類似した応力状態が再現された.本解析結果から,カルバート縦断方向の連結条件とねじれ方向の地震動の組み合わせにより,アーチ部材の角欠けや坑口壁の左右非対称な変状といった被害が説明可能と考えられる.

5.5. まとめ

本研究では、カルバート縦断方向の地震時挙動を設計条件の観点から解明することを目 的に、連結条件、盛土形状、斜角条件の影響を動的遠心模型実験により確認し、それぞれ の実験結果を補完することを目的として数値解析を実施した.数値解析においては、接触 解析をペナルティ法により考慮することで、各実験結果と定性的な傾向が一致するととも に、ねじれ方向の変形挙動に対する解析では、被災事例と良く一致した応力状態および変 形モードを確認した.以下に、それぞれの検討に対する結論を整理する.

【連結様式の影響に関して】

本研究では、5.0 m の砂質地盤上に建設された、それぞれ独立した壁面を有するカルバートを含む両面盛土を対象に、遠心加速度 50 G 場で振動台実験を実施した.実験においては、 カルバート間の連結様式とカルバート縦断方向の地震時挙動の関係を観察した.以下には、 1 Hz の地震動を入力して得られた知見を整理する.

- 連結様式により、盛土内に設置されたカルバートの応力状態は異なる.これは、カルバートの連結条件に伴い上載荷重の支持の仕方が異なるためである.そのため、連結条件では坑口に近づくにつれて底版に作用する曲げモーメントが大きくなり、分離条件では設置位置ごとの差は小さくなる.
- 2) カルバート同士が分離されている場合,盛土全体の応答に追従してカルバートそれぞれが前傾あるいは後傾を繰り返す.その結果,カルバート各々が盛土内で自由に振動するため、カルバート縦断方向のせん断剛性が低下し、同方向の地震動に伴う盛土の変形量が増加した.また、その過程で、カルバートへ作用する上載荷重や接地圧のバランスが崩れ、カルバート覆工に大きな曲げモーメントが発生する.坑口付近に位置するカルバート覆工において、曲げモーメントが加振を繰り返すことで増大し、壁面付近のカルバートの頂部、肩部及び底版にひび割れが生じた.
- 3) カルバート同士が連結されている場合、カルバート全体が地震時において一体的な挙動を示す.本実験条件下では、カルバート間の連結は、カルバート間の目開き、縦断方向の地震に伴う盛土の変形量、アーチカルバートに作用する内力をそれぞれ抑制あるいは低減することができた.

【盛土形状の影響に関して】

本研究では、3ヒンジ式を含む盛土模型に対して、1 Hz,20波の正弦波を、最大入力加速 度を0.5 m/s²ずつ段階的に増大させて計10回入力した.本実験で得られた、盛土形状がカル バート縦断方向の振動特性に及ぼす影響に関する知見は以下の通りである.

- カルバート縦断方向の地震動に伴う盛土の変形量は、概ね盛土の総重量に比例する.
 その変位モードは、上載盛土の形状に依存し、盛土高が大きくなるほど、また、上載 盛土の法尻と抗口壁の距離が短いほど、坑口壁は転倒モードに近づく.
- 2) カルバート縦断方向の地震時応答は、盛土の拘束効果に大きく影響を受ける.カルバートの土被りが小さい場合、最も盛土の拘束効果が小さくなる坑口部で、カルバートの応答が大きく増幅し周辺地盤の応答を卓越する.カルバートの土被りが大きい場合、盛土の拘束効果も大きいため、カルバートは周辺地盤に追従した応答になり、坑口部における応答の増幅も抑制される.
- 土被りの小さな坑口部では、坑口部近傍に位置するカルバートの応答が大きくなることから、坑口部に縦断方向の地盤のクラックが大きく発生する可能性がある.
- 4) 縦断方向の土被りが一定に大きな場合,縦断方向の地震時に伴い,盛土天端の変位が 大きくなったことが原因と考えられる地盤のクラックが発生した.土被りの増大はカ ルバートの応答を抑制する観点からは有効だか,盛土地表面の変位が大きくなること に留意する必要がある.
- 5) 最小土被りを 1.0 m 以上施し,頂部ヒンジを単純な突合せ構造とした本実験の範囲内では,縦断方向の繰り返しの地震動により盛土が大きく変形しても,頂部ヒンジがずれ落ちることはなかった.連結条件に関する検討結果を踏まえると,カルバート縦断方向の地震時挙動による被害に関しては,盛土形状よりも連結条件の影響が大きいと考えられる.

【斜角条件の影響に関して】

本研究では、道路盛土本線との平面交差角が 70°となるカルバート構造を再現した、3 ヒ ンジ式を含む盛土模型に対して、1 Hz、20 波の正弦波を、最大入力加速度を 0.5 m/s² ずつ 段階的に増大させて計 10 回入力した.本実験で得られた、不均等な盛土形状がカルバート 縦断方向の振動特性に及ぼす影響に関する知見は以下の通りである.

- 道路盛土本線とカルバートが一定の交差角を有すると、カルバート縦断方向の地震時において、盛土及び坑口壁の不均一な変形に大きく寄与する.不均一な変形が生じる 原因は、平面交差角を有する場合、上載盛土法肩の応答が坑口壁の分割位置を境に大きく異なるためである.
- 2) アーチの力学状態は、坑口部においては初期状態の影響が大きくなるが、斜面直下な ど土被りの大きな位置では地震時の影響が大きくなる.
- 3) 上載盛土の形状がアーチ断面に対して左右不均一である場合,坑口部に位置するアー チの曲げモーメントおよび軸力の初期状態は,偏土圧により不均一になる.そのため, 平面交差角と地震動の入射方向の関係によっては,常時から偏荷重が作用しているア ーチ部材がねじれ変形し,目地の開きや部材の損傷などの被害が発生する可能性が高い.一方,斜面直下など土被りの大きなアーチは,カルバート縦断方向の地震動により,不均一な盛土の変形によりもたらされる偏土圧の影響により,アーチが力学的に 不安定化する可能性が高い.
- 4) 本実験結果から鑑みるに、平面交差角が90°未満の既設構造物への対策として、坑口部 にウィング壁や抑え盛土を構築するなどして、アーチに偏土圧が作用しないようにす ること、ねじれ変形を抑止するために、アーチ頂部においてカルバート間の連結を補 強することが考えられる。

【数値解析による三次元地震時挙動の評価】

本解析では、弾塑性有限要素解析によりペナルティ法を用いて、3 ヒンジ式アーチカルバートの連結条件を考慮したカルバート縦断方向の動的解析を実施した.本検討では、基本的な地震時挙動の把握のため、1 Hz の正弦波を用いた.本解析で得られた知見は以下の通りである.

- カルバート間の分離条件における非線形挙動を再現するために、ペナルティ法を用いて二次元および三次元弾塑性解析を実施した.その結果、いずれの解析においても、 盛土の変形に伴うアーチ部材の目開きや、連結条件に伴う盛土形状の変化など、連結 条件を考慮した動的遠心模型実験の結果と定性的な傾向が一致することが分かった.
- 2) 分離されたアーチ部材は、カルバート縦断方向の加振に伴い、坑口から外側に向かう 変位が増大する.盛土の変形、坑口壁の変位、アーチ部材の変位はそれぞれ縦断方向 の地震時において同時的に発生すると考えられるが、個々のアーチ部材が変位するこ とで、アーチカルバート全体としてのカルバート縦断方向のせん断剛性が連結条件と 比べて低下し、結果としてカルバート、坑口壁を含む盛土全体の変形が大きくなると 考えられる.
- 3) 三次元解析の結果,アーチ部材に生じる応力状態はアーチ部材の位置によって大きく 異なる.加えて,アーチ部材間の連結条件により,個々のアーチ部材における応力状 態もまた異なる.そのため、3 ヒンジ式アーチカルバートのアーチ部材および連結部に おける応力照査を適切に行うためには、三次元解析が必要と言える.
- 4) アーチ部材の応力状態に関しては、周辺地盤の変形状態と密接に関係していると考えられる。そのため、三次元解析においては、盛土部や補強土壁で構成される坑口壁を 適切なモデルを用いて、その地震時挙動を評価する必要がある。
- 5) ねじれ方向の動的解析を実施した結果,分離条件のカルバートにおいて,ねじれ方向のせん断変形に伴い,個々のアーチ部材頂部・脚部における対角位置に応力集中が発生することが確認され,東日本大震災におけるアーチ部材の損傷パターンと類似した応力状態が再現された.本解析結果から,カルバート縦断方向の連結条件とねじれ方向の地震動の組み合わせにより,アーチ部材の角欠けや坑口壁の左右非対称な変状といった被害が説明可能と考えられる.

参考文献

- Schofield, A. N. and Wroth, C. P. (1968): Critical State Soil Mechanics, McGraw-Hill, London.
- (一財)地域地盤環境研究所,モジュラーチ工法協会: Modularch 技術マニュアル,平成 29年10月
- 3) 清田三四郎,森野達也,米澤豊司,丸山 修,小島謙一,坂本寛章:パイルスラブ式盛土の模型振動台実験 -盛土補強材の効果-,土木学会第 65 回年次学術講演会,Ⅲ 365, pp.729-730,2010.
- 4) 澤村康生,荒居 旅人,岸田 潔,木村 亮:壁面工を有する盛土内に設置されたアーチカル バートにおける縦断方向の地震時挙動に関する遠心模型実験,地盤工学ジャーナル, Vol.9(1), pp.41-57, 2014-3. dx.doi.org/10.3208/jgs.9.41
- 5) (財)先端建設技術センター「テクスパン工法設計施工マニュアル検討委員会」: テクスパン工法設計施工マニュアル(案), 1998.12
- 6) 市川智史,末政直晃,片田敏行,豊澤康男,島田俊介:壁面剛性の異なるアンカー式補強 土壁の遠心場振動台実験,土木学会論文集 C, Vol.62, No.4, pp.767-779, 2006. dx.doi.org/10.2208/jscejc.62.767
- 7) (一財) 土木研究センター:補強土(テールアルメ) 壁工法 設計・施工マニュアル 第4 回改訂版, 2014.
- 8) 龍岡文夫:補強土擁壁の過去・現在・将来 -メカニズムからの一考-,基礎工, Vol.19, No.11, pp.8-18, 1991.
- 9) 松澤 宏:土圧計の作動特性と検定について、土と基礎、Vol.30, No.7, pp.71-76, 1982-7.
- 10) (社) 日本道路協会:道路橋示方書·同解説(V耐震設計編), 2012.
- 11) 赤井浩一:土質力学,朝倉書店, pp.220-224, 1980.
- 12) 補 強 土 ネ ッ ト サ ー ビ ス : テ ク ス パ ン 工 法 施 工 実 績 , https://www.hokyodo.jp/2_pa/frame.html (2014/10/10, アクセス)
- 13) 瀬戸英俊,大谷義則,酒井茂賀:テクスパン工法の概要と施工事例,基礎工, Vol.42, No.4, pp.52-55, 2014.
- 14) 安部哲生,中村雅範:高速道路における大型のプレキャスト部材を用いたカルバートの活用と適用上の留意点,基礎工, Vol.42, No.4, pp.8-11, 2014.
- 15) (社)日本道路協会:道路土工 盛土工指針(平成22年度版),丸善出版,2010.
- 16) 小島謙一, 館山 勝, 木村英樹, 古関潤一, 龍岡文夫: 盛土の模型振動実験, 第 33 回地盤 工学研究発表会, pp.1033-1034, 1998.
- 17)都間英俊,常田賢一,小田和広,江川祐輔:応答加速度分布に及ぼす盛土の幾何学的形状の影響に関する解析的研究,土木学会地震工学論文集,Vol.29, pp.1205-1210, 2007.
 (doi.org/10.11532/proce2005a.29.1205)
- 18) (財)先端建設技術センター「テクスパン工法設計施工マニュアル検討委員会」: テクスパ

ン工法設計施工マニュアル(案), 2012.9

- 19) T. J. R. Hughes, R. L. Taylor, J. L. Sackman, A. Curnier and W. Kanoknukulchai. (1976): A Finite Element Method for a Class of Contact-Impact Problems, Computer Methods in Applied Mechanics and Engineering, Vol. 8, pp. 249-276.
- 20) Zienkiewicz, O. C., (1977): The Finite Element Method, McGraw-Hill.
- 21) 鈴木 規之,都井 裕:ペナルティ関数法による動的摩擦接触問題の有限要素解析・最適なペ ナルティ数に関する考察および摩擦振動現象の解析・,日本造船学会論文集 No. 162, pp. 364-373, 1987. dx.doi.org/10.2534/jjasnaoe1968.1987.162_364
- 22) Ye, B., Ye, G. L., Zhang, F. and Yashima, A. : Experiment and numerical simulation of repeated liquefaction-consolidation of sand, *Soils and Foundations*, Vol.47, No.3, pp.547-558, 2007.
- 23) Kimura, M. and Zhang, F.: Seismic evaluations of pile foundations with three different methods based on three-dimensional elasto-plastic finite element analysis, *Soils and Foundations*, Vol. 40, No.5, pp.113-132, 2000.
- 24) 段野 孝一郎,木村 亮,鈴木雄吾:土-水連成弾塑性有限要素法による橋梁基礎杭の長期変位予測,土木学会論文集 C, Vol.63, No.4, pp.1041-1053, 2007.
- 25) Danno, K. and Kimura, M. : Evaluation of long-term displacements of pile foundation using coupled FEM and centrifuge model test, *Soils and Foundations*, Vol. 49, No.6, pp.941-958, 2009.
- 26) Jin, Y., Bao, X., Kondo, Y. and Zhang, F. : Soil-water coupling analysis of real-scale field test for 9-pile foundation subjected to cyclic horizontal loading, *Geotechnical Special Publication, Deep foundation and Geotechnical in situ test,* ASCE, Vol.205, pp.111-118. 2010.
- 27) Cui, Y. Kishida, K. and Kimura, M : Analytical study on the control of ground subsidence arising from the phenomenon of accompanied settlement using foot reinforcement side pile. *Geotechnical Special Publication, Deep and Underground Excavation,* ASCE, pp.307-312, 2010.
- 28) Xia, Z. F., Ye, G. L., Wang, J. H., Ye, B and Zhang, F. : Numerical analysis on the influence of thickness of liquefiable soil on seismic response of underground structure, *Journal of Shanghai Jiaotong University*, Vol. 15, No.3, pp.279-284, 2010.
- 29) Zhang F., Ye, B., Noda, T., Nakano, M. And Nakai, K. Explanation of cyclic mobility of soils, Approach by stress-induced anisotropy, Soil and Foundations, Vol.47, No.4, pp.635-648, 2007.
- 30) (社)日本道路協会:道路土工 カルバート工指針(平成21年度版),丸善出版,2010.
- 31) 補強土ネットサービス:テクスパン工法 施工実績, https://www.hokyodo.jp/2_pa/frame.html (2018/4/1, アクセス)

6. 数値解析を用いた損傷事例の再現性の検証

6.1. 概要

6.1.1. 目的

ここでは、アーチカルバートが地震等で被害を受けた箇所について、解析により損傷状態を再現して、アーチカルバートの挙動について検証することを目的とする.

6.1.2. 検討の手順

図-6.1.1に示す検討手順で、実被害カルバートを対象とした変状の再現解析を実施した. 解析は2ステップで行い、はじめに、カルバート縦断方向(軸方向)の荷重を算定するこ とを目的として、盛土~構造物一体モデルでの解析を実施する.この解析では、3次元 FEM によりカルバートを含む盛土モデルを作成し、常時および地震時の解析を実施した.この とき、カルバート躯体モデルには構造目地は付与せず、縦断方向に連結されたモデルとし た.次に、構造物の非線形解析として、カルバート躯体と躯体間の目地をソリッド要素お よび非線形ばね(接触/非接触を考慮したばね)でモデル化したものに対し、先の解析で算 出した縦断方向荷重を与え、躯体の変形状態や発生応力度等を確認した.

図-6.1.1 変形再現解析の検討手順

- (1) 盛土~構造物一体解析
 - 1) 常時解析

3次元解析結果より、常時(自重解析時)におけるカルバート周面に作用する3 方向の荷重(部材直応力,部材周方向応力,部材せん断応力)を抽出する.変形 再現解析において作用させる常時の荷重載荷のイメージを図-6.1.2に示す.

図-6.1.2 変形再現解析イメージ(盛土~構造物一体解析:常時)

2) 地震時解析

3 次元解析結果より,常時(自重解析時)および地震時(地震応答解析時)に おけるカルバート周面に作用する3方向の荷重(部材直応力,部材周方向応力, 部材せん断応力)を抽出する.変形再現解析において作用させる地震時の荷重載 荷のイメージを図-6.1.3に示す.

図-6.1.3 変形再現解析イメージ(盛土~構造物一体解析:地震時)

(2) 構造物の非線形解析(ばね非線形)

盛土~構造物一体解析にて抽出した3方向の荷重を,構造物非線形解析モデルにおける載荷荷重として作用させ,躯体の変形・発生応力度を確認する.この非線形解析のイメージを図-6.1.4に示す.

図-6.1.4 変形再現解析イメージ(構造物の非線形解析:常時,地震時)

6.1.3. 解析対象箇所

表-6.1.1に変状の再現解析の実施対象としたアーチカルバート(3ヒンジアーチ、2 ヒンジアーチ)を示す.

表-6.1.1 解析対象箇所

6.1.4. 検討方法

解析条件は以下の通り設定した.

- (1) 検討条件
 - 1) 自重解析

盛土せん断剛性	:	初期せん断剛性を設定
基礎地盤せん断剛性	:	初期せん断剛性を設定
カルバートの剛性	:	躯体の設計基準強度相当の剛性を設定
カルバートのモデル	:	連続体としてモデル化(各アーチ部材間は剛結状態とし
		てモデル化)

2) 地震応答解析:線形解析

盛土せん断剛性	:	等価せん断剛性*
基礎地盤せん断剛性	:	等価せん断剛性**
カルバートの剛性	:	躯体の設計基準強度相当の剛性を設定
カルバートのモデル	:	連続体としてモデル化(各アーチ部材間は剛結状態とし
		てモデル化)
		※別途,二次元地震応答解析を実施し,地震時における

平均収束剛性を算出し設定する.

(2) 地震時軸方向せん断力の算出方法

本検討で抽出した地震時最大荷重は、1 リングあたりに作用する同時刻の荷重(せん断力、曲げモーメント)の合計値が最大となるものである.以下にこの算出方法手順を示す.また、地震時軸方向せん断力の抽出方法のイメージを図-6.1.5 に示す.

- [1] 1リングを構成する全要素のせん断応力時刻歴波形 τ i を抽出.
- [2] 各要素のせん断応力波形 τ i に,各要素の分担面積 Ai を乗じ,せん断力波形 Si を算出.
- [3] 各時刻歴波形に対し、せん断力の上限値 Smax を設定し、Smax を超えるせん断力 は Smax に補正する. なお、Smax は、各要素に自重解析時に作用する垂直力 Pni から要素ごとに算出する.

 $Smax = Pni \times tan \phi$ (ϕ : 盛土の内部摩擦角で 40 度を設定)

- [4] [3]で算出した全時刻歴波形を合成し、1 リングあたりに生じるせん断力の最大値 を抽出する.
- [5] また、1 リングあたりに生じるせん断力が最大値となる時刻 t を抽出する.
- [6] [3]で算出した各要素の時刻歴せん断力波形 Si を自重解析時に各要素に作用する 垂直力 Pni で除し,補正係数 α i の時刻歴波形を算出.
- [7][6]で算出した補正係数αiの時刻歴波形を1リングを構成する要素で合計し、それを要素数nで除して1リングの平均補正係数αの波形を算出する.

- [8] [7] で算出した平均補正係数 α の時刻歴波形において,最大せん断力が生じる時刻 t の α を抽出する.
 - ※最大曲げモーメントは、上記[3]で算出した各要素のせん断力波形 Si' に各要素 のアーム長(部材基部からの高さ)を乗じ、各要素の曲げモーメント波形を算出 した後、1 リングを構成する全要素の時刻歴波形を合成し、その合成波形の最大 値を抽出する.

6.2.3 ヒンジアーチに対する三次元地震応答解析

6.2.1. 解析条件

(1) 解析モデル

図-6.2.1 に解析モデルを示す.本解析モデルにおける基礎地盤部のモデル化は、図-6.2.2 に示す対象箇所近傍のボーリングデータに基づき設定した.

本解析モデルを対象に、常時(自重解析)および地震時(地震応答解析:線形解析)の 解析を実施する.自重解析において、常時における作用荷重を抽出し、地震応答解析では、 地震時増分荷重を抽出する.自重解析時の盛土および基礎地盤のせん断剛性は、初期せん 断剛性を設定し、地震応答解析では、別途2次元地震応答解析(等価線形解析)を実施し た上で、等価せん断剛性(平均収束せん断剛性)を設定し、盛土~構造物一体モデルでの 解析(3次元 FEM 解析)自体は線形解析とした.

図-6.2.2 3 ヒンジアーチの損傷事例近傍ボーリング位置とボーリング柱状図

(2) 入力地震動

入力地震動は、2011年東北地方太平洋沖地震における強震観測記録を用いることとする. 図-6.2.3 に対象とした強震観測点(K-NET: FKS010)を示す.この地表面観測波を本地 盤における工学的基盤面(Vs=570m/s)の上面位置まで引き戻し、3 ヒンジアーチの損傷 事例に対する入力地震動とした.観測波形を図-6.2.4に示す.

■強震観測位置(K-NET FKS010)^{1),3)}

図-6.2.3 3 ヒンジアーチの損傷事例近傍の強震観測点(参考文献 1, 3 を基に編集)

FKS010 における地表面観測波のうち,最大加速度の大きい NS 成分を対象に引き戻し 解析を実施した. 表-6.2.1 に引き戻し解析実施対象地盤モデルを示す. また, 図-6.2.5 に引き戻し解析結果を示す. なお,土のひずみ依存特性は土研データ^{4),5)}を用いた.

地層番号	土層名	層厚	上端標高	上端深度	下端深度	Go	h ₀	γt	γ_{sat}	V _{si}	ひずみ依存
		(m)	(T.P.m)	(G.L. m)	(G.L. m)	(kN/m ²)		(kN/m ³)	(kN/m ³)	(m/sec)	曲線番号
1	FI	0.85	0.00	0.00	0.85	16940	0. 02	16.6	16.6	100.00	h
2	M	0.65	-0.85	0.85	1.50	123470	0. 02	17.9	17.9	260.00	g
3	M	0.65	-1.50	1.50	2.15	123470	0. 02	17.9	17.9	260.00	g
4	M	0.65	-2.15	2.15	2.80	123470	0. 02	17.9	17.9	260.00	g
5	C	0. 78	-2.80	2.80	3. 58	123470	0. 02	17.9	17.9	260.00	g
6	C	0. 78	-3.58	3. 58	4.35	123470	0. 02	17.9	17.9	260.00	g
7	SF	0. 70	-4. 35	4.35	5.05	123470	0. 02	17.9	17.9	260.00	h
8	GF	0.65	-5.05	5.05	5.70	123470	0. 02	17.9	17.9	260.00	h
9	GF	0.65	-5.70	5.70	6.35	123470	0. 02	17.9	17.9	260.00	h
10	R	0.95	-6.35	6.35	7.30	135890	0. 02	19.7	19.7	260.00	h
11	R	0.95	-7.30	7.30	8. 25	135890	0. 02	19.7	19.7	260.00	h
12	R	0.95	-8.25	8. 25	9.20	135890	0. 02	19.7	19.7	260.00	h
13	R	1.00	-9.20	9.20	10.20	656430		19.8	19.8	570.00	

表-6.2.1 引き戻し解析地盤条件(3ヒンジアーチの損傷事例)

■引き戻し解析結果

FKS010 FKS010 NS(1116) FKS010

-600 -800

地層番	i D	栗	絕対加讀 (GAL)	惠度	絶対速度 (cm/sec)		相対変位 (cm)	せん断応力 (kN/m ²)	ı t	ん断ひずみ	せん断波速度 初期値 - 収度値 (m/sec)	減衰定数 初期値 収束値 (%)
뮥	. Û	ո	0 1000	2000 0	50	100 0.0	0.5 1.0	0 100	200 0.00	0.10 0.20 0	200 400 0	20 40
地表	0.0	1		1116		69	0.65					
ı	Q. 8	5		834		69	0.59		12	0.078	47	23.3
2	1. 5	0		811		68	0.58		24	0.020	206	5. 3
3	2.1	5		т		68	0.55		36	0.033	202	5.8
4	2.8	0		730		68	0.53		49	0.044	198	6.3
5	3.5	8		659		68	0.48		62	0.056	196	6.8
6	4.3	5		573		68	0.43		76	0.06B	195	7. 1
7	5.0	15		484		67	0.37		96	0. 080	1 55	19.3
8	5.7	Ø		402		67	0.32		106	0.088	1 54	19.5
9	6.3	5		379		56	0.26		114	0.094	153	19.6
10	7.3	0		407		56	0.17		119	0.088	159	18.9
11	. 8.2	5		535		65	0,09		123	0.091	60	18.6
									122	0. 091	163	18.2
12 其他	°	0	最大结 =	630 1116 6 ≣⊅	- 16 =	64 69 最大值	0.00 = 0.65	最大值=	123 最大使	i= 0.094 €	大街= 206 最大的	ā= 23.3
E (gal)	800 600 400 200 0					NS (基盤引き	戻し波)			最大值:-695	
速度	-200				- Di la							
九	-400											

図-6.2.5 引き戻し解析結果(3ヒンジアーチの損傷事例)

(3) 盛土部の平均等価せん断剛性の設定

3次元 FEM モデルに対する地震応答解析では、構造物および地盤は全て線形要素として モデル化する.ただし、東北地方太平洋沖地震レベルの地震動(レベル2地震動)が作用 した場合、盛土部および直下の表層地盤において地震時に剛性低下が生じることになる. したがって、3次元解析モデルにおける盛土部の剛性については、別途2次元 FEM モデル に対する等価線形解析の実施結果で得られる平均等価剛性を設定することとした.図 -6.2.6、図-6.2.7 に解析に用いる入力地震動と解析モデルを示す.

また,図-6.2.8 に解析結果を示す.図に示すように,盛土および直下地盤に対し等価せん断剛性を算出した.これらの値を3次元解析モデルに反映させる.

図-6.2.6 入力地震動(3 ヒンジアーチの損傷事例)

■盛土部のせん断波速度の設定根拠 ⁶⁾

and a		8		たん思惑追訳/s (m/aoc)
42mil	948124B	18	848	0 1(0 200 300 400 500 600 700 800
	97-85	-	12	× • • • • •
	ų	=	R	× ×
	Ĩ	:	10 FE	×
10850	5	٠	N.C.	× ° · · · · · · · · · · · · · · · · · ·
111111	Sa-R	=	nx:	* *
	14-10 14-10	2	1×	*
	-	R	She etc.	T ×
	Sa-R	5	ないな	X
	(10-52)	~	-	x
	(2-2)		22	×
	(4-0)	-	X	X O
871. 11111	(+-50)	:	×1	×
	(J-50)	2	10.00	×
	(4-50)	2	「「「	*
	00.00	-	手取ん回動	*
	8	•	List	X
10 X + 10 + 10	8-18	-	#**	× • • • × 250m/s 羅鹿
	9.3	**	またま	×
AUL.	3	٠	4-0	XosoX
竹山田山	aw		4-0	X
	are.	2	20	X o A oX
	0-J2	=	-	× ×
100	ter co	2	新天1 1	
	02500	2	調査部	X OF
	3-3	8	20.00	X - X
	and a	2	-	X

6.2.2. 解析結果

(1) 自重解析結果(常時)

図-6.2.9~図-6.2.12 に自重解析結果を示す.図-6.2.10 では、カルバート縦断方向の各 リング(アーチ部材)に作用する以下の荷重を集計している.各荷重は、図中に示す方法 で算出したものである.この結果、以下のことがわかった.

垂直力	カルバート躯体に作用する垂直力					
円周方向せん断力	カルバート躯体の円周方向に作用するせん断力					
軸方向せん断力	カルバート躯体の軸方向(縦断方向)に作用する せん断力					
軸方向モーメント	カルバート躯体の軸方向(縦断方向)に作用する せん断力によって生じる軸方向モーメント					
鉛直軸回り回転モーメント	カルバート躯体の軸方向(縦断方向)に作用する せん断力によって生じる鉛直軸回り回転モーメント					
土被り厚(仮想土被り厚)	1リングを構成する各要素に作用する平均垂直応力を 盛土の単位体積重量で除したもの					
補正係数 α	1リングを構成する各要素に作用する 軸方向せん断応力を垂直応力で除したもの					
仮想載荷位置(鉛直位置)	1リングを構成する各要素に作用する 軸方向せん断力の鉛直方向の平均作用位置					
仮想載荷位置(水平位置)	1リングを構成する各要素に作用する 軸方向せん断力の水平方向の平均作用位置					
	 垂直力 円周方向せん断力 軸方向せん断力 軸方向モーメント 鉛直軸回り回転モーメント 土被り厚(仮想土被り厚) 補正係数 α 仮想載荷位置(鉛直位置) 仮想載荷位置(水平位置) 					

表-6.2.2 集計する作用荷重等

【結果】

- ・カルバートに作用する垂直応力の横断方向分布形状を見ると,頂部よりも側部の 方が大きくなっている(図-6.2.9,図-6.2.11).
- ・カルバートに作用する軸方向せん断応力の横断方向分布形状を見ると、土被りの 浅い坑口部では頂部よりも側部の方が大きくなっているが、被りが大きくなる箇 所では、ほぼ一様な分布に近づき、せん断応力はゼロに近づく(図-6.2.9、図 -6.2.12).
- ・軸方向せん断力,軸方向モーメント,鉛直軸まわり回転モーメントともに,盛土 中央側から坑口側に向かい大きくなる傾向にある(図-6.2.10).
- ・仮想土被り厚と実土被り厚の分布状況が似ている(図-6.2.10).
- ・補正係数 a は, 坑口部で最大となりトンネル内部でゼロになる分布 (図-6.2.10).
- ・補正係数 α の最大値は 0.5 程度 (図-6.2.10).
- ・仮想載荷位置は、鉛直位置、水平位置ともにカルバート縦断方向に概ね一定の値 を示す(図-6.2.10).

各リングにおける垂直応力分布

(2) 地震応答解析結果(地震時)

図-6.2.13~図-6.2.16 に地震応答解析結果を示す.図-6.2.13 に最大応答分布を示すが, トンネル深さにおける盛土の最大加速度は 300m/s² 程度, せん断ひずみは 10⁻⁴ レベル程度 となっており,2 次元地震応答解析(等価線形解析)結果と同程度の値となっていること が確認できる.

図-6.2.15 に地震時においてカルバートに作用する荷重の集計結果(常時荷重と地震時 増分荷重の和)を示す.この結果,以下のことがわかった.

【結果】

- ・カルバートに作用する軸方向せん断応力の横断方向分布形状を見ると、坑口部、 盛土中央部付近ともに頂部よりも側部の方が大きくなっている。また、常時の結果とは異なり、カルバート内部のせん断応力度も坑口部と同等程度の値を示している(図-6.2.14,図-6.2.16).
- ・軸方向せん断力,軸方向曲げモーメント,鉛直軸まわり回転モーメントともに, 常時とは異なり、トンネル中央側でも坑口側と同レベルの作用荷重となっている (図-6.2.10,図-6.2.15).
- ・補正係数 α eq は,常時とは異なりカルバート縦断方向に一様に大きな値を示す(図 -6.2.10,図-6.2.15).
- ・補正係数 α eq の最大値は坑口部で最大 0.7 程度となる (図-6.2.15).
- ・仮想載荷位置は、鉛直位置、水平位置ともにカルバート縦断方向に概ね一定の値 を示している(図-6.2.15).

6.3.3 ヒンジアーチに対する構造物非線形解析(地震時)

- 6.3.1. 解析条件
 - (1) モデル化の範囲

図-6.3.1のように下流側坑口より7ブロック分(約9.5m区間)をモデル化した.

図-6.3.1 モデル化の範囲(3ヒンジアーチの損傷事例)

(2) 解析モデル図

図-6.3.2 に解析モデルを示す. 躯体は坑口から7 ブロック分(10m分)モデル化し, 各プレキャスト部材間, ヒンジ部およびアーチ部材底面部には非線形ばねを設定した.

図-6.3.2 解析モデル(3ヒンジアーチの損傷事例)

(3) 荷重条件

盛土~構造物の一体モデルにおける3次元FEM解析において算出された荷重(図-6.3.3) を使用する.

本解析では、以下の荷重を考慮する.これらの荷重を漸増載荷させ、最終ステップにおけるカルバートの変形および部材に発生する応力度を確認する.

- [1]カルバート垂直力
- [2]カルバート周方向力
- [3]カルバート軸方向せん断力(地震時荷重)
- [4]カルバート自重

6.3.2. 解析結果

図-6.3.4~図-6.3.10 に解析結果を示す.

【結果】

- ・アーチ部材の足元が浮き上がり,縦断方向に倒れ込むモードが確認できる(図-6.3.4).
- ・アーチ部材の縦断方向の倒れ込み量は、最大で 0.5m 程度(図-6.3.5).
- ・クラウンヒンジ部では、倒れ込む側と反対側の部材の角部に応力集中が発生する(最大 42N/mm²)(図-6.3.8).
- ・アーチ部材の軸応力が部材内で不均一な状態となっており、一部で引張応力が発生する(図-6.3.9).
- ・アーチ部材が鉛直軸まわり回転変形モードとなっている(図-6.3.10).

【考察】

- ・クラウンヒンジ部における最大発生せん断応力は、16.8N/mm²と非常に大きく、許容押 し抜きせん断応力(τ_{a3}=1.05N/mm²)を大きく超過しており、この応力状態ではクラ ウンヒンジ部のコンクリートは破壊に至っているものと考えられる.
- ・部材の軸力が抜けるモードが確認でき、部材に作用する垂直力により水平方向クラックが発生し易い状況にあるものと考えられる。
- ・本節で実施した3ヒンジアーチの損傷事例を対象とした変状の再現解析は、実際の変 形モードを十分に再現できているものと考えられる.

6.4. 2 ヒンジアーチに対する三次元地震応答解析

6.4.1. 解析条件

(1) 解析モデル

図-6.4.1 に解析モデルを示す.本解析モデルにおける基礎地盤部のモデル化は、図-6.4.2 に示す対象箇所近傍のボーリングデータに基づき設定したが、本カルバートはN値50以上の地盤上に敷設されている状況にある.

本解析モデルを対象に、常時(自重解析)および地震時(地震応答解析:線形解析)の 解析を実施する.自重解析において、常時における作用荷重を抽出し、地震応答解析では、 地震時増分荷重を抽出する.自重解析時の盛土および基礎地盤のせん断剛性は、初期せん 断剛性を設定し、地震応答解析では、別途2次元地震応答解析(等価線形解析)を実施し た上で、等価せん断剛性(平均収束せん断剛性)を設定し、盛土~構造物一体モデルでの 解析(3次元 FEM 解析)自体は線形解析とした.基礎地盤については、N値50以上となっ ていることから、地震時における剛性低下は考慮せずに初期せん断剛性を設定した.

図-6.4.2 2 ヒンジアーチの損傷事例近傍ボーリング位置

(2) 入力地震動

入力地震動は、2011 年東北地方太平洋沖地震における強震観測記録を用いることとする. 図-6.4.3 に解析対象構造物に最も近い強震観測点位置(K-NET:IWT008)を示す.図に 示すように、IWT008は、対象構造物から概ね 6km の位置にある.また、図-6.4.4 に強震 観測点における土質データを示すが、本観測点は Vs=300m/s の岩盤上に設置されている状 況にある.これより、2 ヒンジアーチの損傷事例に対する入力地震動は、本地点での観測記 録をそのまま使用することとした.なお、観測地震波は、最大加速度の大きい EW 成分を 用いることとし、解析時間の関係上、最大加速度が観測されている 40s~70s の 30 秒間(デ ータ間隔は 0.02s 間隔で抽出したもの)を入力地震動として用いた.

図-6.4.3 2 ヒンジアーチの損傷事例近傍の強震観測点(参考文献 1,3 を基に編集)

■K-NET IWT008の強震観測記録

図-6.4.4 強震観測記録(K-NET: IWT008)³⁾

(3) 盛土部の平均等価せん断剛性の設定

3次元 FEM モデルに対する地震応答解析では、構造物および地盤は全て線形要素としてモ デル化する.ただし、東北地方太平洋沖地震レベルの地震動(レベル2 地震動)が作用し た場合、盛土部および直下の表層地盤において地震時に剛性低下が生じることになる.し たがって、3次元解析モデルにおける盛土部の剛性については、別途2次元 FEM モデルに対 する等価線形解析の実施結果で得られる平均等価剛性を設定することとした.図-6.4.5、 図-6.4.6 に解析に用いる入力地震動と解析モデルを示す.

なお,解析上,基礎地盤の厚みを盛土直下部で40m程度付加した.このため,先に示し た観測波を本解析モデルの下端部より入力した場合,盛土下面に到達する間に地震波がや や減衰することとなる.したがって,層厚40mの線形地盤(Vs=300m/s)に対し,地震波の 引き戻し解析を実施し,それにより得られた地震波を本モデルにおける入力地震動として 使用した.

図-6.4.7 に解析結果を示す.図に示すように,盛土および直下地盤に対し等価せん断剛 性を算出した.これらの値を3次元解析モデルに反映させる.

図-6.4.5 入力地震動(引き戻し波)(2 ヒンジアーチの損傷事例)

図-6.4.6 地盤の等価剛性設定用二次元解析モデル(2 ヒンジアーチの損傷事例)

6.4.2. 解析結果

(1) 自重解析結果

図-6.4.8~図-6.4.11 に自重解析結果を示す.図-6.4.9 では、カルバート縦断方向の各 リング(アーチ部材)に作用する以下の荷重を集計している.各荷重は、図中に示す方法 で算出したものである.この結果、以下のことがわかった.

集計作用荷重	垂直力	カルバート躯体に作用する垂直力
	円周方向せん断力	カルバート躯体の円周方向に作用するせん断力
	軸方向せん断力	カルバート躯体の軸方向(縦断方向)に作用する せん断力
	軸方向モーメント	カルバート躯体の軸方向(縦断方向)に作用する せん断力によって生じる軸方向モーメント
	鉛直軸回り回転モーメント	カルバート躯体の軸方向(縦断方向)に作用する せん断力によって生じる鉛直軸回り回転モーメント
その他算出諸元	土被り厚(仮想土被り厚)	1リングを構成する各要素に作用する平均垂直応力を 盛土の単位体積重量で除したもの
	補正係数 α	1リングを構成する各要素に作用する 軸方向せん断応力を垂直応力で除したもの
	仮想載荷位置(鉛直位置)	1リングを構成する各要素に作用する 軸方向せん断力の鉛直方向の平均作用位置
	仮想載荷位置(水平位置)	1リングを構成する各要素に作用する 軸方向せん断力の水平方向の平均作用位置

表-6.4.1 集計する作用荷重等

【結果】

- ・カルバートに作用する垂直応力の横断方向分布形状を見ると、坑口部付近を除き、 ほぼ一様な分布形状となっている(図-6.4.8、図-6.4.10).
- ・カルバートに作用する軸方向せん断応力の横断方向分布形状を見ると,頂部が側部よりも大きい分布形状となっている(図-6.4.8,図-6.4.11).
- ・軸方向せん断力,軸方向曲げモーメント,鉛直軸まわり回転モーメントともに, 坑口側に近づく程大きくなる傾向にある(図-6.4.9).
- ・仮想土被り厚と実土被り厚の分布状況が似ている(図-6.4.9).
- ・補正係数αは、坑口部で最大となりトンネル内部でゼロになる分布で、補正係数 αの最大値は 0.5 程度(図-6.4.9).
- ・仮想載荷位置は,鉛直位置,水平位置ともにカルバート縦断方向に概ね一定の値を示す(図-6.4.9).

図-6.4.8 発生応力分布(2ヒンジアーチの損傷事例:常時)

(2) 地震応答解析結果

図-6.4.12~図-6.4.15 に地震応答解析結果を示す.図-6.4.12 に最大応答分布を示すが, トンネル深さにおける盛土の最大加速度は 200 cm/s²程度, せん断ひずみは 10⁻⁴ レベル程度 となっており,二次元地震応答解析(等価線形解析)結果と同程度の値となっていること が確認できる.

図-6.4.14 に地震時においてカルバートに作用する荷重の集計結果(常時荷重と地震時増 分荷重の和)を示す.この結果,以下のことがわかった.

【結果】

- カルバートに作用する軸方向せん断応力の横断方向分布形状を見ると、坑口部、 カルバート中央部付近ともに頂部の方が側部よりも大きくなっている.また、常時の結果とは異なり、カルバート中央部のせん断応力度も大きくなっている(図 -6.4.13,図-6.4.15).
- ・軸方向せん断力,軸方向曲げモーメント,鉛直軸まわり回転モーメントともに, 常時と同様に坑口側に近づく程大きくなっている.ただし,カルバート中央側に おいても作用荷重が大きくなっている(図-6.4.14).
- ・補正係数 α eq は,常時とは異なり,カルバート中央部付近でも 0.2 程度となる(図-6.4.14).
- ・補正係数 α eq の最大値は坑口部で最大 0.6 程度となる (図-6.4.14).
- ・仮想載荷位置は、鉛直位置、水平位置ともにカルバート縦断方向に概ね一定の値 を示している(図-6.4.14).

図-6.4.13 発生応力度分布(地震時増分)(2 ヒンジアーチの損傷事例)

6.5.2 ヒンジアーチに対する構造物非線形解析(地震時)

6.5.1. 解析条件

(1) モデル化の範囲

図-6.5.1 のように下流側坑口より 10 ブロック分 (10m 区間分:現場打フーチングの 目地位置までの範囲)をモデル化した.

図-6.5.1 モデル化の範囲(2ヒンジアーチの損傷事例)

(2) 解析モデル図

図-6.5.2 に解析モデルを示す. 躯体は坑口から 10 ブロック分(10m分)モデル化し, 各プレキャスト部材間,フーチング底面部,ヒンジ部には非線形ばねを設定した.

図-6.5.2 解析モデル(2ヒンジアーチの損傷事例)
(3) 荷重条件

盛土~構造物の一体モデルにおける3次元FEM解析にて算出された荷重(図-6.5.3) を使用する.

本解析では、以下の荷重を考慮する.これらの荷重を漸増載荷させ、最終ステップ におけるカルバートの変形および部材に発生する応力度を確認する.

- [1]カルバート垂直力
- [2]カルバート周方向力
- [3]カルバート軸方向せん断力(地震時荷重)
- [4]カルバート自重

図-6.5.3 荷重図(2 ヒンジアーチの損傷事例)

6.5.2. 解析結果

図-6.5.5~図-6.5.8に解析結果を示す.

【結果】

- ・フーチング部が一体化しており、アーチ部材は、片持ち梁のような変形(たわみ変形)
 状態を呈している(3 ヒンジアーチとは異なり、アーチ部材が個々に転倒するような
 モードは見られない)(図-6.5.5).
- ・アーチ部材基部の鉛直方向応力度(σzz)に着目すると,明確に圧縮応力と引張応力 が発生しており,部材が曲げ変形している状態が確認できる(図-6.5.7).
- ・部材基部の発生モーメントより、部材照査を実施すると、鉄筋の引張応力度が7766N/mm²
 となり、許容引張応力度σsa=300N/mm² (=200×1.5)を大きく超過している(図 -6.5.8).
- ・矢線図を確認すると、アーチ部材基部において斜め方向のクラックが発生するような 状態となっている(図-6.5.8).

【考察】

- アーチ部材同士は結合されていないが、アーチ部材の下端部(フーチング部)が現場 打ちコンクリートで連結されており、3ヒンジアーチのように、個々の部材が転倒す るようなモードとはならない。
- ・一方、アーチ部材が現場打ちコンクリート部材で連結されていることにより、アーチ 部材基部の固定度が高くなり、個々のアーチ部材が片持ち梁のような変形状態を呈し ている。
- ・2 ヒンジアーチの損傷事例では、実際にアーチ部材基部に斜め方向のクラックが発生しており、本解析で実際の変形モードを再現できているものと考えられる.

■2 ヒンジアーチの損傷事例の損傷状況

図-6.5.4 2 ヒンジアーチの損傷事例の損傷図

図-6.5.8 発生断面力(2 ヒンジアーチの損傷事例)

6.5.3. 部材の応力測定結果に基づく軸方向せん断力の試算

(1) 試算概要

解析対象とした2ヒンジアーチでは、ひび割れ損傷が生じた部材において鉄筋の発 生応力度(引張応力度)の測定が行われている.ここでは、この測定結果に基づき、 2ヒンジアーチに作用する軸方向せん断力の大きさを解析的に推定した.

図-6.5.9 図-6.5.9 に示すように、鉄筋の発生応力度は、アーチ部材(サイドウォール)基部付近の部分的な範囲をはつり、露出させた内部鉄筋を切断して、その開放力 (ひずみ量)から計測している.

この測定結果では、特にコンクリートのひび割れ損傷が多い範囲において、鉄筋の 引張応力 σ s が 230~250N/mm²にまで達しており、鉄筋の許容応力度(常時の許容 応力度 σ sa=180N/mm²)を超過していることが確認されている.

図-6.5.9 部材の脚部ひび割れ状況と応力計測

(2) 試算方法

試算方法(試算手順)は以下の通り.

- [1] 実部材の発生応力度の測定は、サイドウォール基部から 1m 上方の位置で実施されている.
- [2] 構造物の非線形解析の結果,同位置で生じている断面力を算出し,鉄筋の応力度の照査を実施.
- [3] 構造物に作用させる荷重(軸方向せん断力)を変化(盛土~構造物一体解析で得られた軸方向せん断力を1.0倍、0.5倍、0.1倍に変化)させて,鉄筋の実発生応力度に見合う軸方向せん断力を算出.(構造物に与える軸方向せん断力は,各要素に作用する荷重を同倍率で増減させ載荷する)

(3) 試算結果

- ・盛土~構造物一体解析より得られた荷重を本非線形モデルに作用させると、アーチ部 材基部の発生曲げモーメントが非常に大きく、鉄筋の引張応力度は、σs=7765N/mm² となる.
- ・軸方向せん断力を 0.1 倍程度に低減させた荷重を作用させると、アーチ部材基部の発生曲げモーメントは、当初の 1/10 程度となり、鉄筋の引張応力度は 177N/mm²程度となる.
- ・実際の鉄筋応力度の測定結果を踏まえると、盛土~構造物一体解析で求められる荷重 は、実際に作用している荷重の10倍程度大きいこととなる.これは、盛土~構造物一 体解析では、カルバート躯体モデルは目地を有さない連続体としてモデル化しており、 カルバートの軸方向(縦断方向)剛性が過大評価となっていることが要因であると考 えられる.

タイトル Case- 1:3D-1.0倍 Load- 1:鳥	新面力ケース1						タイトル (ase- 2	: 3D-0.5倍 I	oad- 1: 断面力ケー:	х1				
		A	(m ²)	1.0507							A	(m ²)	1. 0507		
		Α,	(m ²)	0.0000							Α	(m ²)	0.0000		
		'nn	(m)	0.4975							y	1 (m)	0.4975		
		yl	(II)	-0.4975							y	(m)	-0.4975		
1.016		$I_{\rm Z}$	(m ⁴)	0.08669				1.056			Ĥ	(m ⁴)	0. 08669		
		Iy	(m ⁴)	0.09764				80			Ĥ	r (m ⁴)	0. 09764		
8 8 8 8 8 8 8 8 8 8 8 8 8 8 90	35 35 11 55	Ш	(m ³)	0.17424			ge	الا 11	8	35 915 55 88 83 88 83 88 83 88 83 88 83 88 88 88	M.	1 (m ³)	0.17424	1	
6 6 6 6	:6 8	ΜI	(m ³)	-0.17424			66			8	M.	(m ³)	-0.17424		
		г	(m ⁴)	0.15443							Ţ	(m ⁴)	0.15443		
		Ao (m ² /m)	4.1020							A	(m ² /m)	4.1020		
		Ai (m ² /m)	0.0000							Y	(m ² /m)	0. 0000		
断面力 M (kN, m) (kN, m) N (kN, m) N (kN) N (k	10862.800 3122.600	鋼種	位置 (m)	鉄筋径 (mn)	本数 (本)	鉄筋量As (cm ²)	断面力	WNO	(kN, m) (kN) (1,M)	6231. 3409.	度 000 000 000	通位置 (m)	鉄筋径 (mm)	本数 (本)	鉄筋量As (cm ²)
ひょうが (KIV) S (KIV)	0, 000	D1	0.0630	22.00	1.000	3.871	ローノ	o ==1	(KN) (m)		000	D1 0.06	30 22.00	1.000	3.871
ンゴノ幅 pw (m) 有効菌な g (m) 社人第スパン s (m)	0.7458	D1	0.1630	22.00	1.000	3.871	ンH / 相 有効高い せい磨スパ	, de	193	100	7492	D1 0.16	30 22.00	1.000	3.871
(広力度 gc gcg 147	7.269 > 16.000	DI	0.3830	22.00	1.000	3.871	応力度	ac	σ ca	83.277 > 16.	000	D1 0.38	30 22.00	1.000	3.871
(N/mn^2) $\sigma s1$ $\sigma sa1$ 7765 . $\sigma s1$, $\sigma sa1$ -1534 .	980 > 180.000 758 > 200.000	D1	0.5220	22.00	1.000	3.871	(N/mm^2)	σs1 σs1	, σ sal	3974.112 > 180. -896.082 > 200.	000	D1 0.52	20 22.00	1.000	3.871
山橋 やソグ係数式 (III)	n = 0.2004 n = 15.00	D1	0.6120	22.00	1.000	3.871	土地セング係数1	ند>:	(III)	n = 0.2	00.1	D1 0.61	20 22.00	1.000	3.871
必要鉄筋量 Asred (cm ²) 最小鉄筋量 Asmin (cm ²)	2606. 351 39. 380	D1	0.8320	22.00	1.000	3.871	必要鉄筋量 最小鉄筋量	Asreq Asmin	(cm ²) (cm ²)	1354. 39.	432 560	D1 0.83	20 22.00	1.000	3.871
棋抗 Mr. (kN.m) ひび割 Mc (kN.m)	1216.249 1076.682	DI	0.9320	22.00	1.000	3.871	抵抗 ひび割	Mr Mc	(kN, n) (kN, n)	1124.	275 431	D1 0.93	20 22.00	1.000	3.871
初降(大 MyO (kN.m) 終局 Mu (kN.m)	1663, 503 2038, 869	DI	0.0630	16.00	1.000	1.986	初降伏 終局	My0 Mu	(kN, n) (kN, n)	1765. 2152.	156 142	D1 0.06	30 16.00	1.000	1.986
許容 t.a (N/mm ²) 平均 t.m (N/mm ²)	0.00 < 0.65	DI	0.1630	16.00	1.000	1.986	群容 地均	ц а ч ч ч ч	N/mm ²) N/mm ²)	0.00 < 0.00	650). 65	D1 0.16	30 16.00	1.000	1.986
平均 τ ama x (N/mm ²) Suc 圧壊耐力 (kN) 472	6. 000 25. 562 > 0. 000	D1	0.3830	16.00	1.000	1.986	平均 t amax Suc 圧壊計:	ج ر	N/mm ²) (kN)	4747.176 > 0.	000	D1 0.38	30 16.00	1.000	1.986
$\tau \max_{\sigma I \ \sigma Ia} (N/mm^2)$ $\sigma I \ \sigma Ia (N/mm^2)$	0.00 < 1.20	DI	0.5220	16.00	1.000	1.986	τmax σΙσΙa	00	N/mm ²) N/mm ²)	0.00 < 1	. 00	D1 0.52	20 16.00	1.000	1.986
Vo	0.0000 100.0	DI	0.6120	16.00	1.000	1.986	Vo 斜引張鉄筋	間隔a	(u) (cu)	0.0	0000	D1 0.61	20 16.00	1.000	1.986
断面積 Aw (cm ²) 角度 θ (°)	0.000	D1	0.8320	16.00	1.000	1.986	所回 御 度	θ	(cm ²) (°)	.º	000	D1 0.83	20 16.00	1.000	1.986
斜引張破壞 Sc (kN) 斜引張破壞 Ss (kN)	536. 340 0. 000	DI	0.9320	16.00	1.000	1.986	斜引張破壊 斜引張破壊	Ss Sc	(kN) (kN)	560.	944 000	D1 0.93	20 16.00	1.000	1.986
斜引張破機耐力Sus (kN) 53.	36. 340 > 0. 000	(編組 D:鉄 P:PC	重の説明》 筋1 (々: 九) 鋼材1 R: PC	鉄筋量のそ 関)E:鉄筋2(鋼材2	h計 Σ φ:丸鋼)	40.999	斜引張破壊	时力Sus	(kN)	560.944 > 0.	000	(鋼種の説明)):鉄筋1 (々: ^: PC鋼材1 R	● 鉄筋量の 丸鋼)E:鉄筋 :PC鋼材2	⊃合計 ∑ 2(φ:丸鋼)	40. 999
		8 8	夜 6:外ケ、 参。 「かった」 「かった」	-フル C:灰湯 0:全周 2:左右かぶり	< 新政派臣 							: 11 (11) - 11) - 11)	ケーブル C: D - 0: 全周 - 2: 左右かえ	≷素繊維 ざり	

図-6.5.11 部村の応力照査結果(その1)

钷
-
ö
Ł
羓
~
Þ
侸
方
耻

		V	(m ²)	0.7960		
		Α'	(m ²)	0.0000		
		'nn	(m)	0. 4975		
		yl	(m)	-0.4975		
80.0		Iz	(m ⁴)	0.06567		
- - - -	-	Iy	(m ⁴)	0.04245		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	35 37 255 263 263 263 263 255 255 255 255 255 255 255 255 255 25	Мu	(m ³)	0.13200		
	26 	ΤM	(m ³)	-0.13200		
		ſ	(m ⁴)	0.08679		
		Ao ((m ² /m)	3. 5900		
		Ai ((m ² /m)	0.0000		
M (kN. m) N (kN) S (kN)	1264, 900 3524, 800 0 000	鋼種	位置 (m)	鉄筋径 (mn)	本数 (本)	鉄筋量As (cm ²)
(m) (m)	0.000	DI	0.0630	22.00	1.000	3.871
	0.8623	DI	0.1630	22.00	1.000	3.871
ας αςα	16.072 > 16.000	DI	0.3830	22.00	1.000	3.871
osl, osal osl, osal	176.714 < 180.000 -212.834 > 200.000	DI	0.5220	22.00	1.000	3.871
	n = 15,00	Id	0.6120	22.00	1.000	3.871
Asreq (cm ²) Asmin (cm ²)	42. 172 34. 491	DI	0.8320	22.00	1.000	3.871
Mr (kN. m) Mc (kN. m)	1195.554	DI	0.9320	22.00	1.000	3.871
My0 (kN.m) Mu (kN.m)	1744.436 2120.506	D1	0.0630	16.00	1.000	1.986
τα (N/mm ²) τm (N/mm ²)	0.00 < 0.65	DI	0.1630	16.00	1.000	1.986
(N/mm ²) (kN)	4138.955 > 0.000	DI	0.3830	16.00	1.000	1.986
(N/mm ²) (N/mm ²)	0.00 < 0.00	DI	0.5220	16.00	1.000	1.986
[[[]][[[]]][[[]]][[]]][[]][[]]][[]][[]	0.0000	DI	0.6120	16.00	1.000	1.986
$\stackrel{\text{Aw}}{\theta} \stackrel{(\text{cm}^2)}{(^{\circ})}$	0.000	DI	0.8320	16.00	1.000	1.986
Sc (kN) Ss (kN)	655, 593 0, 000	D1	0.9320	16.00	1.000	1.986
477 Sus (kN)	655. 593 > 0. 000	◎ C G S I I I 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 ● 単の説明》 ● 第1(0:34) ● 第1(0:34) ● 第1(0:34) ● 第1(0:34) ● 第1(0:34) ● 第1(0:34) ● 下かぶり ● 下かぶり 	鉄筋量の (鉄筋量の (調材2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	合計 Σ (ゆ:丸鋼) 素繊維 り	40.999

図-6.5.12 部材の応力照査結果(その2)

6.6. まとめ

対象としたカルバートの数値解析を用いた損傷事例の再現性の検証結果を整理した.

(1) 3 ヒンジアーチ

- ・アーチ部材がカルバート縦断方向に倒れ込む変形モードが確認された.
- ・クラウンヒンジ部で発生するせん断応力は、許容押し抜きせん断応力を大きく超過しており(16倍程度超過)、クラウンヒンジ部のコンクリートがせん断破壊に達していると考えられ、実現象と一致する結果である。
- ・カルバートが縦断方向変形を呈すことで、アーチ部材に引張力が生じる(軸力が抜ける箇所が生じる)ことが確認された。部材の軸力が抜けた箇所では、曲げ耐力が小さくなり、アーチ部材の水平方向クラックに繋がる挙動である。
- アーチ部材の下端部のばね反力(内空側に設置する剛ばねの反力)から,部材が鉛直
 軸まわり回転変形する状態が確認できる.

(2) 2 ヒンジアーチ

- ・アーチ部材の下端部が現場打ちのフーチングで縦断方向に連結されている影響で、個々のアーチ部材がカルバート縦断方向にたわみ変形(曲げ変形)している状況が確認できる.
- アーチ部材基部の発生曲げモーメントから断面照査を実施すると、許容応力度を大き く超過する結果となり、実際にアーチ部材基部に生じている斜め方向亀裂は、曲げ亀 裂であるといえる。
- ・ただし,先の6.5 で示した通り,盛土~構造物一体解析で算出した作用荷重は,実際の作用荷重の10 倍程度大きい可能性がある.

			· · · · · · · · · · · · · · · · · · ·			
解析対象	アーチ部材	アーチ部材	クラウンヒ	ンジ部	アーチ部材	7−チ部材
範囲最大 土被り	倒れ量	せん断 ズレ量	発生 サム版広力度	許容	引張応力度	下 端 部 節 点 反 力
(m)	(m)	(mm)	(N/mm ²)	で図1応751支 (N/mm ²)	(N/mm²)	(kN)
2.65	0.5	6	16.8	1.05	120	1600

表-6.6.1 構造物非線形解析結果まとめ(3ヒンジアーチ)

表-6.6.2 構造物非線形解析結果まとめ(2 ヒンジアーチ)

解析対象	→ < +¤ ++	アーチ部材	部材	基部
範囲最大 土被り (m)	アー ラ 部材 たわみ量 (m)	断量 セレ (m)	引張応力度 σs (N/mm ²)	許容 引張応力度 σsa (N/mm ²)
12.50	0.20	33	7766	300

参考文献

- 1) 国土地理院:地図・空中写真閲覧サービス, https://www.gsi.go.jp/
- 2)日本道路公団仙台建設局:平成7年度常磐自動車道上手岡地区第一次土質調査試験 結果報告書,平成7年10月
- 3) 防災科学技術研究所ホームページ: http://www.kyoshin.bosai.go.jp/kyoshin/
- 4) 建設省土木研究所:土木研究所所報 153 号 地盤の動的変形特性に関する実験的研究(Ⅱ)—広範囲なひずみ領域における砂の動的変形特性-,昭和 55 年 3 月
- 5) 建設省土木研究所:土木研究所資料 1504 号 沖積粘性土の動的変形特性 ーせん 断剛性率のヒズミ依存性-,昭和 54 年 8 月
- 6)加藤喜則ほか:原位置試験から推定される高速道路盛土の力学性能~N値とVs~,
 第 39回地盤工学研究発表会,2004年7月,pp.1313-1314

7. 動的遠心模型実験による損傷メカニズムの解明

7.1. 実験の目的および概要

藤原ら¹⁾は3ヒンジアーチが図-7.1.1に示すような、上載盛土の影響によって、アーチ 縦断方向に荷重が作用し、図-7.1.2 に示すようなメカニズムで天井部のヒンジが損傷した と推定している.写真-4.1.1²⁾に示すような、天井部のヒンジの損傷は補修補強によるヒン ジ機能の回復が困難であることや内空通行者の安全が確保できない等、構造安定性や第三 者被害の観点から許容できない損傷である.よって、3ヒンジアーチの縦断方向の地震時の 損傷メカニズムを明らかにするため、遠心力 50G 場において動的遠心模型実験を実施した. 図-7.1.3 に実験模型概略図を示す.

図-7.1.1 アーチカルバート縦断方向の変形図(常時)[参考文献1より転載]

図-7.1.2 変形による天井部ヒンジの損傷メカニズム[参考文献1より転載]

7.1.1. 3 ヒンジアーチのモデル化

実験に使用した3ヒンジアーチの断面図を図-7.1.4に示す.実物大寸法に対し,括弧内の数字は模型寸法を示す.実物大の断面形状は以下の考えで決定した.

- ① 内空幅は、表-1.1.1に示される、損傷を受けた3ヒンジアーチ9基の内、上部盛土を 撤去しプレキャストボックスカルバートに再構築するなど、比較的損傷度合いの大きか った6基の内空幅のおおむねの平均である9.0mとした。
- ② 部材厚はモデル化した3ヒンジアーチが最も剛性の低い断面となるように,規格部材厚の中で最も断面厚が薄い0.25mとした.
- ③ 内空高さについて、3 ヒンジアーチは内空幅と内空高さで部材厚が決定される構造であり、モデル断面は内空幅 9.0m 部材厚 0.25m としたため、逆算により内空高さ 4.7m となった.

実験は遠心力 50G 場で行うため、相似則を考慮し模型寸法は図-7.1.4 の括弧内の数字に 示すような、実物の1/50サイズとした。また、実物は鉄筋コンクリート構造であるが、同 じ材料で 1/50 サイズの模型を作製するのが困難であるため、模型は加工が行いやすいアル ミ合金構造とした.その場合,表-7.1.1 に示すように,構造材の違いを考慮し,曲げ剛性 EI が相似則をできる限り満足するよう、模型の部材厚を 4mm に決定した.写真-7.1.1 に アーチ模型を示す.本研究で対象としている3ヒンジアーチは施工時期が2001年~2005 年 3であり、この時に規格化されていた天井部のヒンジタイプは図-7.1.5 に示す、カナダ 型と呼ばれる旧タイプのものである。カナダ型は左右のアーチ部材に対称の半円状の切欠 きを設け、そこにクラウンパイプと呼ばれる鋼製の円形パイプを設置する構造である.ク ラウンパイプ内は補強鉄筋を配置し、パイプ内外の隙間にグラウト材を注入することで、 軸力, せん断力の伝達およびヒンジ構造に重要な回転性能を有する構造となる 4. 本実験で は、カナダ型のクラウンヒンジをモデル化し、アルミ模型に半円状の切欠きを設け、クラ ウンパイプには直径 2mm の真鍮製円柱棒を用いた.また,模型内に土砂が流入しないよう クラウンヒンジ外側にマスキングテープを貼り付けている.このテープの片側半分は粘着 力を無くしたもので、粘着力が有る方はカルバートの継ぎ目に沿って切れ込みを入れてい る. なお, 現在の天井部のヒンジはスペイン型と呼ばれる新タイプに改良されている. ス ペイン型は図-7.1.6 に示すように、アーチ部材に非対称の半円状の凹凸を設け、クラウン プレートと呼ばれる鋼製プレートで補強することで、ヒンジ構造としている 4. 写真-7.1.2 にアーチ模型の天井部のヒンジ構造を示す.

3ヒンジアーチの実構造物での縦断方向の連結はPC鋼棒やボルトをアーチ部材内に設置 することにより行われているが、これを厚み4mmの模型で再現することは困難である.ま た、東北地方太平洋沖地震による損傷状態をみると、アーチが個々に挙動することで、ア ーチ部材同士がぶつかり合い、アーチ天井部のコンクリートの剥落が発生していると考え られたため、本実験ではアーチ模型を隙間なく設置したのみで、縦断方向に連結するよう な接合処理は行っていない.

単位:mm 括弧内の寸法は模型寸法を示す。

図-7.1.4 対象とした3ヒンジアーチの断面図

物性値		単位	RC構造	アルミ模型
ヤング係数	Ε	kN∕m²	2.95×10^{7}	7.06×10^{7}
製品長	L	mm	1250	1250
部材厚	t	mm	250	200
曲げ剛性	ΕI	kN·m ²	4.80×10^{4}	5.88×10^{4}
軸剛性	EA	kN	9.22×10^{6}	1.77×10^{7}

表-7.1.1 アーチ部材(実物)のRC構造とアルミ模型の物性値

写真-7.1.1 アーチ模型

写真-7.1.2 アーチ模型の天井部のヒンジ構造

図-7.1.5 アーチ天井部の旧ヒンジ構造図(カナダ型)[参考文献4より転載]

図-7.1.6 アーチ天井部の新ヒンジ構造図(スペイン型)[参考文献4より転載]

7.1.2. 基礎地盤および裏込め地盤のモデル化

3 ヒンジアーチは基礎地盤に大きな支持力を期待する構造物であるため, 良質な地盤を選定することとされている⁴⁾.よって,基礎地盤は沈下等が生じないよう**表-7.1.2** に示すような,3 号硅砂を用いて,相対密度 85%以上となるよう締固め管理を行い作製した.裏込め地盤は,3 ヒンジアーチの設計施工マニュアル⁴⁾ において締固め度 90%以上で締固め管理することが規定されているため,**表-7.1.2** に示す湿潤江戸崎砂を用いて,締固め管理を行い作製した.また,江戸崎砂については,2.0mm のふるいを通して礫を取り除いたものを使用している.

本実験では写真-7.1.3に示すような鋼製剛土槽(内寸法:幅750mm×高さ400mm×奥 行き380mm)を用いて,実験を実施した.鋼製剛土槽を使用した場合,加振方向と直角な 土槽壁面からの反射波が実験結果に影響を与えることが考えられたため,既往の研究5を参 考にゲルシートを緩衝材として,模型地盤と土槽との境界に貼り付け,反射波の影響を低 減した.ゲルシートの選定は,事前に行った予備実験において,所定のランダム波を入力 した際に,土槽と近づく方向の土槽側壁近傍と土槽中央との地盤の応答加速度の差が最も 小さくなるものとし,厚み3mmのゲルシートを選定し以降の実験に使用した.

また、本実験は両坑ロモデルであるため、裏込め地盤が加振方向に変形することが考えられる.その際、土槽と裏込め地盤との摩擦によって変形を拘束することが考えられるため、加振方向と平行な土槽壁面には摩擦低減用のフッ素樹脂シート(t=0.2mm)を貼り付け、 潤滑油を塗布した.

項	盛土材料目	盛土 江戸崎砂	基礎地盤 3号硅砂	備考
	土粒子の密度ρ _s (g/cm ³)	2.701	2.653	
	礫分含有率(%)	0.000	0.000	
	砂分含有率(%)	86.100	100.000	
粒	シルト分含有率(%)	7.500	0.000	
度	粘土分含有率(%)	6.400	0.000	
	均等係数 Uc	9.120	2.010	
	平均粒径 D ₅₀ (mm)	0.200	0.958	
密	最大乾燥密度 <i>ρ</i> _{dmax} (g/cm ³)	_	1.531	
度	最小乾燥密度 <i>ρ</i> _{dmin} (g/cm ³)	_	1.237	
締	最大乾燥密度 ρ _{dmax} (g/cm ³)	1.652	_	A−c法
固め	最適含水比 ω_{opt} (%)	15.900	_	

表-7.1.2 地盤材料の物理試験結果一覧

写真-7.1.3 実験に用いた鋼製剛土槽

7.1.3. 坑口壁のモデル化

坑口壁は3ヒンジアーチに一般的に用いられる,タイ材を使用した補強土壁構造とした. 標準的なコンクリートスキンは1.5m×1.5mの十字型の版状のものであり,道路等に使用 されるタイプの厚みは0.14mである.このコンクリートスキン1枚に対し,幅60mm,厚 み5mmのストリップが4本設置される.この形状を1/50サイズの模型にすることは困難 であるため,厚さ5mmのアクリル板でモデル化し,天井部ヒンジ位置で分割された,左右 対称の形状とした.また,ストリップは厚み0.1mm,幅10mmのりん青銅板で作製した. 坑口壁の高さは,カルバート天端からの高さを1.0mとした.これは,土かぶりの決定と同 様に表-1.1.1の損傷度合いの大きいカルバート6基を見ると,最小土かぶりが全て1.0m となっているため,同様に最小土かぶり1.0mとなるよう,坑口壁の高さを決定したためで ある.また,坑口壁下部は地盤に0.50m根入れさせている.これにより,坑口壁の根入れ 部を含めた坑口壁の全高は実構造物寸法で6.70mとなった.

本実験の坑口壁形状から決まる,最大必要ストリップ長は実構造物寸法で 6.00m⁶である. 実際にはストリップ設置深さが深くなると,盛土の鉛直応力が増加することや主働土圧領 域が小さくなることで,ストリップ長は短くなるが,ストリップ長を深さ方向に一定とし たため,実構造物寸法で 5.00m とした.ストリップの取付け位置および本数を図-7.1.7 に 示す.ストリップの表面には乾燥状態の 7 号硅砂を接着剤により付着させ,盛土との摩擦 力を上げるよう処理を施した.写真-7.1.4 に実験に使用したストリップ(りん青銅板)を 示す.写真内の下部 3 本が摩擦力を上げるよう処理を施した後のストリップである.なお, 坑口壁とストリップは図-7.1.8 に示すようにボルトとナットにて取り付けた.ストリップ の設置本数に関しては,坑口壁の単位面積当りのストリップの幅を補強材密度と定義のし決 定した.実構造物の補強材密度は 60mm×4/(1.5m×1.5m) =107mm/m²となる.一方,模 型の補強材密度は,実構造物寸法に換算すると 500mm×9/(0.016m²×50×50)=113mm/m² となり,実構造物とおおむね等しくなるよう決定した.坑口壁の形状により,ストリップ の取付位置はクラウンヒンジ部付近で疎な配置となっている.

実構造物の基礎は、幅 0.40m, 高さ 0.20m の無筋コンクリート構造であるが、本実験では図-7.1.9に示すように、コの字型のアルミ製部材でモデル化している.

写真-7.1.4 実験に使用したストリップ(りん青銅板)

7.1.4. 計測項目

計測項目は 3 ヒンジアーチおよび周面地盤の応答加速度, 坑口壁の水平変位, アーチに 作用する縦断および横断方向のひずみとした. 図-7.1.10 に計測器位置図を示す. 加速度計 の設置に関しては, 加速度計自体が周辺地盤と干渉し計測値に影響が出ないようアーチ内 側に設置した. また, 事前実験の結果から左坑口側より破壊することが確認できたことか ら, 計測器を左坑口側に配置した.

単位:mm

図-7.1.10 計測器位置図

7.1.5. 入力波形

本実験では、遠心力 50G 場に達した時点を STEP0 とし、この時のアーチのひずみや坑口 壁の水平変位等を本実験における初期値とした. STEP1 では入力加速度 100gal を加振し、 その後、1 ステップごとに入力加速度を 50gal ずつ漸増させ、構造物の破壊もしくは実験装 置の最大加速度 600gal まで 11 ステップの加振を行った. なお、ここで述べた構造物の破 壊とは、アーチ内空の崩落、裏込め盛土の内空への流入、坑口壁の倒壊などの状況を示す. 本実験で用いた入力波形の STEP1 および STEP5 を図-7.1.11 に示す. 平成 23 年東北地方太 平洋沖地震の仙台河川国道事務所構内地盤上⁸⁰ における地震波では、卓越固有周期が約 1.0 秒であったことから、入力波の周波数は 1Hz とし、前後 5 波ずつのテーパーを付けた正弦 波を計 30 波入力した.

7.2. 実験の結果と考察

本実験はステップ加振法により地震動を載荷しているため,前ステップの残留変形や応 力がある状態での地震動の載荷となっている.また,以降の実験結果においては,特に記 述が無い限り1G場に換算した値を用いる.

実験は STEP5 にて 3 ヒンジアーチの縦断方向の目開きが大きくなり, 上部盛土がアーチ 内部に流入し崩壊に至ったため, 実験を終了した.

7.2.1 3 ヒンジアーチの応答加速度

3 ヒンジアーチの応答加速度は図-7.2.1 に示すように、アーチ天端に設置した加速度計 と高さ方向に同位置の土中に設置した加速度計および土槽底面に設置した加速度計により 計測した.計測した応答加速度を図-7.2.2 に示すように、主要部である 20 波の正負のピー ク値を平均し、図-7.2.3、図-7.2.4 に示すような応答加速度の最大値と最小値を算出した.

図-7.2.3 は CASE-1 の左坑口側への応答加速度を示す. STEP3 以降において左坑口から2リング目のアーチ天端に取り付けた加速度計 AF2-2 と4リング目のアーチ天端に取り付けた加速度計 AF4-2 の応答加速度が大きくなっており,それぞれ同じ高さの土中に設置した A7 と A8 との応答加速度に大きな差が見られた. STEP3 以降,2リング目と4リング目のアーチが周辺土とは独立して挙動していたものと考えられる. STEP4,5において2リング目と4リング目の天端の応答加速度が小さくなっているのは,STEP3 において上部盛土の崩壊が起こっており,盛土重量が小さくなったことにより,慣性力が小さくなったためと考えられる.

図-7.2.4は CASE-1の右坑口側への応答加速度を示しており,左坑口側への応答加速度 と同様に STEP3 以降,2 リング目と4 リング目のアーチの応答加速度が大きな値を示して いることから, アーチが独立して挙動していると考えられる.

STEP3以降の2リング目と4リング目のアーチの応答加速度は左坑口側方向の方が大き くなっており、実物の変形モードと同様に坑口側に向かって変形している.

8リング目のアーチ(AF8-2)および土(A9)の応答加速度は図-7.2.3および図-7.2.4 に示すように、左坑口側方向、右坑口側方向ともに 400gal 程度(STEP3)と近い値を示し ており、盛土の中央部ではどちらか一方への応答加速度の偏りは見られなかった.また、 アーチ(AF8-2)と土(A9)の応答加速度は、STEP3以降アーチが大きな値を示している ことから、盛土中央部においても坑口部と同様にアーチが独立して挙動していると考えら れる.

A1:土槽底面

図-7.2.1 加速度計の設置位置

7.2.2 坑口壁の変位

坑口壁の変位の計測は図−7.2.5に示すように、左坑口壁右側に設置した4ヵ所のレーザ ー変位計にて行った.各ケースのSTEP5までの坑口壁の転倒率を図−7.2.6、滑動量を図 -7.2.7に示す.ここで、転倒率は変位量の差を計測点間の距離で除した値、滑動量の鉛直 方向はDH3とDH4の平均値、水平方向はDH1とDH3の平均値と定義した.

STEP3以降,転倒率,滑動量ともに大幅に増加しており,応答加速度と同様の結果となっている.また,転倒率,滑動量ともに水平方向が大きな値を示しており,これはストリップの配置がアーチ天井部のヒンジ付近において,疎な配置となっているためであると考えられる.

図-7.2.5 レーザー変位計設置位置

図-7.2.6 坑口壁の転倒率

図-7.2.7 坑口壁の滑動量

7.2.3 地震時の3ヒンジアーチの挙動

加振中の3ヒンジアーチの挙動を確認するため, STEP3のt=20.00~22.00sの時刻に着目 して,アーチ頂部および脚部のひずみを整理した.図-7.2.8(a)に脚部ひずみゲージ位置, 図-7.2.8(b)に頂部ひずみゲージ位置を示す.

図-7.2.9 (a) は STEP1 加振中の脚部ひずみを示しており,アーチ1ピースの左右に配置 されたひずみゲージの値の正負が交番していることから,1ピースごとに独立した挙動を示 しているが,ひずみの最大値でも圧縮側を示しており,加振の影響を受けてはいるものの, 基礎部材からの抜け出し等は生じていないものと考えられる.図-7.2.9 (b) は STEP3 加振 中の脚部ひずみを示しており,STEP1 と同様にひずみゲージの値が1ピースごとに独立した 挙動を示しており,ひずみの最大値が引張側を示しており,基礎部材からの抜け出しが生 じているものと考えられる.また,ひずみが大きくスパイク状に引張側へ振れている部分 が見られるが,これは加振中に基礎構造もしくは隣り合うアーチ部材と衝突を起こしてい るものと考えられる.

図-7.2.10 (a) は STEP1 加振中の頂部ひずみを示している. 脚部ひずみと比較するとひ ずみの振れ幅は小さいものの,ひずみゲージの値の正負が交番しているため,1ピースごと に独立した挙動を示している. 図-7.2.10 (b) は STEP3 加振中の頂部ひずみを示している. 脚部ひずみと同様に,ひずみゲージの値の正負が交番していることから,1ピースごとに独 立した挙動を示している.また,ひずみの最大値が引張側を示しており,頂部ヒンジ部が 目開きを起こしている可能性が考えられる.

	ATERA
(a)	STEPT

図-7.2.9 脚部ひずみ

(a) STEP1

図-7.2.10 頂部ひずみ

7.2.4 加振後の状況

写真-7.2.1に STEP5 まで加振した後の盛土の状況を示す.写真-7.2.2に STEP5 加振後に アーチ部材に触れないよう,慎重に盛土を除去した後の状況を示す.写真-7.2.1,7.2.2か ら盛土の法肩付近にある坑口から3~5リング目のアーチ部材のリング間の目開きによって, 上部盛土が内空へ流入し、崩壊に至ったことが分かる.写真-7.2.3に STEP5 加振後のアー チ内部の状況を示す.天井部のヒンジ位置で角当りやアーチ部材同士に段差が確認できる ことから,アーチ部材が個々に挙動し,坑口側に向かって倒れこむような変形が両坑口に 向かって発生していることが分かる.このことから,既往の分析および解析^{例えば,1)9}と同 様の結果となることが分かった.

写真-7.2.1 STEP5 加振後の盛土状況

写真-7.2.2 STEP5 加振後のアーチ部材の状況

写真-7.2.3 STEP5 加振後のアーチ部材内部の状況

7.3. まとめ

本実験では3ヒンジアーチの損傷メカニズムを確認するため、アルミ合金を用いて3ヒ ンジアーチの模型を作成し、動的遠心模型実験を実施した.以下に、実験より得られた知 見を示す.

- ・ 3 ヒンジアーチの損傷メカニズムは本実験の条件内においては既往の分析および解析 と同様に両坑口に向かって倒れこむように変形することが確認できた.
- ・ 実現場の損傷事例と同様に、アーチ天井部のヒンジの角当りが確認できており、アー チ部材が個々に挙動することで、損傷が生じていることが分かった.

参考文献

- 藤原優,藤岡一頼,佐伯宗大:3 ヒンジプレキャストアーチカルバートの上載盛土の影響に 関する分析,土木学会第71回年次学術講演会,Ⅲ-460, pp.919-920, 2016.9
- 2) 小島均, 佐藤光男: プレキャスト・アーチ・カルバートの被災, 論文番号 4003, 第 29 回日 本道路会議, 2011
- 3) 阿部哲生,中村雅範:高速道路における大型のプレキャスト部材を用いたカルバートの活用 と適用上の留意点,基礎工, Vol. 42, No. 4, pp. 8-11, 2014.4
- (財)先端建設技術センター、テクスパン工法設計施工マニュアル検討委員会:テクスパン 工法設計施工マニュアル(案)、1998.12.
- 5) 坂本寛章,小島謙一,米澤豊司,森野達也,丸山修,鈴木喜弥:パイルスラブ式盛土の模型 振動台実験-緩衝材の選定-,土木学会第65回年次学術講演会,Ⅲ-364, pp. 727-728, 2010.9
- 6) 一般社団法人 土木研究センター:補強土(テールアルメ)壁工法設計・施工マニュアル 第
 4回改訂版, 2014.8
- 7) 宮崎祐輔,澤村康生,岸田潔,木村亮:2ヒンジプレキャストアーチカルバートを含む盛土 におけるカルバートの連結様式を考慮した縦断方向の動的挙動の評価,地盤工学ジャーナル Vol. 10, No. 4, 517-529, 2015
- 8) 社団法人 日本道路協会:道路橋示方書·同解説V耐震設計編, 2012.6
- 9) 中村洋丈,藤原優,藤岡一頼,佐伯宗大,眞野基大:3 ヒンジアーチカルバートの地震時縦 断方向挙動と損傷に関する分析,土木学会第72回年次学術講演会,Ⅲ-132, pp.263-264, 2017.9

8. まとめ

2章では、ヒンジ式プレキャストアーチカルバートがカルバート工指針において、本体断面にヒンジがあること、断面形状が大きいこと等から、従来型以外のカルバートに分類されることを示した.従来型以外のカルバートにおいては、カルバート工指針に示される設計法・施工法及び構造細目に従い、カルバートの安定性や部材の安全性の照査を行うことで、常時の作用及びレベル1地震動に性能1を、レベル2地震動に対して性能2を確保するとみなせる、いわゆる慣用設計法が適用できないものとされている.

3章では、2ヒンジアーチと3ヒンジアーチの耐震性能照査手法を示したが、両工法のマ ニュアルには、横断方向に対する検討方法は具体的に記載されているが、他のカルバート 関連の設計指針と同様に、縦断方向に対する具体的な検討方法は記載が無いことを述べた.

4章では、2ヒンジアーチと3ヒンジアーチの損傷事例を分析した.2ヒンジアーチは地 震時以外の作用によって、側壁部材に斜め方向のひび割れが発生しており、3ヒンジアー チは地震時および地震時以外でアーチ天井部のコンクリート片の剥落が生じている.これ らの損傷は縦断方向荷重によるものであると考えられているが、どのような大きさの荷重 がどのように作用しているかが分かっていない.よって、縦断方向荷重による損傷メカニ ズムの解明を行うこととした.

5章では、4章で示した損傷事例に対し、縦断方向の地震時挙動に大きく影響したと考え られる連結様式、盛土形状、斜角条件を考慮したアーチカルバートの動的遠心模型実験を 実施し、地震時特性を確認した.また、有限要素解析により実験で確認されたモードを検 討した結果、盛土形状よりも連結様式の方が影響が大きく、カルバート同士を縦断方向に 連結することにより盛土の変形量やカルバートに作用する内力をそれぞれ抑制あるいは低 減することができることが分かった.

6章では、2 ヒンジアーチ、3 ヒンジアーチともに盛土を含む3次元 FEM 解析により、4 章で示した損傷事例と同様の損傷が再現できたため、これらの損傷は縦断方向荷重による ものであることを示した。

7章では、動的遠心模型実験により、3ヒンジアーチの損傷メカニズムを解明できた.縦 断方向の加振によって、坑口に向かって倒れこむように変形することや天井部ヒンジの角 当り等を再現することができたため、実構造物に発生している損傷は、縦断方向荷重によ るものであると考えられる.

本報告書では、ヒンジ式プレキャストアーチカルバートの内,施工実績数の多い2 ヒンジアーチ、3 ヒンジアーチを研究対象とし、これらのプレキャストアーチカルバートに発生している損傷について、損傷メカニズムの解明を行った.その結果、2 ヒンジアーチの側壁部材の斜めひび割れ、3 ヒンジアーチの天井部の剥落については、縦断方向荷重の作用によるものであることが分かった.

報告書(その2)では、追加検討を実施し、プレキャストアーチカルバートの耐震補強対

策を整理する予定である.

資料 1. プレキャストアーチカルバートの技術の変遷

プレキャストアーチカルバートは日本への導入から現在に至るまで、さまざまな変状が 発生しているが、その変状に応じて、マニュアルの改訂や規格・仕様の変更等で対応して おり、変状の発生率を低下させてきた。それらを体系的にまとめたものを下記に示す。 **表-1.1**に2ヒンジアーチの技術の変遷、**表-1.2**に3ヒンジアーチの技術の変遷を示す。

表-1.1 2 ヒンジアーチの技術の変遷

			発生率	4.8%
			mm	
	H24	H25	H26	H27
	H24	H25	H26	H27
			プレキャス バートの限り に関する共同 H2	トアーチカル P-状態の評価]研究(H26、 7)
筋仕権	兼を設定 適用			

							变状発	生率18.7%(テクスパン協	会調べ)													
	50										١							ЖН.6 Д	以前の実績は、	, H.6にカウン	トした。		
	40 -																		H23東日本	■ 不具合	;件数 ⊠名	建全件数	
	¥ 30- ¥ 30-	变状発	生率10.8%(テ	ウスパン協会	会調べ)								変状発生率7	5%(テクスパ	と協会調べ)			变状弹	生率1.7%(う	テクスパン協	会調べ)	
	解 20 -			_									******					(
	ぞ 10 -				_		_								_								
	0 -																						
左曲	UE	He	H7	на	HO	HIO	HII	H12	H13	H14	HID	H16	117	H18	HID	HZU	HZI	H22	H23	1124	HZS	HZ6	H27
 西暦	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	H23 2011	2012	2013	2014	2015
設計·指針	開発元のマ、	ニュアルを元	に、応力度な	:どを日本の	基準へ変更	テクスペン	工法設計・施	江マニュア	ル(薬)							and to be affected	一山市人間軍	<u>641.00±</u> 84.(□	وه بر با جوا	テクスパン 施工マニュ 定(順冠部 書	工法設計・ アル(案) 衣 橋造) 報告	テクスパン 施工マニュ 訂項目対比	工法設計・ .アル(案)改 .表
						1		_								772/2		9年秋香(日、	*7·9 × × ×	()) 朱麗書		ター「テクス	パンゴ港技
編集	テクスパ	ン工法技術検討	封委員会(日	本テクスパ	ン協会)	(財)先端建設	設技術センタ	ロテクス	パン工法設計	┣簏工マニュ	アル検討委員	会」				テクスパン	ノエ沃の改良	内容を明記		術検討委員	会		THAT'S
補足	自社マニュン	アル				公的機関に、	よるマニュア	· <i>n</i> ·															
震性能の研究 	H7~H12 他 土木勻	テールアル 会 論 文集N	メ盛土中に o.666/Ⅲ-5	おける 3 l i3)他	ニンジアー	-チの動的挙 -	ŝ動(豊田≀	皆史 長岡	技術大学他	1 土木学	会論文集No	o. 624/Ⅲ-47	7)、テーパ	シアルメ盛日	ヒと 3 ヒン	ジアーチの)動的挙動)	こ与える加	振集件と各	種物性の	◎響(豊田	浩史 長岡	技術大学
設計モデル	骨組み計算	および許容応	力度法による	応力度計算		染ばねモデノ	いによる 断面	訪計算、お	上び許容応力	度法による	応力度計算												
照査ケース	施工時荷重、	完成時荷重、	、地震時での	/照査		The second second																	
周辺盛主はね	茶生長大調	殿反力は、道)	鉄橋示方書・	同保護でに	記載の「意	周辺盛土の(時における最	よねN=5 ·大地敷反力/	度の上限値に	及び「岩蠍	の最大地盤を	マカ度の上限	値に以下とす	۲ ۵.										
水平土圧係数	静止土压保	k (K₀=1−si	in o)				500120051																
偏土 圧	特に記述無	L														テクスパン 念がある場	工法協会標準 合」を追加。	吐様者(日)	本テクスパン	協会)に「	偏土圧の懸	テクスペン 施工マニュ 訂項目対比 加	工法設計・ アル(案)改 表に記載追
耐震検討	門型カルベ	ートに準じた	計算方法			応答変位法(こよる計算方	法(レベル	1 地震動及び	『レベル2地	(震動)					:							
	現場計測(頂部ヒンジ(土圧、アーチ 機能の検証	部材の応力、	変 形計測等])の実施、	設計・施工。	マニュアルの	補完															
研究等		-	テクスペンゴ	法を用いた	トンネルの テクスペン	。 模型振動実験 クラウン部の	について、 機能および	袍 耐力確認試験	後報告											H24~H26大 アーチカル ろ研究	型実験およれ バート盛士(び数値解析に の設計規範の	よる連続 構築に関す
術的な検証、解 析)																						プレキャス ルパートの 評価に関す	トアーチカ 限界状態の 'る共同研究
構造の遍歴			·	,			頂部ビーム:	工の導入	:	2	脚部ビーム	エの導入	*	<u>.</u>			•		3 3		<u>,</u>	頂部脚部ピ 比表への記	ームエの対 粛
						1	: 				:							頂冠部ヒン	ジ構造変更	頂冠部ヒン	ジ構造変更	。 マニュアル追	記
用条件の遍歴	 ・内空幅に ・平面線形は ・土被りは ・縦断勾配は 	20m程度を超え は、直線また(最低1m、最大) は支保工を使り	こない。 は直線に近い 20m程度。 用しない場合	♪線形 よけ最大6%程	度											・上部道路 ・縦断勾配 断勾配を10	とカルパート の適用範囲は %とする。	→の法線の交」 16%以下を標	蓋角は60°程 準とし、別途	康以上を目: 癖析と架設	安とする。 時の支保工会	等の考慮によ	り限界の縦
な不具合事例 ニュアル改正に 撃を与えたもの) 7件の記載	 ①縦断方向 ②基礎地盤 ③地盤改良 ④不適切な ⑤盛土材料 ⑥埋戻し材料 ⑦盛土の次 	苛重によるクラ 下良を原因とし 部上の独立基(基礎形状による 下良によるクラ 特労化によるク 下による周辺地	ウン部剥離(た基礎縦断) 礎が高盛土の らクラウン部剥離(ラウン部剥離(ラウン部剥離	(架設:H11))前移動によ。)影響で水平) (雑 (架設:H (架設:H13) 、ひび割れ 減少によるア	る部材の割/ 変位を起こし (12) (架設:H14) 一于部材ひ	れ(架設:H11 たことによるP び割れ(架設) 和空の開き(9 ::H20)	架設:H11)	:	[7=17 [7=17 [7=17 [7=17 [7=17 [7=17 [7=17	ル等の散定】 ル等の散定】 ル等の散定】 ル等の散定】 ル等の散定】 ル等の散定】 ル等の散定】	頂部ビーム 基礎地盤に 基礎地盤に 基礎地盤に 盛土材の規 基礎地盤に 基礎地盤に	、脚部ビーム 関する調査環 規定、基礎構 関する調査理 定強化、排 定強化、排 関する調査理	、二の規定お。 (目を規定 () () () () () () () () () ()	よび構造細目 ノベート形式 基礎構造形式 を材料の仕様 港材料の仕様 礎構造形式	1の追記 、 の適用 、 のインベー 統範囲拡大、 統範囲拡大、 のインベー	ト形式の適用 無転圧層の削 無転圧層の削 、形式の適用	ママ マニ マニ マロ (朝) マロ (朝) マロ マコ (朝) マロ マコ マニ マニ マニ マニ マニ マニ マニ マニ マニ マニ マニ マニ マニ	ニュアル改定 ニュアル改定 ニュアル改定 ニュアル改定 ニュアル改定 ニュアル改定	案:8 案:3 案:4 案:12,13 案:12,13 案:12,13 案:4			

資料 2. 平成 28 年熊本地震におけるヒンジ式アーチカルバートの被災調査

平成28年熊本地震によるヒンジ式アーチカルバートの被害調査を行った.調査期間は平成28年6月23日,24日,調査したカルバートの特徴は,震源に近いもの(熊本県大津町),断面形状の特殊なマルチタイプ(福岡県久留米市),大断面(福岡県荒尾市,福岡県大牟田市の2件)とし,2ヒンジアーチが4物件,3ヒンジアーチが1物件の計5物件とした.

調査した結果,アーチカルバートに対し供用に影響を与えるような被害はなく,損傷自体もコンクリートの軽度な剥落や目地切れによる漏水程度であった.また,調査を行った5 現場の調査まとめ一覧表を表-2.1に示す.

供用されている 面壁のはらみ出し ※ま中の"-"は不問個時	供用されている 面壁からの水漏れ	供用されている 面壁のはらみ出し	供用されているなし	供用されているなし	供用状態 周辺の影響
アーチ外側のクラック クラウンの下がり	製造のクラック	なし	地震前の曲げクラック	目地部からの漏水	以外の影響
ない	73 L	なし	なし	ヒンジ部の欠損	震の影響
I	$2 \times 11.4 \text{m} \times 8.3 \text{m}$	15. $1m \times 8.0m$	$16.3 \text{m} \times 10.2 \text{m}$	6. $4m \times 4$. $7m$	り空断面
I	2.9m	0. 9m	6. 8m	1. 1m	ヒかぶり
I	平成24年	平成17年	平成20年	平成10年	ف工年度
5強	经 择G	5 強	5 寻寻	6強	震度
福岡県大牟田市	桓岡県久留米市	福岡県大川市	福岡県荒尾市	熊本県菊池郡大津町	所在地
福岡県大牟田市 3ヒンジアーチ	福岡県久留米市 2ヒンジアーチ	福岡県大川市 2ヒンジアーチ	福岡県荒尾市 2ヒンジアーチ	熊本県大津町 2ヒンジアーチ	物件

ト調査ー覧表
ーチカルバー
熊本地震でのア
表-2.1

2-2

は
小明
個所 ****

(1) 熊本県大津町の2 ヒンジアーチ

1) 調査結果

断面状況と断面図を**写真-2.1**と図-2.1に示す.地震荷重により,ヒンジ部に表面剥落や 目地材の劣化による漏水が見られたが,本体構造への影響はなく,供用されていた.

2) 地震による損傷状況

写真-2.2 に示すような、地震荷重によりヒンジ部に頂版アーチ部材と側壁部材とが干渉 することにより生じたと思われる剥落が確認された.当該現場では、ヒンジ部に**写真-2.3** に示すように、モルタルが止水の目地材として注入されており、頂版アーチの地震挙動が モルタルを介して側壁部材に伝わったことが剥落の構造的原因と考えられる.(現在は、ヒ ンジ部の止水目地材はモルタルではなく、弾性体のものが使用の標準とされているため、 同様な損傷は起こりにくいと考えられる.)

3) 地震以外での損傷状況

写真-2.4に示すように、目地材が経年劣化や硬化による目地切れのため、**写真-2.5**に示 すような、止水機能の低下によるプレキャスト間からの漏水跡が確認された.

写真-2.1 調査時の断面状況写真

写真-2.2 ヒンジ部の剥落

写真-2.3 ヒンジ部間隙へのモルタル注入跡

写真-2.4 目地材の劣化

写真-2.5 目地の劣化による漏水跡

(2) 福岡県荒尾市の2 ヒンジアーチ

1) 調査結果

断面状況と断面図を**写真-2.6**と**図-2.2**に示す.地震の影響は見られなかった.内空および上部道路は供用されていた.

2) 地震以外での損傷状況

写真-2.7, 写真-2.8 に示すように、側壁に曲げクラックが見られた.これは偏土圧により、地震以前から確認されていたものであったが、地震によりこのひび割れが増大したような形跡は見られなかったとのことである(2 ヒンジアーチの協会の調査による報告).

写真-2.6 調査時の断面状況写真

図-2.2 断面図

写真-2.7 側壁の曲げクラック(赤丸箇所)

写真-2.8 側壁の曲げクラック

(3) 福岡県大川市の2 ヒンジアーチ

1) 調査結果

断面状況と断面図を**写真-2.9**と**図-2.3**に示す.地震の影響は見られず,内空および上部 道路は供用されていた.

2) 地震以外での損傷状況

写真-2.10, 写真-2.11 に示すように,面壁の2cm~3cm ほどのはらみ出しが確認された. このような面壁のはらみ出しは,同道路区域のカルバートの無い盛土区間において,地 震以前から確認されている.これは,有明沿岸道路自体が,地盤の悪い地域で構築されて いることが要因と思われる.このことから,当該の面壁のはらみ出しも,地震以前からの 変状であり,今回の地震によるものではないと考えられる.

写真-2.9 調査時の断面状況写真

図-2.3 断面図

写真-2.10 面壁のはら見出し

写真-2.11 面壁のはら見出し(詳細)

(4) 福岡県久留米市の2 ヒンジアーチ

1) 調査結果

断面状況と断面図を写真-2.12 と図-2.4 に示す. 地震の影響は見られなかった. 内空および上部道路は供用されていた.

2) 地震以外での損傷状況

写真-2.13に示すように、側壁に軸方向鉄筋に沿ったクラックが確認された(管理者による確認のチョーク跡があり).原因は、製造によるものであると考えられる.また、地震被害ではないが、**写真-2.14**に示すような面壁からの多量の漏水が確認された.

写真-2.12 調査時の断面状況写真

図-2.4 断面図

写真-2.13 軸方向鉄筋位置でのクラック

写真-2.14 面壁からの漏水状況

(5) 福岡県大牟田市の3 ヒンジアーチ

1) 調査結果

断面状況を**写真-2.15** に示す. 地震の影響は見られなかった. 内空および上部道路は供用 されていた. 当該現場の断面寸法などの詳しいデータは持ち合わせていない.

2) 地震以外での損傷状況

感覚的なものであるが,写真-2.15 に示すように,アーチのスパンが広いため,クラウン が下がっていると思われる.そのため,写真-2.16 からは,クラウンが下がったことによる クラウンヒンジの開きが,また写真-2.17 では,クラウンが下がったことによりアーチ外側 へのひび割れが確認された.これらは地震以前からの変状であると思われる.

写真-2.15 調査時の断面状況写真

写真-2.16 クラウンでのヒンジの開き

写真-2.17 アーチ外側の曲げひび割れ

まとめ

本資料のまとめを以下に示す.

- ・ 実績調書による損傷分析の結果は、縦断勾配が小さい場合損傷が多くなるなどの、感覚 とは異なる部分が目立った.
- ・ 縦断方向の荷重により斜めひび割れが発生した2ヒンジアーチの性能は、損傷発生メカ ニズムや耐力評価などが不明であるため、確認のための再現解析や実験を行う必要がある。
- ・ 熊本地震による 2 ヒンジアーチ, 3 ヒンジアーチの調査結果では, 供用に問題が生じる ような損傷はみられなかった.

共同研究報告書

Cooperative Research Report of PWRI

No.510 January 2020

編集·発行 ©国立研究開発法人土木研究所

転載・複写の問い合わせは

国立研究開発法人土木研究所 企画部 業務課 〒305-8516 茨城県つくば市南原1-6 電話029-879-6754