ISSN 0386 - 5878 土木研究所資料 第 4325 号

土木研究所資料

フィルダムの修正震度法に用いる震力係数の合理化 およびロックフィルダムの地震による 最大すべり変形量の簡易推定法に関する検討

平成 28 年 3 月

国立研究開発法人土木研究所水工研究グループ水工構造物チーム

Copyright © (2015) by P.W.R.I.

All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I. この報告書は、国立研究開発法人土木研究所理事長の承認を得て刊行したものである。したがって、本報告書の全部又は一部の転載、複製は、国立研究開発法人土木研究所理事長の文書による承認を得ずしてこれを行ってはならない。

※本書のカラー版は付属の CD に収録されています。

ISSN 0386 - 5878 土木研究所資料 第 4325 号

フィルダムの修正震度法に用いる震力係数の合理化 およびロックフィルダムの地震による 最大すべり変形量の簡易推定法に関する検討

水工研究グループ

水工構造物チーム	上	席	研	究	員	榎村 康史
	主	任	研	究	員	藤田 将司
	交	流	研	究	員	藤川 祥
	(元)	上 席	研究	f頁	山口 嘉一*)
	(前)	上 席	研究	こ員	佐々木 隆**)
	(前)	主任	研究	f頁	佐藤 弘行***)
	(前)	研	究	員	坂本 博紀****)
	(元)	交 流	研究	E員	大川 孝士****)
	(前)	交 流	研究	L員	青井 克志****)

要 旨:

ロックフィルダムの設計・耐震性能照査については、建設・管理コストの縮減、既設ダム 数の増加、大規模地震の頻発等から、より実際の特性、挙動に照らした合理化、高度化が強 く求められている。本資料は二つの検討から成り、一つはフィルダムの設計法の合理化・高 度化として修正震度法に用いられる震力係数について地震記録の追加による震力係数の見 直しおよび堤高 100m 以上にも適用可能な震力係数の拡張に関する検討を、もう一つは簡易 的にロックフィルダムの耐震性能を照査する方法として、堤高 100m のモデルロックフィル ダムを対象に、ロック材のせん断強度定数により最大すべり変形量を簡易に推定する方法 について検討を行ったものである。

キーワード:ロックフィルダム、震力係数、塑性変形、簡易耐震性能照査

*) 現 地質研究監

**) 現 国土交通省国土技術政策総合研究所河川研究部大規模河川構造物研究室室長

***) 現 国土交通省国土技術政策総合研究所河川研究部大規模河川構造物研究室主任研究官

****) 現 独立行政法人水資源機構

*****)現 西日本技術開発株式会社

1.		はじめに	1-
2.		新たな震力係数に関する検討	3 -
	2.	1 概要	3 -
	2.	2 指針(案)における震力係数の算出方法	5 -
	2.	3 解析方法および解析条件	7-
		2.3.1 解析方法	7-
		2.3.2 解析モデルと物性値	8 -
		2.3.3 入力地震動	11 -
		2.3.4 解析ケース	14 -
	2.	4 解析結果	15 -
		2.4.1 堤高の影響(ケース1)	15 -
		2.4.2 上流側すべりと下流側すべりの比較(ケース 2)	22 -
		2.4.3 斜面勾配の影響(ケース3)	23 -
	2.	5 新たな震力係数の提案	25 -
	2.	6 東北地方太平洋沖地震の観測地震動を考慮した震力係数	27 -
		2.6.1 入力地震動	27 -
		2.6.2 解析結果	28 -
	2.	7 提案した震力係数を用いた修正震度法による安全率の検討	33 -
		2.7.1 検討の概要	33 -
		2.7.2 検討対象ダム	33 -
		2.7.3 解析方法	34 -
		2.7.4 解析モデルと物性値	34 -
		2.7.5 地盤震度	34 -
		2.7.6 堤体震力係数	34 -
		2.7.7 解析結果	42 -
	2.	8 まとめ	47 -
3.		ロック材のせん断強度定数を変数とする最大すべり変形量簡易推定法の検討	49 -
	3.	1 概要	49 -
	3.	2 検討対象ダム(ロックフィルダムの耐震性能照査の試行に用いられている物性値の整理).	50 -
	3.	3 初期せん断剛性の整理	52 -
	-	3.3.1 初期せん断剛性の式	52 -
		3.3.2 整理結果	52 -
		 3.3.3 解析に用いる代表値の設定 	53 -

3.4 動的	9変形特性の整理 54	-
3. 4. 1	動的変形特性の式 54	_
3. 4. 2	・整理結果	_
3.4.3	解析に用いる代表値の設定 55	_
3.5 せん	ん断強度の整理	-
3. 5. 1	せん断強度の式 56	_
3. 5. 2	!整理結果-56	-
3. 5. 3	解析に用いる代表値の設定58	-
3.6 解れ	∬モデルおよび解析条件 58	-
3. 6. 1	解析モデル	_
3. 6. 2	- 築堤解析	_
3.6.3	↓湛水解析	_
3. 6. 4	↓ 地震応答解析	_
3.6.5	- ニューマーク法と渡辺・馬場法による塑性変形解析	_
3.7 最ว	大すべり変形量の簡易推定法の検討73	_
3. 7. 1	ニューマーク法による解析結果73	_
3. 7. 2	!渡辺・馬場法による解析結果 88	_
3. 7. 3		_
3. 7. 4	入力最大加速度とせん断強度定数を変数とした最大すべり変形量の推定	_
3.8 まる	とめ 107	_
4. まとめ	b 109	_
参考文献。		_
付録		-1
付録1	観測地震動データの整理方法	-3
付録 2	震力係数の検討に用いた 48 地震動の加速度応答スペクトル	-7
付録3	y/Hとk/kFの関係	21

1. はじめに

ロックフィルダムの設計・耐震性能照査については、建設・管理コストの縮減、既設ダム数の増加、大規 模地震の頻発等から、より実際の特性、挙動に照らした合理化・高度化が強く求められている。また近年、 1995年の兵庫県南部地震をはじめとする大規模な地震の頻発により、ダムサイトにおいて多くの加速度の大 きい地震動記録が観測されており、これらの地震動記録の活用は有用であると考えられる。また、2005年3 月に策定された「大規模地震に対するダム耐震性能照査指針(案)」¹⁾(以下、照査指針(案)という)を基 本とするロックフィルダムの耐震性能照査については、限られた予算で既設約350基のロックフィルダムの 照査を効率的に進めるために、簡易的な耐震性能照査方法について検討することで、その優先付けを図る必 要がある。

本資料は、フィルダムの設計法の合理化・高度化として修正震度法に用いられる震力係数について地震記 録の追加による震力係数の見直しと堤高 100m 以上にも適用可能な震力係数の拡張に関する検討と、簡易的 にロックフィルダムの耐震性能を照査する方法として、照査指針(案)に基づき耐震性能照査を試行したロ ックフィルダムの物性値の整理と、堤高 100m のモデルロックフィルダムを対象にロック材のせん断強度定 数より簡易的に最大すべり変形量を推定する方法に関する検討を行ったものである。

本資料の2章では、現行の設計方法として用いられている震度法^{2),3)}から、より実際に近い、堤体に作用する地震力を採用した将来的な設計法を視野に入れ、耐震性能の照査法として策定した「フィルダムの耐震設計指針(案)」⁴⁾(以下、指針(案)という)の修正震度法における震力係数について、地震記録の追加による震力係数の見直しと堤高100m以上に対応可能な震力係数の拡張を行ったものである。具体的には、まず、1966年から2008年にダムサイトにおいて観測された地震記録および2011年の東北地方太平洋沖地震において観測された地震記録(三陸沖に発生した海溝型のプレート境界の地震であり、Mw9.0と地震規模が大きく、ダムサイトにおいて主要動が100秒以上と長い地震記録が観測されている⁵⁾)を用いて、震力係数を見直し合理化を図った。さらに、これまで堤高100m程度以下のフィルダムを対象としていた震力係数を堤高100m以上のフィルダムにも適用可能な堤高の一次関数である新たな震力係数の検討を行った。また、新たに提案する震力係数と指針(案)の震力係数において、修正震度法によるすべり安全率の差異を比較した。

3 章では、大規模地震に対する耐震性能照査の試行を実施したロックフィルダムについて、照査に用いら れた物性値(初期せん断剛性、動的変形特性、せん断強度等)の整理を行った。整理した物性値から代表値 を設定し、その代表値を用いて、堤高 100m のモデルロックフィルダムによる地震応答解析結果に基づく塑 性変形解析を実施することで、ロック材のせん断強度および入力地震動の最大加速度が最大すべり変形量に 及ぼす影響を検討し、簡易的に最大すべり変形量を推定する方法について検討を行った。

最終的に、4章において本資料における検討で得られた成果をとりまとめた。

本資料における検討のフローを図-1.1に示す。

2. 新たな震力係数に関する検討

2.1 概要

現行のダムの設計は河川管理施設等構造令及び同施行規則³⁾(以下、「構造令」という)に基づき実施され ており、特に耐震設計における基本的な断面の決定は、震度法に基づいている。構造令に基づき設計された ダムは、これまで兵庫県南部地震(1995年)や東北地方太平洋沖地震(2011年)をはじめとする大地震を経 験しても、直ちにその安全性を脅かすような被害は生じていない^{例えばの-8)}。このことから、震度法は一定の信 頼性を有した耐震設計法であると認識されている。しかし、震度法における地震力は、堤高方向に一様の慣 性力として作用させている²⁾。この安定解析上の仮定は、実挙動を反映していないため、本方法に基づく設 計の合理化が図りがたい状況にあった。そこで、より実際に近い地震力を採用した将来的な設計法を視野に 入れたうえで、耐震性能の照査法として、1991年6月に指針(案)⁴(フィルダムの耐震設計指針(案))が 策定されている。この指針(案)では、堤高100m程度以下のフィルダムを対象に、地震時の堤体の応答が 堤高方向に一様でないことを考慮するため、すべり土塊に作用させる地震力について、天端からすべり面の 堤体内最下点までの深さを y とし、堤高 H で無次元化した y/H に応じて図-2.1 のように変化させて規定す る震力係数が導入された修正震度法が提案されている。また、修正震度法は新設ダムの設計・照査法として だけでなく、今後の既設ダムの簡便な耐震性能照査法としても有用なものと考えられる。

図-2.1 指針(案)⁴⁾の震力係数

指針(案)⁴における震力係数は、1980年代以前にダムサイトにおいて観測された8波の地震動記録を用 いた検討結果等に基づいて定められている。しかし、指針(案)策定後には、1995年の兵庫県南部地震をは じめとする大規模な地震が頻発し、ダムサイトにおいて加速度の大きい多くの地震動記録が観測されている。 また、指針(案)において設定された震力係数は、堤高100m程度以下のフィルダムを対象としており、堤 高100m以上のフィルダムについては「高さが100m以上となると堤体の固有周期が長くなり、岩盤におけ る地震動の周波数特性を考慮すると本指針(案)で示した地震力を減ずることができる可能性がある」⁴と記 述されているものの、堤高100m以上のフィルダムを対象とした震力係数の提示までには至っておらず、(財) ダム技術センターが主催した、「ダム構造・設計委員会 フィルダム設計合理化検討分科会報告書(2001 年 3月)」⁹(以下、「検討分科会」という)の成果である、ダムサイトにおいて100gal以上の最大加速度が得ら れた観測地震動18波を用いた堤高110mおよび150mのフィルダムの震力係数の例示にとどまっている。

このような状況に鑑み、近年のダムサイトにおいて観測された地震動記録を用いた修正震度法における震 カ係数の見直しの検討が必要と考えた。そこで、本資料では近年ダムサイトにおいて観測された地震動記録 から選定した地震動を用い、堤高100m以上のフィルダムも含めた震力係数の検討を行った。震力係数の検 討にあたっては、堤高だけでなく、上流面と下流面の違い、および斜面勾配が震力係数に与える影響につい ても検討を行った。そのうえで、堤高100m以上のフィルダムにも適用可能な、堤高の一次関数である新た な震力係数の提案を行った。なお、本章の主要な部分である3~5節においては、1966年から2008年にダム サイトで観測された地震動記録を用いた検討を行い、結果をとりまとめた。その後、2011年3月に海溝型の 巨大地震である東北地方太平洋沖地震(三陸沖に発生した海溝型のプレート境界の地震であり、Mw9.0と地 震規模が大きく、ダムサイトにおいて主要動が100秒以上と長い地震記録が観測されている⁵⁾)が発生し、 多くのダムサイトで地震動記録が収集されたことから、追加的検討として、3~5節の検討から設定した新た な震力係数について東北地方太平洋沖地震のような海溝型の巨大地震への適用性を6節で検証した。7節で は、修正震度法にもとづく簡易耐震性能照査方法の検討として、既設12基のロックフィルダムを対象として 指針(案)と提案した震力係数を用いて修正震度法による安定解析を行い、安全率の差異について検討を行 った。

2.2 指針(案)における震力係数の算出方法

指針(案)4)における震力係数の分布は、以下の二つの異なる方法から得られた震力係数をもとに設定され ている。

(1) y/H が 0.4 から 1.0 の比較的深い円弧について

図-2.2のような物性値をもつ堤高約90mの解析モデルについて、モーダル法によってモード毎に 働く地震力を求め、応答スペクトル法によりそれぞれの標高において得られた堤体震度をベースにし て震力係数を求める方法。

図-2.2 モーダル法で用いた質量、せん断弾性係数⁴⁾

(2) y/H が 0.0 から 0.4 の比較的浅い円弧について

有限要素法によって、表-2.1のような物性値をもつ堤高 63m の解析モデルにおける地震応答を計 算し、円弧土塊についての震力係数を求める方法。

堤高	63m
ゾーン区分	ロック材のみ
湿潤密度 ρ _t (g/cm ³)	1.88
飽和密度 ρ _{sat} (g/cm ³)	2.08
初期せん断剛性 G ₀ (MPa) ^{*)}	$13.91 \cdot 9.8 \cdot \{7.629 + 3.425 \cdot \log(\sigma'_{\rm m}/9.8)\}$
減衰定数 (%)	20(一定)

表-2.1 有限要素法で用いた物性値(一部)¹⁰⁾

G₀ (MPa)は、kgf/cm²から単位変換している。

 $\sigma'_{\mathbf{m}}$: 平均有効主応力 $\sigma'_{\mathbf{m}} = \frac{1+2K}{2} \cdot \rho \cdot g \cdot D$ 、

3

K: 主応力比(0.5)、 ρ : 密度(g/cm³)、g: 重力加速度 (=9.8m/s²)、

D: 地表からの深さ(m)。

(1) について、図-2.3の細実線は、解析により求められたそれぞれの標高における震度(堤体震度)の 基礎地盤における震度(地盤震度)に対する倍率(震度係数)である。指針(案)では、まず、計算を簡単 にするため、この分布を図-2.3の点線のように等値の階段状分布としている。また、指針(案)における 記述では、経験によると加速度のピーク値はかなり大きな値が観測されても実際の構造物は破損しない場合 が多いこと、また、観測加速度のピーク値と構造物が破損しない設計震度の間の関係についての知見などを 考慮して、震度係数は堤体上部の方では上限 1/2 まで低減し、反対に底部の方では最下端の加速度を地盤の 最大加速度に等しいとして、図-2.3 に太い実線で示す階段状の震度係数を提案している。さらに、すべり 土塊に働く地震力のモーメントを簡単な計算で求めることができるように、震度係数から土塊内で一様と仮 定された震力係数を求めている。図-2.4 は図-2.3 の階段上の太線で示した震度係数の分布をもとに求め た震力係数の分布であり、ほぼ直線状の分布になっている。

図-2.3 震度係数(モーダル法、応答スペクトル法による)

図-2.4 震力係数(モーダル法、応答スペクトル法による)

(2) については、1 次元動的解析プログラムで多重重複反射理論に基づく SHAKEM と、2 次元動的解析 プログラムで等価線形化法に基づく QUAD、FLUSH を用い、最大加速度を 196gal (0.2G) に振幅調整して作 成した 8 波の入力地震動に対する土塊に生ずる地震力の地震動継続時間中の最大加速度を求めている。指針 (案)では、(2) による震力係数として、8 波による最大加速度の最大値から、過去の研究、事例より 70~ 80%程度に減じた図-2.5 に示す分布を提案している。

図-2.5 震力係数(有限要素法による)

これら二つの方法によりそれぞれ求めた図-2.4 と図-2.5 の震力係数の分布のうち、円弧土塊が上部に限られる時は図-2.5 が、下部まで及ぶときは図-2.4 の方が大きな値を示しており、安全側を考えて下部の方では図-2.4、上部の方は図-2.5 が採用されている。その結果、指針(案)では、震力係数の分布として図-2.1 が提案されている。

2.3 解析方法および解析条件

今回の震力係数に関する検討では、有限要素法のみによる解析を行った。「検討分科会」においても、有限 要素法のみを用いた検討を行っており⁹、これを踏襲したものである。解析方法および解析条件を以下に述 べる。

2.3.1 解析方法

ロックフィルダムの解析モデルに対して複素応答法による等価線形解析を行い、入力地震動に対する堤体 の応答加速度の時刻歴を求めた。そのうえで、図-2.6に示すように設定した上流側の20円弧と図-2.7に 示す下流側の20円弧を対象とし¹¹⁾、それぞれの円弧土塊の平均応答加速度の時刻歴を求め、その最大値を 入力地震動の最大加速度で除することにより、震力係数 k/k_Fを求めた。ここで、k:堤体震力係数、k_F:入力 地震動の最大加速度に相当する震度である。設定した各円弧群においては、y/H が 0.2、0.4、0.6、0.8 および 1.0 となるように 5 個の円弧を設定している。

図-2.6 解析の対象とした上流側想定すべり円弧

図-2.7 解析の対象とした下流側想定すべり円弧

2.3.2 解析モデルと物性値

解析対象は、中央土質遮水壁型ロックフィルダムで、堤体のみを有限要素にてモデル化した。ロックゾーンの上下流斜面勾配は、現行の設計法である震度法によるすべり安定解析により決定した。この際、設計震度には 0.15(強震帯における下限値)を与え、貯水位を堤高 H の 92% (0.92H)(常時満水位相当)、浸潤線は上流側ロックゾーンからコアゾーンまで水平で、コアゾーンと下流側のフィルタゾーンとの境界に沿ってダム底部まで低下するという条件で解析を実施し、最小すべり安全率が 1.2以上になる勾配¹²⁾として、図ー2.8の上流側 1:2.6、下流側 1:1.9 からなる堤高 100m の基本解析モデルを決定した。

図-2.8 解析モデル(上流面1:2.6、下流面1:1.9)

断面決定に用いた堤体材料の物性値を表-2.2 に示す。これらの物性値は、既設ロックフィルダムの堤体の物性値と比較した結果、わが国のロックフィルダムの標準的な堤体材料と判断した七ヶ宿ダムの設計値や物性値を基本として設定した^{13),14),15)}。

材料	湿潤密度 ρ _t (g/cm ³)	飽和密度	粘着力 (kN/m ²)	内部摩擦角 (°)	
コア	2.22	2.23	0	35	
フィルタ	2.13	2.24	0	36	
ロック	1.94	2.15	0	42	

表-2.2 堤体断面決定に用いた物性値

等価線形解析に用いたモデルの要素分割を図-2.9 に示す。等価線形解析の物性値のうち湿潤密度、飽和 密度および初期せん断剛性を表-2.3 に示す。また、図-2.10 に等価線形解析に用いた堤体材料のせん断剛 性率および減衰率とせん断ひずみとの関係(繰返しせん断特性)を示す。本検討の等価線形解析では堤体の みをモデル化したことから、基礎地盤でのエネルギー逸散は等価逸散減衰率として材料減衰率に一律15%上 乗せして考慮した。

図-2.9 解析モデルの有限要素分割

材料	湿潤密度 $\rho_{t}(g/cm^{3})$	飽和密度	初期せん断剛性 G ₀ (MPa) ^{*)}
コア	2.22	2.23	$(2.17-e)^2$, 0.7
フィルタ	2.13	2.24	$299 \cdot \frac{1+e}{1+e} \cdot \sigma_{\rm m}$
ロック	1.94	2.15	$367 \cdot \frac{(2.17-e)^2}{1+e} \cdot \sigma'_{\rm m}^{0.6}$

表-2.3 等価線形解析に用いた物性値(一部)

*) e:間隙比、 σ'_{m} :平均有効主応力 $\sigma'_{m} = \frac{1+2K}{3} \cdot \rho \cdot g \cdot D$ 、

K:主応力比(0.5)、ρ:密度(g/cm³)、g:重力加速度(=9.8m/s²)、D:地表からの深さ(m)。

図-2.10 せん断剛性率および減衰率とせん断ひずみの関係

2.3.3 入力地震動

1966 年から 2008 年にダムサイト岩盤またはダム堤体監査廊で観測された 1883 の地震動記録を対象とし、 上下流方向の最大水平加速度が 100gal 以上を記録した表-2.4 に示す 48 地震動を入力地震動として選定した。また、同時に記録された鉛直地震動についても併せて選定した。

No	発震年月日	ダム名	型式 ^{*)}	堤高(m)	検出器設置箇所	最大水平加速度 αxmax (gal) ^{**)}	最大鉛直加速度 α _{ymax} (gal) ***)	$ \alpha_{ymax} / \alpha_{xmax} $	地震名
No 1	1976 06 16	三保	R	95 0	漏水量観測室	-125 57	43 17	0 344	山梨県東部
No 2	1978 06 12	樽水	R	43 0	底設監査廊	178 43	83 88	0 470	宮城県沖
No 3	1983 08 08	三保	R	95 0	漏水量観測室	-149 37	-54 60	0 366	関東中部境界
No 4	1986 06 27	石淵	R	53 0	右岸段丘部	-180 30	※)記録無し	-	岩手県南部
No 5	1987 01 09	田瀬	G	81 5	ダム堤体基礎	103 40	30 97	0 300	岩手県北部
No 6	1987 12 17	長柄	Е	52 0	堤体基礎	-262 00	-86 00	0 328	千葉県東方沖
No 7	1987 12 17	長柄	Е	52 0	左岸地山	-281 00	111 00	0 395	千葉県東方沖
No 8	1989 10 27	菅沢	G	73 5	右岸地山	-101 36	-26 28	0 259	島取県西部
No 9	1993 07 12	美利河	GF	40 0	底設監査廊	116 69	72 53	0 622	北海道南西沖
No 10	1994 12 28	和田	R	44 0	右岸地山	108 75	50 63	0 466	三陸はるか沖
No 11	1995 01 17	権現	R	32 6	基礎埋設	103 67	-65 71	0 634	兵庫県南部
No 12	1995 01 17	一庫	G	75 0	下段監査廊	-182 13	62 86	0 345	兵庫県南部
No 13	1995 01 17	箕面川	R	47 0	監查廊中央部	-134 99	80 21	0 594	兵庫県南部
No 14	1996 03 06	三保	R	95 0	漏水測定室	-140 06	-73 63	0 526	山梨県東部
No 15	1997 03 16	雨山	G	21 5	監査廊	172 75	63 69	0 369	愛知県北東部
No 16	1997 03 26	鶴田	G	117 5	監査廊	-154 94	-71 44	0 461	鹿児島県北西部
No 17	1997 04 03	鶴田	G	117 5	監査廊	-110 69	29 00	0 262	鹿児島県北西部
No 18	1997 05 13	鶴田	G	117 5	監査廊	-109 00	62 13	0 570	鹿児島県北西部
No 19	1997 08 23	賀祥	G	464	底設監査廊	117 61	117 46	0 999	鳥取県西部
No 20	1997 09 02	賀祥	G	464	底設監査廊	-113 37	-48 18	0 425	鳥取県西部
No 21	1997 09 04	賀祥	G	464	底設監査廊	344 02	-152 49	0 443	鳥取県西部
No 22	1997 09 04	賀祥	G	464	底設監査廊	-244 24	-152 49	0 624	鳥取県西部
No 23	2000 10 06	賀祥	G	464	底設監査廊	-528 49	485 21	0 918	鳥取県西部
No 24	2000 10 06	賀祥	G	464	底設監査廊	-531 12	485 21	0 914	鳥取県西部
No 25	2000 10 06	菅沢	G	73 5	下段監査廊	-157 60	-108 74	0 690	鳥取県西部
No 26	2000 10 06	菅沢	G	73 5	右岸地山	-307 01	249 20	0 812	鳥取県西部
No 27	2000 10 06	高瀬川	G	67 0	監査廊	-106 20	70 93	0 668	鳥取県西部
No 28	2000 10 07	賀祥	G	46 4	底設監査廊	133 82	-63 58	0 475	鳥取県西部
No 29	2000 10 07	賀祥	G	46 4	底設監査廊	-113 25	-63 58	0 561	鳥取県西部
No 30	2003 05 26	田瀬	G	81 5	ダム堤体基盤	-232 09	117 72	0 507	宮城県沖
No 31	2003 05 26	花山	G	48 5	右岸地山	237 20	-122 68	0 517	宮城県沖
No 32	2004 10 23	下条川	G	31 0	監査廊中央底部	215 11	66 06	0 307	新潟県中越
No 33	2004 10 23	鯖石川	G	37 0	監査廊底部	130 56	-81 35	0 623	新潟県中越
No 34	2004 10 23	城川	G	21 7	底設監査廊	-161 55	-48 29	0 299	新潟県中越
No 35	2004 10 23	鯖石川	G	37 0	監査廊底部	-231 20	224 39	0 971	新潟県中越
No 36	2004 10 23	城川	G	21 7	底設監査廊	-191 73	78 80	0 411	新潟県中越
No 37	2004 10 24	新山本調整池	R	42 4	B測線岩盤	609 15	182 47	0 300	新潟県中越
No 38	2004 10 24	新山本調整池	R	42 4	B測線岩盤	-751 21	182 47	0 243	新潟県中越
No 39	2004 10 27	新山本調整池	R	42 4	B測線岩盤	-371 82	-174 93	0 470	新潟県中越
No 40	2004 10 27	新山本調整池	R	42 4	B測線岩盤	-682 55	-174 93	0 256	新潟県中越
No 41	2005 08 16	化女沼	Е	24 0	堤体基礎	100 44	-39 31	0 391	宮城県沖
No 42	2007 03 25	八ヶ川	G	52 0	底設監査廊	166 78	166 78	1 000	能登半島
No 43	2007 07 16	柿崎川	R	54 0	基礎	-143 34	75 62	0 528	新潟県中越沖
No 44	2007 07 16	鯖石川	G	37 0	監査廊底部	-129 46	84 44	0 652	新潟県中越沖
No 45	2007 07 16	川内	G	55 0	監査廊	291 50	-152 63	0 524	新潟県中越沖
No 46	2007 07 16	谷根	G	54 0	基礎	-157 25	86 88	0 552	新潟県中越沖
No 47	2008 6 14	皆瀬	R	66 5	基礎	158 44	182 19	1 150	岩手・宮城内陸
No 48	2008 6 14	石淵	R	53 0	基礎 (推定)	-465 34	-621 39	1 335	岩手・宮城内陸

表-2.4 入力地震動の選定結果

*) E:アースダム、G:重力式コンクリートダム、GF:重力式コンクリートダム・フィルダム 複合ダム、R:ロックフィルダム。

**) 水平加速度は、上流から下流方向を(+)、下流から上流方向を(-)で表す。

***) 鉛直加速度は、鉛直上方を(+)、鉛直下方を(-)で表す。

図-2.11 に選定した入力地震動の最大水平加速度のヒストグラムを示すが、100~200gal にその多くが分 布しており、加速度が大きいものほど頻度が低くなる。また、選定した48の地震動について最大水平加速度 と最大鉛直加速度の関係を図-2.12 に示す。最大水平加速度:最大鉛直加速度が1:0.5 程度に大部分の地震 動が集中しているが、1:1もしくはそれを超えるものがいくつかみられる。表-2.4 の最大鉛直加速度を確 認すると、1997 年以降の比較的近年の地震動記録に最大水平加速度:最大鉛直加速度が1:1 程度の記録が 見られ、さらに最大水平加速度も1997 年以前よりも大きい傾向にあることがわかる。これらの傾向は、1995 年の兵庫県南部地震を受けてダムサイトにおける地震観測網の充実が図られ、震源近傍地点の地震動も観測 されるようになってきたことも理由の一つと考えられる。

図-2.11 最大水平加速度の頻度分布(48地震動)

図-2.12 最大水平加速度と最大鉛直加速度の関係(48 地震動)

解析に用いた入力地震動は、選定した 48 地震動の水平地震動(上下流方向)の最大水平加速度を指針(案) 策定時の検討と同じく 196gal (0.2G) となるように振幅調整して使用した。鉛直地震動については、水平地 震動と同じ比率(=196gal/元波形の最大水平加速度)を乗じて振幅調整した。図-2.13、図-2.14 に減衰 率 h=5%での水平地震動、鉛直地震動の加速度応答スペクトルをそれぞれ示す。ほとんどの地震動で周期が 0.1~0.3 秒程度において加速度応答スペクトルのピークが見られる。また、付録1に観測動地震データの整 理方法を、付録2 に検討に用いた 48 地震動の各種加速度応答スペクトル図を付記した。

図-2.14 加速度応答スペクトル図(鉛直動)

2.3.4 解析ケース

解析ケースは表-2.5のとおりである。

斜面	勾配	対象すべり面	堤高		
上流面 下流面 ^			元间		
1:2.6	1:1.9	上流側	50m, 75m, 100m, 125m, 150m		
1:2.6	1:1.9	上流側 下流側	100m		
1:2.4 1:1.8					
1:2.6	1:1.9	上 流 側 下 流 側	100m		
1:3.0	1:2.2	נאסטועד ד			
	斜面 上流面 1:2.6 1:2.6 1:2.4 1:2.6 1:3.0	斜面勾配 上流面 下流面 1:2.6 1:1.9 1:2.6 1:1.9 1:2.6 1:1.9 1:2.6 1:1.9 1:2.6 1:2.2	斜面勾配 対象すべり面 上流面 下流面 1:2.6 1:1.9 上流側 上流側 1:2.6 1:1.9 上流側 上流側 1:2.6 1:1.9 上流側 下流側 1:2.6 1:1.8 1:2.6 1:1.9 上流側 下流側		

表-2.5 解析ケース

ケース1では、堤高が震力係数に及ぼす影響について検討した。解析対象とする堤高は、図-2.8に示す 堤高100mのダムモデルの他、堤高50m、75m、125m、150mのダムモデルを設定した。また、それぞれの堤 体形状や貯水位条件および解析モデルの有限要素寸法は、堤高100mモデルの堤高比例の相似形とした。堤 高比例の相似形とした場合、各ダムモデルの天端幅は、概ね実事例¹⁰と対応している。なお、検討の対象と する想定すべり円弧は、指針(案)⁴における震力係数の検討と同様に上流側のみとした。

ケース2では、ケース1で上流側の想定すべり円弧についてのみ検討していることから、代表ダムモデル として、堤高100mのダムモデルを用い、下流側の想定すべり円弧の震力係数を求め、上下流の震力係数の 差異について検討した。

ケース3では、図-2.8に示す堤高100m、上流面1:2.6、下流面1:1.9のダムモデルを基に、斜面勾配が異なるダムモデルを設定し、斜面勾配が震力係数に及ぼす影響について検討した。解析対象とする斜面勾配は、 図-2.15に示す既設ロックフィルダムにおける上下流面勾配の調査結果¹⁷⁾に基づき、既設ダムの大部分が含まれる範囲を参考に定めるものとし、急勾配側のダムモデルとして上流面1:2.4、下流面1:1.8、緩勾配側のダムモデルとして上流面1:3.0、下流面1:2.2を設定した。なお、震度法による安全率は、急勾配のモデルでは上流側1.14と下流側1.17、緩勾配のモデルでは上流側1.33と下流側1.39となる。

図-2.15 上下流面勾配の頻度分布¹⁷⁾

2.4 解析結果

ケース 1~ケース 3 による解析結果を 2 章 4 節の 1 項~3 項に示す。なお、各ケースにおいて本節では記載しなかった y/H と震力係数 k/kF の各種関係図については付録 3 に記した。

2.4.1 堤高の影響(ケース1)

堤高 50m、75m、100m、125m、150m モデルの上流側 4 円弧群 20 円弧の解析結果について、堤高ケース別の y/H と震力係数 k/kFの関係を図-2.16~図-2.20 に示す。4 個の円弧群の解析結果に大きな差異はなく、 各円弧群のうち円弧群 3 において、ほぼ最大の震力係数を示している。

すべての堤高ケースの解析結果と指針(案)の震力係数を比較すると、いくつかの地震動で天端から高標 高部の領域で指針(案)の震力係数を上回る箇所がわずかにみられる。特に、堤高 50m、75m の比較的低い 堤高のケースでその傾向が強くみられる。しかし、その他の領域ではいずれの堤高ケースにおいても解析結 果が概ね指針(案)の震力係数を下回っている。

また、4 円弧群 20 円弧の結果として得られた震力係数を、y/H (=0.0、0.2、0.4、0.6、0.8、1.0) ごとに統計処理した結果を堤高 50m、75m、100m、125m、150m モデルのケースごとに図-2.21 に示す。この図より、 堤高 50m、75m のケースにおける平均値+標準偏差(μ+σ)の値は、指針(案)の高標高部(y/H=0.0、0.2、 0.4)の震力係数と近似した値となっている。

図-2.16 y/Hと k/k_Fの関係(ケース 1, 堤高 50m モデルの全解析結果)

図-2.17 y/Hとk/k_Fの関係(ケース1,堤高75mモデルの全解析結果)

図-2.18 y/Hとk/kFの関係(ケース1,堤高100mモデルの全解析結果)

(c) 円弧群 3

(d) 円弧群 4

図-2.19 y/H と k/k_Fの関係(ケース 1, 堤高 125m モデルの全解析結果)

図-2.20 y/Hとk/kFの関係(ケース1,堤高150mモデルの全解析結果)

図-2.21 y/Hとk/kFの関係(ケース1,統計処理結果)

2.4.2 上流側すべりと下流側すべりの比較(ケース2)

上流側すべり、下流側すべりについて、全48地震動の解析結果を統計処理した結果を図-2.22に示す。 図をみると、平均値(µ)と平均値+標準偏差(µ+σ)として得られた上流側すべりと下流側すべりの震力係数に ほとんど差がないことがわかる。

図-2.22 y/Hと k/k_Fの関係(ケース 2, 統計処理結果)

2.4.3 斜面勾配の影響(ケース3)

図-2.23 は、(上流面 1:2.4、下流面 1:1.8) モデル、図-2.24 は、(上流面 1:3.0、下流面 1:2.2) モデルにお ける上流側すべり、下流側すべりそれぞれの48 地震動の解析結果を統計処理したものである。

これらより、上流側すべりで異なる勾配による影響に着目すると、平均値(μ)、平均値+標準偏差(μ + σ) ともに非常に近似した結果が得られた。また、同図より、下流側すべりも、上流側すべりと同様な結果が得 られた。次に勾配と震力係数 k/k_Fの平均値+標準偏差(μ + σ)の関係について、図-2.23、図-2.24の結果 と、ケース2で実施した(上流側 1:2.6、下流側 1:1.9)モデルの図-2.22の結果をあわせ、上流側すべりに ついては図-2.25 に、下流側すべりについては図-2.26 に示す。なお、指針(案)⁴においては、図-2.1の ように震力係数 k/k_Fの分布を y/H=0.0、0.4、1.0 における折れ線で示しているため、本検討も y/H=0.0、0.4、 1.0 での震力係数 k/k_Fに着目した。各震力係数 k/k_Fは、通常考えられるロックフィルダムの上下流面勾配の 範囲において、上流側すべり、下流側すべりともに、いずれの y/H においてもほぼ同程度の値であることが わかる。

図-2.23 y/Hと k/kFの関係(ケース3、上流面1:2.4、下流面1:1.8)

図-2.24 y/Hとk/kFの関係(ケース3、上流面1:3.0、下流面1:2.2)

図-2.25 勾配と k/k_F ($\mu + \sigma$)の関係 (上流側すべり)

図-2.26 勾配と k/k_F ($\mu + \sigma$)の関係 (下流側すべり)

2.5 新たな震力係数の提案

近年の地震動記録を用い、修正震度法において作用させる地震力を規定する震力係数を、堤高 100m 以上のフィルダムへの適用を含めて新たに提案する。設計に用いる震力係数としては、各地震動記録による震力 係数の平均値+標準偏差(μ+σ)に着目する。その理由は主に以下の2つによる。

- (1)本検討では、48の入力地震動について、ある設定した円弧土塊の平均応答加速度の時刻歴を求め、 その最大値を入力地震動の最大水平加速度で除することにより震力係数を算出し、48の入力地震動 の数で統計処理している。つまり、円弧土塊の平均応答加速度の瞬間的な最大値を48個統計処理し ており、その統計値の平均値+標準偏差(µ+o)の値は統計的には大きな値であり、設計法に使用する 値としては妥当と考えられること。
- (2)指針(案)を適用して建設されたフィルダムがこれまでの地震により大きな被害を受けていないことから、指針(案)の震力係数の信頼性は高いと考えられる。また、本章の4節1項で示したように、 堤高 50m、75m モデルにおける高標高部の平均値+標準偏差(μ+σ)の値と、指針(案)の震力係数 は近い値を示していること。

一方、指針(案)では、低標高部においてモーダル法および応答スペクトル法により得られた震力係数を、 安全側を見て採用している。しかし、今回の解析結果は、指針(案)検討時よりも多くの地震動記録を対象 としており、本手法により提案した震力係数の信頼性は増したと考えられる。また、「検討分科会」において も、有限要素法のみを用いて震力係数を検討している⁹。それらから、モーダル法および応答スペクトル法 は用いず、前節までに行った有限要素法のみによる解析結果から震力係数を提案することとした。

指針(案)による震力係数の分布は、y/H=0.0、0.4、1.0における震力係数を折れ線で示していることを踏まえ、ケース1における堤高H=50m、75m、100m、125m、150mモデルの解析結果を用いて、図-2.27(a)に 震力係数 k/kFの平均値+標準偏差(µ+σ)と堤高Hとの関係をy/H=0.0、0.4、1.0ごとに示した。ここに、k/kF Iは新たに提案する y/H=0.0 における各堤高モデルの震力係数の回帰直線を表しており、同様に k/kFIIは y/H=0.4 における震力係数の、k/kFIIIは y/H=1.0 における震力係数の回帰直線を表している。いずれの y/H で も高い相関が得られており、堤高が高くなるにつれ震力係数は直線的に低下している。また、ケース2、3の 検討より、ロックフィルダムモデルにおける上流側すべりと下流側すべりの違いや通常考えられる上下流面 勾配の範囲において斜面勾配の違いによる震力係数への影響はほとんどない。

したがって、震力係数は特に堤高と相関が高いことから、y/H=0.0、0.4、1.0 における震力係数について、 堤高 H をパラメータとした一次関数で表-2.6 のように示すことが可能である。新たに提案する震力係数に ついて、指針(案)に示されている震力係数の分布と同様に、y/H=0.0 と y/H=0.4 の震力係数、y/H=0.4 と y/H=1.0 の震力係数をそれぞれ直線で結ぶことで、堤高 50、75、100、125、150m における震力係数 k/k_Fの平 均値+標準偏差(μ + σ)と y/H の関係を図示すると図-2.27 (b)のとおりとなる。

(b) 震力係数 k/k_F(μ+σ)と y/H の関係

図-2.27 新たに提案する震力係数と堤高および y/Hの関係

y/H	震力係数の近似式
0.0(天端)	$k/k_F I = -0.0048 \cdot H + 2.9022$
0.4	$k/k_{\rm F}$ II = -0.0055 · H + 2.0195
1.0	$k/k_{\rm F}$ III = -0.0040 · H + 1.2848
ここで、	k:堤体震力係数、k _F :設計地盤震度、H:堤高(m)。
	k/k _F I:y/H=0.0mにおける震力係数の近似式、
	k/k _F Ⅱ:y/H=0.4mにおける震力係数の近似式、
	k/k _F Ⅲ:y/H=1.0mにおける震力係数の近似式。

表-2.6 新たに提案する堤高と震力係数の相関近似式

震力係数k/kFは、小数点第3位以下を切り上げる。

2.6 東北地方太平洋沖地震の観測地震動を考慮した震力係数

2011 年 3 月にモーメントマグニチュード Mw9.0 の巨大地震である東北地方太平洋沖地震が発生し、ダム サイトにおいて多くの地震動記録が収集された。

前節で 1966 年から 2008 年に観測された 48 地震動(以下、「既往の 48 地震動」という)を用いた新たな震 力係数の提案を行ったが、本節では、東北地方太平洋沖地震のような巨大地震に対する提案した新たな震力 係数の適用可能性の検討を行う。検討の方法は、既往の 48 地震動を用いた震力係数と、既往の 48 地震動に 東北地方太平洋沖地震の地震動記録を含めて算出した震力係数を比較することとし、表-2.5 のケース 1 の 条件で堤高 50m、100m、150m を対象とした。

2.6.1 入力地震動

東北地方太平洋沖地震では、収集した地震動記録⁸⁾のうち、既往の48 地震動と同じく、ダムサイト岩盤ま たはダム堤体監査廊で観測された上下流方向の最大水平加速度が100gal以上の条件で、**表**-2.7 に示す7地 震動を選定した。なお、解析では同時に観測された鉛直地震動も考慮した。また、選定した入力地震動は、 最大水平加速度が196gal(0.2G)となるように振幅調整した。鉛直地震動は、水平地震動と同じ比率を乗じ て振幅調整した。

ここで、振幅調整した既往 48 地震動と東北地方太平洋沖地震 7 地震動の加速度応答スペクトルの比較図 を図-2.28 に示す。また、図-2.28 には、堤高 50m、100m、150m におけるモデルダムの固有周期を併記し た。東北地方太平洋沖地震の地震動記録は、長周期側で既往地震を超える加速度応答スペクトルが見られる。 しかし、ダムモデルの堤高 50m、100m、150m における固有周期付近では、既往 48 地震動の分布範囲にほぼ 包含されている。

No.	発震年月日	ダム名	型式*)	堤高(m)	検出器設置箇所	最大水平加速度 α _{xmax} (gal) **)	最大鉛直加速度 α _{ymax} (gal) ***)	$\left \alpha_{ymax}\right / \left \alpha_{xmax}\right $	地震名
No 1	2011 03 11	釜房	G	45 5	右岸リムグラウトトンネル	125 42	91 99	0 733	東北地方太平洋沖
No 2	2011 03 11	三春	G	65 0	堤体基礎	194 80	146 90	0 754	東北地方太平洋沖
No 3	2011 03 11	惣の関	GF	23 5	監査廊中央部	290 73	145 62	0 501	東北地方太平洋沖
No 4	2011 03 11	南川	G	46 0	監査廊	270 85	145 40	0 537	東北地方太平洋沖
No 5	2011 03 11	高柴	G	59 5	監査廊	151 03	107 44	0 711	東北地方太平洋沖
No 6	2011 03 11	四時	R	83 5	監査廊	109 81	100 94	0 919	東北地方太平洋沖
No 7	2011 03 11	荒砥沢	R	74 4	監査廊	102 25	65 34	0 639	東北地方太平洋沖

表-2.7 東北地方太平洋沖地震で観測された地震動(上下流方向・100gal以上)

*) G:重力式コンクリートダム、GF:重力式コンクリートダム・フィルダム複合ダム、 R:ロックフィルダム。

**) 水平加速度は、上流から下流方向を(+)、下流から上流方向を(-)で表す。

***) 鉛直加速度は、鉛直上方を(+)、鉛直下方を(-)で表す。

*) 初期剛性から算定した各堤高モデルの1次振動モードにおける固有周期

図-2.28 選定した東北地方太平洋沖地震7地震動の加速度応答スペクトル(水平地震動)

2.6.2 解析結果

堤高 50m、100m、150m モデルにおける 4 個の円弧群の解析結果をそれぞれ図-2.29~図-2.31 に示す。 堤高 150m の低標高部において既往の 48 地震動の震力係数 k/k_Fを一部超える場合があるものの、東北地方太 平洋沖地震における 7 地震動の震力係数 k/k_F は、既往の 48 地震動における震力係数 k/k_F分布にほぼ包含さ れている。

図-2.29 y/Hと k/k_Fの関係(堤高 50m モデルの全解析結果)

図-2.30 y/Hと k/k_Fの関係(堤高 100m モデルの全解析結果)

図-2.31 y/Hとk/kFの関係(堤高150mモデルの全解析結果)

図ー2.32 は、図ー2.27 の既往の48 地震動による震力係数 k/k_F の平均値+標準偏差($\mu+\sigma$)の検討結果に、 東北地方太平洋沖地震においてダムサイトで観測された7 地震動を加えた全55 地震動による震力係数 k/k_F の平均値+標準偏差($\mu+\sigma$)の結果を図示したものである。両者を比較すると、わずかな差がみられるものの、 いずれの堤高においてもほぼ同様の値であることがわかる。

よって、図-2.27、表-2.6 に示す新たに提案する震力係数は、東北地方太平洋沖地震のような海溝型の 巨大地震を含めて適用可能であると考える。

図-2.32 堤高と震力係数 k/k_F(μ+σ)の関係

(既往の48地震動に東北地方太平洋沖地震の7地震動を加えた結果を図示)

2.7 提案した震力係数を用いた修正震度法による安全率の検討

2.7.1 検討の概要

本節では、修正震度法にもとづく簡易耐震性能照査方法の検討として、既設 12 基のロックフィルダムを対象として、指針(案)と提案した震力係数を用いて修正震度法による安定解析を行い、安全率の差異について検討を行った。なお、修正震度法に基づく簡易耐震性能照査方法では、あくまで安全率の大小で安全性の程度を示すことになるが、安全率 1.0 未満における安全率の数値については、実際に発生するすべりなどの被害との定量的な関連はないことに注意されたい。

2.7.2 検討対象ダム

検討対象ダムの堤高や竣工年等を表-2.8 に示す。検討対象ダムは、直轄のロックフィルダムで、検討に 必要な物性等が確認できた 12 ダムとした。12 ダムのうち、各ダムの設計資料等において、指針(案)に基 づいた修正震度法を検討し、その結果が確認できたのは 5 ダム(以下、「指針(案)適用後の 5 ダム」とい う)、設計時期が指針(案)策定前であったことなどから、指針(案)に基づいた修正震度法を検討していな いダムは 7 ダム(以下、指針(案)適用前の 7 ダムという)である。

なお、表-2.8には、後述する検討結果である安定解析結果の安全率を示している。表-2.8に示した指針 (案)の最小安全率については、指針(案)適用後の5ダムについては各ダムの設計時の資料から引用して いる。一方、指針(案)適用前の7ダムについては、本検討において実施した安定解析による安全率を示し ている。

			修正電度法		設計地般	上流側最	小安全率	下流側最	小安全率	
ダム名	堤高 (m)	竣工年	実施の有無	地域区分	震度	指針(案)	提案した 震力係数	指針(案)	提案した 震力係数	備考
Α	91.7	1974	無	弱震帯	0.13	1.811	2.025	1.938	2.131	
В	85.0	1975	無	中震帯	0.16	1.148	1.199	1.284	1.323	
С	153.0	1979	無	中震帯	0.16	1.511	1.822	1.545	1.899	
D	69.0	1981	無	中震帯	0.16	1.431	1.564	1.742	1.919	
Е	112.0	1990	無	中震帯	0.16	1.477	1.624	1.629	1.783	
F	90.0	1991	無	強震帯	0.18	1.426	1.593	1.641	1.706	
G	119.5	1993	無	中震帯	0.16	1.319	1.512	1.374	1.440	
Н	66.5	2004	有	弱震帯	0.13	1.425	1.515		-	注1
Ι	105.0	2006	有	強震帯	0.18	1.206	1.445	1.283	1.467	
J	41.2	2009	有	中震帯	0.16	1.252	1.420		-	注1
K	84.9	2012	有	中震帯	0.16	1.222	1.505	1.280	1.436	
L	132.0	2013	有	強震帯	0.18	1.214	1.473	1.328	1.541	

表-2.8 検討対象ダムの諸元等

注 1:実際は抑え盛土などがあるが、本検討では堤体のみモデル化しており、指針(案)による設計時の安定計算と条件が 異なるため、下流側の安全率は比較の対象から除外した。

2.7.3 解析方法

安定解析の方法は、指針(案)に記載されている方法に従った。詳細は指針(案)を参照されたい。

2.7.4 解析モデルと物性値

検討対象とした 12 ダムの標準断面を図-2.33~図-2.44 に示す。なお、図は原典のままとしているため、 本資料の表記とは異なる表記(例えば、「フィルタ」ではなくて「フィルター」などの表記)をそのまま用い ていることに注意されたい。安定解析においては、各ダムの標準断面図から、堤体のみをモデル化した。抑 え盛土等はモデル化していない。安定解析における設定水位については、一般的に修正震度法のすべり安全 率が最小となる常時満水位とした。

表-2.9~表-2.20 に、12 ダムの安定解析に用いた物性値を示す。指針(案)適用後の5 ダムについては 各ダムの設計時の資料に記載されている物性を使用した。指針(案)適用前の7 ダムについては、ロックと フィルタの強度物性(A、b)の値は各ダムの大規模地震に対する耐震性能照査報告書に記載されている値を 使用した。

2.7.5 地盤震度

検討対象 12 ダムの地域区分および地盤震度を表-2.8 に示す。地盤震度については、以下のとおり設定した。指針(案)適用後の5 ダムについては、各ダムの設計時の資料に記載されている地盤震度をそのまま用いた。一方、指針(案)適用前の7 ダムについては、指針(案)に記載されている地域区分を適用して、各 ダムの地盤震度を設定した。

2.7.6 堤体震力係数

堤体震力係数は、現行の指針(案)と表-2.6 に示した新たに提案した震力係数の2種類によりすべり安 定解析を行った。検討対象の12ダムの現行の指針(案)と新たに提案した震力係数を図-2.45~図-2.56 に 示す。全体的に、本検討で提案した震力係数の方が小さい傾向があるが、一部、堤高が比較的低いダムの y/H=0.0の時の震力係数については提案した値の方が大きくなっている。

図-2.34 Bダムの標準断面図

図-2.35 Cダムの標準断面図

図-2.36 Dダムの標準断面図

図-2.37 Eダムの標準断面図

図-2.38 Fダムの標準断面図

図-2.39 Gダムの標準断面図

図-2.40 Hダムの標準断面図

図-2.44 Lダムの標準断面図

表-2.9 Aダム物性値

++ \v)	飽和重量	湿潤重量	粘着力	内部摩擦角	Ab法係数((MPa単位)
材料	$\gamma_{sat}(kN/m^3)$	$\gamma_t (kN/m^3)$	c(kPa)	φ(°)	А	b
コア	19.53	18.89	5.88	33.9	-	-
トランジション	23.58	21.87	-	-	1.122	0.738
ロック	21.47	18.47	-	-	0.906	0.689
フィルタ	22.60	20.80	-	-	0.874	0.870

表-2.10 Bダム物性値

++)(1	飽和重量	湿潤重量	粘着力	内部摩擦角	Ab法係数	(MPa単位)
	$\gamma_{sat}(kN/m^3)$	$\gamma_t(kN/m^3)$	c(kPa)	φ(°)	Α	b
ロック	23.14	21.48	-	-	0.787	0.801
河床礫a	21.57	18.63	1.57	38.0	-	-
河床礫b	21.57	18.63	1.57	40.0	-	-
フィルタ	23.44	22.06	0.00	33.0	-	-
コア	22.95	22.95	0.00	30.0	-	-

表-2.11 Cダム物性値

	的和臿量	湿潤舌量	粘着力	内部摩擦鱼	Ab法係数	(MPa単位)
材料			a(lrDa)		A	1.
	$\gamma_{sat}(kN/m)$	$\gamma_t(kN/m)$	C(KPa)	φ()	A	b
コア	22.50	22.50	12.50	36.5	-	-
フィルタ	22.90	21.80	-	-	1.086	0.817
トランジション	22.70	21.10	-	-	1.132	0.805
内部ロック	22.80	21.20	-	-	1.082	0.777
外部ロック	22.30	20.80	-	-	1.120	0.792

表-2.12 Dダム物性値

材料	飽和重量	湿潤重量	粘着力	内部摩擦角	Ab法係数	(MPa単位)
	$\gamma_{sat}(kN/m^3)$	$\gamma_t(kN/m^3)$	c(kPa)	φ(°)	А	b
コア	22.41	22.27	70.00	36.0	-	-
フィルタ	22.43	21.36	-	-	1.180	0.791
ロック	21.09	19.04	-	-	0.885	0.779

表-2.13 Eダム物性値

++ 101	飽和重量	湿潤重量	粘着力	内部摩擦角	Ab法係数	(MPa単位)
11 科	$\gamma_{sat}(kN/m^3)$	$\gamma_t (kN/m^3)$	c(kPa)	φ(°)	А	b
ロック	23.34	21.67	-	-	0.982	0.788
粗粒フィルタ	23.73	22.56	-	-	0.990	0.918
細粒フィルタ	23.14	22.65	-	-	0.990	0.918
コア	20.01	19.71	0.00	25.0	-	-

表-2.14 Fダム物性値

	飽和重量	湿潤重量	粘着力	内部摩擦角	Ab法係数	(MPa単位)
11 11 11 11 11 11 11 11 11 11 11 11 11	$\gamma_{sat}(kN/m^3)$	$\gamma_t(kN/m^3)$	c(kPa)	φ(°)	Α	b
コア	21.87	21.77	0.00	35.0	-	-
フィルタ	21.97	20.89	-	-	0.788	0.893
ロック(ありや山)	21.08	19.02	-	-	1.098	0.794
ロック(現場発生材)	20.89	19.32	-	-	1.098	0.794

	オオギト	飽和重量	湿潤重量	粘着力	内部摩擦角	Ab法係数	(MPa単位)
材料	$\gamma_{sat}(kN/m^3)$	$\gamma_t(kN/m^3)$	c(kPa)	φ(°)	А	b	
	コア	22.56	22.46	0.00	28.0	-	-
	フィルタ	23.24	21.67	-	-	0.896	0.831
	ロック	23.24	20.30	-	-	1.047	0.836

表-2.15 Gダム物性値

表-2.16 Ηダム物性値

	始五千日				1 1 VI. IT W.	
材料	胞和韭重	湿润韭重	粘看刀	内部摩擦角	Ab法係数	(MPa甲位)
	$\gamma_{sat}(kN/m^3)$	$\gamma_t(kN/m^3)$	c(kPa)	φ(°)	А	b
内部ロック	23.44	20.89	-	-	0.840	0.848
フィルタ	23.44	20.89	-	-	0.840	0.848
コア	21.08	20.30	0.00	30.00	-	-
外部ロック	23.44	20.89	-	-	0.840	0.848

表-2.17 【ダム物性値

1011 4-4	飽和重量	湿潤重量	粘着力	内部摩擦角	Ab法係数	(MPa単位)
11 科	$\gamma_{sat}(kN/m^3)$	$\gamma_t(kN/m^3)$	c(kPa)	φ(°)	Α	b
コア	20.79	20.10	0.00	33.00	-	-
細粒フィルタ	22.06	20.40	-	-	1.402	0.860
粗粒フィルタ	21.97	20.30	-	-	0.910	0.860
ロックⅡ-①	21.67	19.61	-	-	0.795	0.830
ロックⅡ(内部)	21.57	19.42	-	-	0.964	0.830
ロック I (外部)	21.67	19.42	-	-	0.927	0.790

表-2.18 Jダム物性値

++ 101	飽和重量	湿潤重量	粘着力	内部摩擦角	Ab法係数	(MPa単位)
材料	$\gamma_{sat}(kN/m^3)$	$\gamma_t(kN/m^3)$	c(kPa)	φ(°)	Α	b
コア	21.08	20.79	0.00	37.4	-	-
フィルタ	23.34	22.95	-	-	0.936	0.825
トランジション	21.77	20.99	-	-	0.636	0.925
ロック	22.16	20.40	-	-	0.936	0.825

表-2.19 Kダム物性値

	飽和重量	湿潤重量	粘着力	内部摩擦角	Ab法係数	(MPa単位)
11 科	$\gamma_{sat}(kN/m^3)$	$\gamma_t(kN/m^3)$	c(kPa)	φ(°)	А	b
コア	20.10	19.61	0.00	33.00	-	-
フィルタ	20.59	18.14	-	-	0.863	0.880
外部ロック(上流)	21.57	19.61	-	-	0.981	0.826
内部ロック(上流)	19.61	19.12	-	-	0.868	0.868
外部ロック(下流)	21.57	19.61	-	-	0.981	0.826
内部ロック(下流)	19.12	18.14	-	-	0.826	0.901
内部ロックⅡ(下流)	19.12	18.14	-	-	0.826	0.901

湿潤重量 飽和重量 粘着力 内部摩擦角 Ab法係数(MPa単位) 材料 $\gamma_{sat}(kN/m^3)$ $\gamma_t(kN/m^3)$ c(kPa) $\phi(^{\circ})$ А b 19.71 ロック外部 20.69 -0.977 0.827 -20.20 19.12 ロック内部 0.943 0.889 --21.08 20.40 フィルタ 0.902 --1.322 20.59 20.30 コア 0.00 36.0 --

表-2.20 Lダム物性値

図-2.45 A ダムの指針(案)と提案式の震力係数

図-2.46 Bダムの指針(案)と提案式の震力係数

図-2.48 Dダムの指針(案)と提案式の震力係数

図-2.49 Eダムの指針(案)と提案式の震力係数

k/k_F

図-2.51 Gダムの指針(案)と提案式の震力係数

図-2.52 Hダムの指針(案)と提案式の震力係数

図-2.54 Jダムの指針(案)と提案式の震力係数

図-2.55 Kダムの指針(案)と提案式の震力係数

 k/k_F

2.7.7 解析結果

指針(案)と、本検討で提案した震力係数を用いた修正震度法による上流側と下流側の最小安全率の値を 表-2.8 に示す。図-2.57 には 12 ダムの堤高と上流側の最小安全率の関係を示した。そのうち、図-2.58 には指針(案)適用前の7 ダムの結果を示し、図-2.59 には指針(案)適用後の5 ダムの堤高と上流側の最 小安全率を示した。図-2.60 には、12 ダムの上流側について、指針(案)による最小安全率と提案した震力 係数による最小安全率の比較を示した。図-2.61 には、上流側の最小安全率について、堤高と安全率の差を 示した。なお、図-2.61 における安全率の差とは、「(提案した震力係数による最小安全率) - (指針(案) による最小安全率)」である。

図-2.57 12 ダムの堤高と上流側の最小安全率

図-2.58 指針(案)適用前の7ダムの堤高と上流側の最小安全率

図-2.59 指針(案)適用後の5ダムの堤高と上流側の最小安全率

図-2.60 指針(案)による最小安全率と提案した震力係数による最小安全率の比較(上流側)

図-2.61 12 ダムの堤高と上流側の安全率の差

(注)安全率の差=(提案した震力係数による最小安全率)-(指針(案)による最小安全率)

同様に、図-2.62には10ダムの堤高と下流側の最小安全率を示した。なお、表-2.8の注意書きに記載したとおり、本検討においては堤体のみをモデル化し安定解析を実施しており、下流側に抑え盛土を施工しているために設計時の修正震度法において抑え盛土を通過する円弧で最小安全率を示している2ダムについては、比較から除外している。図-2.62の下流側の最小安全率の結果のうち、図-2.63には指針(案)適用前の7ダムの結果を示し、図-2.64には指針(案)適用後の3ダムの堤高と下流側の最小安全率を示した。図-2.65には、10ダムの下流側について、指針(案)による最小安全率と提案した震力係数による最小安全率の比較を示した。図-2.66には、下流側の最小安全率について、堤高と安全率の差を示した。図-2.66における安全率の差とは、図-2.61と同様に、「(提案した震力係数による最小安全率) - (指針(案)による最小安全率)」である。

図-2.62 10 ダムの下流側の最小安全率

図-2.63 指針(案)適用前の7ダムの下流側の最小安全率

図-2.64 指針(案)適用後の3ダムの下流側の最小安全率

図-2.65 指針(案)による最小安全率と提案した震力係数による最小安全率の比較(下流側)

図-2.66 10 ダムの堤高と下流側の安全率の差

(注)安全率の差=(提案した震力係数による最小安全率)-(指針(案)による最小安全率)

上流側のすべり安全率についての結果を見ると、本検討で安定解析を実施した全12 ダムにおいては、指針 (案)を適用しているかどうかに関わらず、提案した震力係数による安全率の方が指針(案)よりも大きく なっている。同様に、下流側のすべり安全率についての結果を見ると、本検討で安定解析を実施した全10 ダ ムにおいては、指針(案)を適用しているかどうかに関わらず、提案した震力係数による安全率の方が指針 (案)よりも大きくなっている。これは、図-2.45 から図-2.56 に示した12 ダムの堤体震力係数が、提案 した震力係数の方が指針(案)の震力係数よりも全体的に小さくなっているためと考えられる。

図-2.61の12ダムの堤高と上流側の安全率の差、および図-2.66の10ダムの堤高と下流側の安全率の 差を見ると、堤高が高いほど、安全率の差が大きくなる傾向がある。これは、図-2.45から図-2.56に示し た12ダムの堤体震力係数において、堤高が高くなるほど、提案した震力係数の方が指針(案)の震力係数よ りも小さくなる傾向があるためと考えられる。指針(案)は堤高100m程度以下のフィルダムを適用対象と しているが、その理由として、堤高が100m以上となると堤高の固有周期が長くなり岩盤における地震加速 度の周波数特性を考慮すると地震力を減ずることができる可能性がある、との記述がある。指針(案)の記 述のとおり、本検討で提案した新たな震力係数は、堤高100m以上も考慮しており、かつ堤高が高くなるほ ど震力係数は小さくなり、実際のフィルダムの応答を適切に表現しているものと考えられる。

指針(案)の策定以降、新たに建設するフィルダムについては、設計段階において現行の設計法である震 度法を用いて決定したダムの断面形状に対し、追加的検討として修正震度法を用いてすべり安定性を確認し ている。本検討で提案した新たな震力係数は、近年ダムサイトで計測された最大加速度 100gal 以上の 48 地 震動および 2011 年の東北地方太平洋沖地震においてダムサイトで観測された 7 地震動を対象としており、 指針(案)と比べて多くの地震動記録を用いて設定している。また、これまで指針(案)に示されている震 力係数では適用外であった堤高 100m 以上のダムにおいても広く適用可能となったことから、新たな震力係 数は設計法として、より合理的に、地震時のより実際に近い挙動を考慮することが可能となったと言える。

震力係数を用いて簡易的に最大すべり変形量を推定する一つの方法として、山口ら¹²⁾の検討が挙げられる。 山口ら¹²⁾の検討では、修正震度法を用いて算定されたすべり安全率を用いて、最大すべり変形量を簡易的に 求める方法を提案している。新たに提案する震力係数は、大規模地震時のフィルダムの耐震性能を照査する 場合において、簡易的にすべりに対する安全性の程度を判断する指標として用いる際や、山口らの方法によ り最大すべり変形量算定する際に有用なものであると考えられる。

2.8 まとめ

本検討では、近年の地震動記録(48 地震動)を用い、堤高 100m を超えるフィルダムを含めた震力係数の 見直しを行った。震力係数の見直しにあたっては、堤高だけでなく、上下流すべり面の違い、斜面勾配が震 力係数に与える影響、東北地方太平洋沖地震に代表される主要動の長い海溝型の巨大地震への適用性につい ても検討を行った。また、修正震度法にもとづく簡易耐震性能照査方法の検討として、既設 12 基のロックフ ィルダムを対象として、見直しを行った震力係数と指針(案)による震力係数を用いた修正震度法による安 定解析を行い、安全率の差異について検討を行った。

以下にその結果をまとめる。

- (1) 近年のダムサイトにおいて観測された 100gal 以上の地震動記録(48 地震動)を用い、修正震度法にお ける震力係数の見直しを行った。
- (2) 堤高 50m、75m、100m、125m、150m モデルの上流側すべりに対して実施した解析結果から、堤高 50m から 150m の範囲で、震力係数と堤高との間に高い相関があり、y/H=0.0、0.4、1.0 いずれにおいても 堤高が高くなるにつれ震力係数 k/k_F は直線的に低下する。
- (3) 上流側すべりと下流側すべりで実施した解析結果から、上流側すべり、下流側すべりの違いによる震力係数 k/k_Fへの影響はほとんどない。また、通常考えられるロックフィルダムの上下流面勾配の範囲において、斜面勾配の違いによる震力係数 k/k_Fへの影響もほとんどない。
- (4) (2) と(3) より、修正震度法における震力係数について、堤高のみの1次関数式として提案した。
- (5) 東北地方太平洋沖地震においてダムサイトで観測された7地震動を含めて、基本的な堤体断面を対象 として堤高の影響について震力係数 k/kFの検討を行ったが、既往の48 地震動による検討結果と同等 の値であった。したがって、(4) で提案した震力係数と堤高の関係式について、東北地方太平洋沖地 震の地震動を含めて提案可能な震力係数であると考える。
- (6)新たに提案する震力係数を用いて算定したすべり安全率は、現行の指針(案)によるすべり安全率と 同程度か若干大きくなった。また、両者のすべり安全率の差は、堤高が高いほど大きくなる傾向にあ り、指針(案)においては「堤高が 100m 以上となると堤高の固有周期が長くなり、岩盤における地 震加速度の周波数特性を考慮すると指針(案)で示した地震力を減ずることができる可能性がある」 と記述されていることから、新たに提案する震力係数は実際のフィルダムの応答を適切に表現してい るものと考えられる。
- (7)以上より、新たに提案する震力係数は、これまでの指針(案)に示された震力係数に比べてより合理 的であり、地震時のより実際に近い挙動を考慮することが可能となったと言える。また、大規模地震 時のフィルダムの耐震性能を照査する場合において、簡易的にすべりに対する安全性の程度を判断す る指標として用いる際や、山口ら¹²⁾の方法により最大すべり変形量算定する際に有用なものであると 考えられる。

3. ロック材のせん断強度定数を変数とする最大すべり変形量簡易推定法の検討

3.1 概要

近年の大規模地震の頻発および地震観測体制の整備・充実に伴い、ダムサイトにおいて 1995 年の兵庫県南 部地震において観測された地震動を上回る地震動も観測されており、また、大規模地震に対する土木構造物 の安全性の社会的関心の高まりから、国土交通省は大規模地震に対する耐震性能の照査方法を体系的に示し た「大規模地震に対するダム耐震性能照査指針(案)」¹⁾(以下、照査指針(案)という)を 2005 年 3 月に策 定し、直轄ダム等において試行している。

照査指針(案)に基づくフィルダムの耐震性能照査においては、すべり等による塑性変形に伴う堤体の沈 下が貯水の越流を生じるおそれがないほどに小さく、かつ地震後において浸透破壊を生じるおそれがないこ とを確認することを基本としている。すべり等による塑性変形についてはフィルダムの付加高さがコンクリ ートダムよりも 1m 高いことから、その沈下量が 1m 以内であれば十分な余裕を持って許容されるものとし ている。

地震時にフィルダムに生じる塑性変形量(すべり変形量)を算出する方法としては、①地震発生前の堤体 の応力状態を求めるための築堤・湛水過程を考慮した静的解析、②地震時の堤体応答を評価するための等価 線形化法による地震応答解析、③せん断強度の評価方法としてロック材とフィルタ材には Ab 法、コア材に は c φ 法を用いたニューマーク法や渡辺・馬場法に基づくすべりによる塑性変形解析を用いる方法が一般的 である ¹⁾。上記の方法の中で地震応答解析においては、堤体材料である粗粒材料や土質材料のひずみによる 非線形性を考慮するために繰返し三軸試験により動的変形特性を設定する必要がある。しかし、既設の古い ダムなどにおいては、繰返し三軸試験を実施していないダムも多くみられ、堤体材料の岩種、間隙比や内部 摩擦角などの物性値が類似するダムの動的変形特性を用いて、地震時の耐震性能を照査している場合がある。 そこで、動的変形特性を整理しその傾向を把握することや、動的変形特性がすべり変形量に及ぼす影響につ いて検討することはフィルダムの耐震性能照査にとって重要であると考えられる。また、フィルダムの地震 時のすべり変形量を精度良く推定するためには、室内試験や同定解析を実施するなど、多くの時間と労力が 必要であるため、今後多くのフィルダムの耐震性能照査を実施するにあたり、詳細な検討が必要なダムを効 率的に抽出するための簡易的な耐震性能の評価方法が求められると考えられる。

本章では、まず、照査指針(案)による耐震性能照査の試行を実施したロックフィルダムについて、検討 に用いられた物性値(初期せん断剛性、動的変形特性、せん断強度)の整理を行った。次に、整理した物性 値から代表値を設定し、その代表値を用いて、堤高 100m のモデルロックフィルダムによる塑性変形解析を 実施することで、ロック材のせん断強度および入力地震動の最大加速度がすべり変形量に及ぼす影響を検討 し、ロック材のせん断強度定数から最大すべり変形量を簡易に推定する方法について検討を行った。

3.2 検討対象ダム(ロックフィルダムの耐震性能照査の試行に用いられている物性値の整理)

国土交通省、独立行政法人水資源機構が建設あるいは管理するロックフィルダムを対象に、地震応答解析 に用いられる初期せん断剛性と動的変形特性、すべり変形解析に用いられるロック材のせん断強度を整理し た。表-3.1に整理の対象としたダムの諸元と整理項目を示す。

整理を行ったダムは、照査指針(案)による大規模地震の耐震性能照査の試行を実施したダム A~AB の 28 ダムである。検討当初はダム A~N の 14 ダムについて整理を行っていたが、その後にせん断強度のみダ ム O~AB の 14 ダムの追加整理を行った。また、後述する 3 章 5 節のせん断強度の整理において、設計時に 修正震度法による検討の実施の有無を確認したため、その検討実施の有無を表-3.1 に記載した。なお、初 期せん断剛性については初期せん断剛性と平均主応力の関係式が確認できたダムを対象とし、動的変形特性 については、Hardin-Drnevich モデルによる算出式または数値が確認できたダムを対象とし、せん断強度につ いては、Ab 法による強度定数が確認できたダムを対象とし、それ以外の方法を用いているものや、関係式、 算出式あるいは数値等の記載が確認できなかったダムについては、表-3.1 に「-」と記した。初期せん断 剛性と動的変形特性におけるロック材の物性値整理においては、内部ロックや外部ロック、上流側ロックや 下流側ロック、飽和や不飽和などの区別は行わなかった。

ダム名	堤高(m) ^{*)}	竣工年 **)	初期せん断 剛性	動的変形 特性	ロック材の せん断強度	設計時における 修正震度法の検討 実施の有無	
А	66.0	2010	-	0	0	実施	
В	91.7	1990	-	0	0	震度法のみの実施	
С	91.6	-	0	0	0	実施	
D	75.0	2011	0	0	0	実施	
Е	128.0	1968	0	0	0	震度法のみの実施	
F	153.0	1979	-	0	0	震度法のみの実施	
G	52.5	1981	0	0	0	震度法のみの実施	
Н	113.5	-	0	0	0	実施	
Ι	132.0	2013	0	0	0	実施	
J	90.0	1991	0	0	0	震度法のみの実施	
K	86.5	1975	0	-	0	震度法のみの実施	
L	41.2	2009	0	-	0	実施	
М	78.5	2006	0	-	0	実施	
N	140.0	1996	0	0	-	震度法のみの実施	

表-3.1 検討対象ダムの諸元と整理項目

*) 複合ダムの堤高についてはフィル部の堤高を、再開発を実施したダムは再開発後の堤高を記載した。

**) 建設中または計画中のダムは「-」とし、再開発を実施したダムは再開発後の竣工年を記載した。

ダム名	堤高(m) ^{*)}	竣工年 **)	初期せん断 剛性	動的変形 特性	ロック材の せん断強度	設計時における 修正震度法の検討 実施の有無
0	66.0	1981	_	_	0	震度法のみの実施
Р	112.0	1990	-	-	0	震度法のみの実施
Q	119.5	1993	_	_	0	震度法のみの実施
R	66.5	2004	_	_	0	実施
S	105.0	2006	_	_	0	実施
Т	89.9	2011	_	_	0	実施
U	84.3	1984	-	_	0	震度法のみの実施
V	40.0	1991	_	_	0	震度法のみの実施
W	45.5	1980	_	_	0	震度法のみの実施
Х	32.0	1982	-	-	0	震度法のみの実施
Y	35.0	1987	-	-	0	震度法のみの実施
Z	37.0	1993	-	-	0	震度法のみの実施
AA	86.5	-	-	_	0	実施
AB	139.0	-	-	_	0	実施

表-3.1 検討対象ダムの諸元と整理項目(続き)

*) 複合ダムの堤高についてはフィル部の堤高を、再開発を実施したダムは再開発後の堤高を記載した。 **) 建設中または計画中のダムは「-」とし、再開発を実施したダムは再開発後の竣工年を記載した。

3.3 初期せん断剛性の整理

3.3.1 初期せん断剛性の式

フィルダムにおける初期せん断剛性は、微小ひずみにおけるせん断剛性を示し、初期せん断剛性と平均主 応力との関係を式(3.1)で表す場合が一般的である。

$$G_0 = X \cdot (\sigma'_{\mathrm{m}})^n \tag{3.1}$$

ここに、 G_0 は初期せん断剛性、 σ'_m は平均主応力、 $X \ge n$ は繰返し三軸試験により算出されるパラメータである。

3.3.2 整理結果

検討対象ダムの中で初期せん断剛性と平均主応力との関係式が明確にされていたダムは11ダムであった。 各ダムの初期せん断剛性と平均主応力の関係を図-3.1に示す。

図-3.1 検討対象ダムの初期せん断剛性

フィルダムの耐震性能照査では、式(3.1)より算出される初期せん断剛性を初期値として固有値解析により 算出される卓越周期と、当該ダムの実測地震動から算出される卓越周期との整合を図る同定解析を実施する ことが多い。その結果、両者の卓越周期の差異が大きい場合には、初期せん断剛性の補正を行うことがある。 そのため、図-3.1 では、同定解析による補正の有無による区別分けを行うこととし、当該ダムの耐震性能 照査において、解析モデルにより算出される初期せん断剛性をそのまま用いたダムを「補正なし」、当該ダム の実測記録から算出される卓越周期との整合を図り、初期せん断剛性の補正を行ったダムを「補正あり」と した。

図-3.1 より、各ダムでロック材、フィルタ材、コア材の平均主応力と初期せん断剛性との関係にはばら つきが大きいことがわかる。これは岩種、強度あるいは粒度等が異なる影響であると考えられる。ロック材 の同定解析による補正の後の初期せん断剛性を比べると、ロック材の補正ありの初期せん断剛性は、補正な しの初期せん断剛性よりも大きくなる傾向にある。この傾向は、初期せん断剛性を求めるための室内繰返し 三軸試験の締固め度が設計値の密度や間隙比から設定されることが多いのに対し、実際の堤体の締固め度は 設計値以上であることが一因と考えられる。また、一般的にフィルタの粒度は締固まりやすく初期せん断剛 性が大きくなると考えられること、それに伴うフィルタゾーンのアーチ作用によりコア材に作用する応力が 小さくなることから、ロックフィルダムの初期せん断剛性は、フィルタ材>ロック材>コア材となると考え られている^{18,19}。しかし、今回の整理結果からは、明確な傾向は認められなかった。

3.3.3 解析に用いる代表値の設定

本検討の地震応答解析に用いるために設定した初期せん断剛性を図-3.1 の太実線に、平均主応力と初期 せん断剛性との関係式を表-3.2 に示す。整理結果からは、明瞭な傾向は認められなかったが、フィルタ材 の初期せん断剛性は、ロック材、コア材の初期せん断剛性よりも大きいと想定し、平均主応力が低い条件と 高い条件のどちらにおいてもせん断剛性がフィルタ材の整理結果において最大値程度となるように設定した。 また、ロック材およびコア材の初期せん断剛性は、フィルタゾーンのアーチ作用を考慮し、初期せん断剛性 がフィルタ材>ロック材>コア材となるように整理結果の初期せん断剛性の分布範囲内で動的応答が大きく なるよう安全側で大きめに設定した。

材料	初期せん断剛性 ^{*)} (MPa)
ロック	$G_0 = 1290 (\sigma'_{\rm m})^{046}$
フィルタ	$G_0=1410(\sigma'_{\rm m})^{0.5}$
コア	$G_0 = 1100 (\sigma'_{\rm m})^{0.6}$

表-3.2 解析用物性値として設定した初期せん断剛性

*) $\sigma'_{\rm m} = (\sigma_1 + \sigma_3)(1 + \nu)/3$

 σ'_{m} :平均主応力、 σ_{1} :最大主応力、 σ_{3} :最小主応力、 ν :ポアソン比。

3.4 動的変形特性の整理

3.4.1 動的変形特性の式

動的変形特性は、ひずみによる堤体材料の非線形性を考慮するため、一般的に繰返し三軸試験結果より Hardin-Drnevich モデル²⁰⁾や Ramberg-Osgood モデル²¹⁾を用いて設定される。本検討に用いた検討対象ダムの 動的変形特性は、すべて Hardin-Drnevich モデルにより設定されていた。Hardin-Drnevich モデルの $G/G_0 \sim \gamma on$ 関係式と $h/h_{max} \sim \gamma on$ 関係式をそれぞれ式(3.2)、式(3.3)に示す。

$$\frac{G}{G_0} = \frac{1}{(1+\gamma/\gamma_{\gamma})} \tag{3.2}$$

$$\frac{h}{h_{\max}} = \frac{\gamma/\gamma_{\gamma}}{(1+\gamma/\gamma_{\gamma})}$$
(3.3)

ここに、yはせん断ひずみ、 y_{γ} は基準ひずみである。式(3.2)において、Gはせん断剛性、 G_0 は初期せん断剛 性である。式(3.3)において、hは減衰定数、 h_{max} は最大減衰定数である。

3.4.2 整理結果

図-3.2 に整理した各ダムの動的変形特性を示す。各材料とも全体的にばらつきの大きい分布となっている。ロック材、フィルタ材をみると、基準ひずみ γ_{γ} は、概ね 2×10⁻⁴~2×10⁻³で分布しており、コア材は、概ね 3×10⁻⁴~1×10⁻³で分布している。また、最大減衰定数 h_{max} は、各材料とも、概ね 10~20%で分布している。

Okamoto²²⁾は、片持ち梁の理論に基づき、せん断剛性と固有周期の関係式を示している。佐藤ら²³⁾は、 Okamotoの関係式に基づき、ダムサイトで観測される地震記録を用いて、各ダムのせん断ひずみとせん断剛 性の関係を算定している。佐藤らによれば、Hardin-Drnevichモデルによる動的変形特性の定式化曲線の基準 ひずみを_{γγ}=4.0×10⁻⁴と推定している。本検討で整理した図-3.2のロック材およびフィルタ材のせん断ひず みに対するせん断剛性低下率と佐藤らの定式化曲線を比較すると、佐藤らの定式化曲線は平均的な位置にあ ることがわかる。佐藤らの定式化曲線は、地震記録による卓越周期を用いて、ダム堤体全体を均質な材料の 片持ち梁として地震時のせん断剛性低下率を算定するため、堤体材料別の動的変形特性を把握することはで きないが、コア材についても、ロック材に比べて多少のずれはあるものの、概ね近い値を示していると考え られる。

図-3.2 検討対象ダムの動的変形特性

3.4.3 解析に用いる代表値の設定

本検討の地震応答解析に用いる動的変形特性は、前述した佐藤ら²³⁾の実測挙動から算出した定式化曲線 (y_γ=4.0×10⁴)を踏まえて、ロック材およびフィルタ材の基準ひずみについては佐藤らの基準ひずみを代表 値として用いることとした。また、コア材のせん断剛性低下率 G/G₀の整理結果において、コア材の基準ひず みは佐藤らの基準ひずみよりやや小さい範囲に分布していることから、ロック材、フィルタ材の設定値より やや小さい基準ひずみを (y_γ=3.5×10⁴)を用いることとした。最大減衰定数については、平均的な値である 15%を代表値として用いた。

3.5 せん断強度の整理

3.5.1 せん断強度の式

本検討では、ロックフィルダムのすべりによる塑性変形を考えるうえで最も重要なロック材のせん断強度 を整理の対象とした。照査指針(案)におけるロック材およびフィルタ材のせん断強度の評価には、拘束圧 の依存性を考慮するために式(3.4)に示す Ab 法が用いられ、コア材のせん断強度の評価には、式(3.5)に示す c φ 法が用いられる。

$$\tau = A \cdot \sigma_{\rm n}^{\ b} \tag{3.4}$$

$$\tau = c + \sigma_n \tan \phi \tag{3.5}$$

ここに、 τ はせん断強度、 σ_n はせん断面に作用する垂直応力である。式(3.4)において、A、bは三軸圧縮試験により算出される強度定数である。式(3.5)において、cは粘着力、 ϕ は内部摩擦角である。

3.5.2 整理結果

対象としたダムは表-3.1に示す28ダムのうちNダムを除く27ダムである。これらのダムについて、せ ん断強度の応力単位を MPa とした場合の強度定数 A と b の関係を図-3.3 に示す。強度定数 b の値が増加す るほど A の値が減少する傾向にある。強度定数の分布範囲をみると、A の値が 0.7~1.2、b の値が 0.65~1.0 の範囲に分布している。現行のロックフィルダムでは、震度法による断面設計が行われており、その際のロ ック材の設計強度は、co 法により評価した上で粘着力成分を考慮せずに内部摩擦角のみを用いて設定して いる。一方、将来のより実際に近い地震荷重、強度を採用した設計法を視野に入れ、耐震性能照査法として 策定された設計指針(案)では、修正震度法とロック材のせん断強度について拘束圧依存性を考慮した評価 方法を組み合わせた方法を提案している。近年では、設計段階において震度法に加えて修正震度法による検 討を行うダムも多い。そこで、対象 27 ダムのうち、設計時において、指針(案)に基づいた修正震度法によ るすべり安定解析の検討の有無を区分した。その結果、設計時に修正震度法の検討を実施したダムは、図ー 3.4(a)の白丸(○)に示す分布に、修正震度法による検討を実施していないダムは×印に示す分布となった が、両者に大きな違いは見られなかった。分布図について、堤高別に区分した図を図-3.4(b)に、ロックゾ ーンの内部と外部に区分した図を図-3.4(c)に、ロックゾーンの上流側と下流側に区分した図を図-3.4(d) に示す。図-3.4(b)の堤高 80m 以上 120m 未満のダムを見ると、一部でAがおよそ 0.8のダムも見られるが、 A が 0.9~1.0 の範囲に b が 0.80~0.95 の範囲で多く分布していることがわかる。図-3.4(c) では、下流側ロ ックゾーンに採用された強度定数は、上流側ロックゾーンに採用された強度定数よりも小さい傾向にあるこ とがわかる。図-3.4(d)の内部と外部の区分については、今回の結果からは違いは見られなかった。

(c) ゾーンによる区分(上流側ロックまたは下流側ロック) (d) ゾーンによる区分(内部ロックまたは外部ロック) 図-3.4 各区分におけるロック材のせん断強度定数分布

3.5.3 解析に用いる代表値の設定

本検討に用いるロック材のせん断強度には、図-3.4から堤高 80m 以上 120m 未満のダムで一部 A が 0.8 のダムも見られること、後述するすべり円弧の設定は上流側のみを対象とすること、すべり変形量が大きく なると想定される強度の小さい範囲を含めることなどを考慮し、図-3.3の実線枠で示すせん断強度範囲 4 隅の点の組み合わせから CASE1(A=0.7、b=0.9)、CASE2(A=1.0、b=0.9)、CASE3(A=0.7、b=0.8)、CASE4(A=1.0、 b=0.8)の4ケースを設定した。さらに実線枠内に b=0.85 とする CASE5(A=0.8、b=0.85)、CASE6(A=0.9、b=0.85) を追加ケースとして設定した。解析の各ケースのロック材のせん断強度定数 A および b の組み合わせを表-3.3に示す。フィルタ材のせん断強度には、簡便のためロック材で用いるせん断強度と同じ物性値を用いた。 また、コア材のせん断強度には c φ 法を用いて、内部摩擦角にはダム A~N の設計値の平均値 31°を用い、 粘着力は 0 として設定した。

	CASE1	CASE2	CASE3	CASE4	CASE5	CASE6	
А	0.7	1.0	0.7	1.0	0.8	0.9	
b	0.9	0.9	0.8	0.8	0.85	0.85	

表-3.3 解析に用いる各ケースのロック材のせん断強度定数Aおよびb(MPa単位)

3.6 解析モデルおよび解析条件

前述した整理結果により設定した各物性値の代表値と、後述する解析モデルや各解析における条件を用い て照査指針(案)に基づきすべり変形量を算出する。なお、解析については、有限要素法汎用構造解析コー ドである ISCEF を使用した。

3.6.1 解析モデル

解析モデルは堤高 100m、天端幅 10m の中央土質遮水壁型ロックフィルダムとし、その断面図を図-3.5 に 示す。コアゾーンの上下流勾配は1:0.2 とし、フィルタゾーンは1:0.35 とした。ロックゾーンの上下流斜 面勾配は、既設ロックフィルダムにおいて震度法による安定解析により決定された斜面勾配の中からすべり 変形量に厳しい影響を与えると想定される比較的高角度の勾配^{3),16),17)}を設定した。なお、基礎地盤のモデル 化範囲は、深さ方向に堤高の約2倍、側方に堤敷長の約4倍とした。築堤解析では堤体と基礎地盤をモデル 化し、浸透流解析ではコア部のみをモデル化し、湛水解析、地震応答解析およびすべりによる塑性変形解析 では堤体をモデル化した。

3.6.2 築堤解析

築堤解析における構成式のモデルには、Duncan-Chang モデル²⁴⁾を用いた。Duncan-Chang モデルによる接線弾性係数 E_t および接線ポアソン比 v_t は式(3.6)および式(3.7)により表される。

解析に用いた Duncan-Chang パラメータおよび物性値を表-3.4 に示す。これらの物性値には、既設ロックフィルダムの三軸圧縮試験結果を基本に設定した¹⁵⁾。基礎地盤は線形材料と仮定した。境界条件については、基礎地盤の側方境界は鉛直をフリー、底面境界は固定とした。築堤解析の結果のうち主応力図と沈下量分布図をれぞれ図-3.6、図-3.7 に示す。

$$E_{t} = \mathbf{K} \cdot \mathbf{P}_{a} \cdot \left(\frac{\sigma_{3}}{\mathbf{P}_{a}}\right)^{n} \cdot \left\{1 - \frac{\mathbf{R}_{f} \cdot (1 - \sin \phi)(\sigma_{1} - \sigma_{3})}{2 \cdot c \cdot \cos \phi + 2 \cdot \sigma_{3} \cdot \sin \phi}\right\}^{2}$$
(3.6)

$$v_{t} = \left\{ \text{G-F-log}\left(\frac{\sigma_{3}}{P_{a}}\right) \right\} \cdot \left[1 - \frac{\text{D} \cdot (\sigma_{1} - \sigma_{3})}{\text{K} \cdot P_{a} \cdot \left(\frac{\sigma_{3}}{P_{a}}\right)^{n} \left\{ 1 - \frac{\text{R}_{f} \cdot (1 - \sin \phi)(\sigma_{1} - \sigma_{3})}{2 \cdot c \cdot \cos \phi + 2 \cdot \sigma_{3} \cdot \sin \phi} \right\} \right]^{-2}$$
(3.7)

ここに、式(3.6)と式(3.7)の記号は以下のとおりである。

 E_t :接線弾性係数、 v_t :接線ポアソン比、 P_a :大気圧、c:粘着力、 ϕ :内部摩擦角、 σ_1 :最大主応力、 σ_3 :最小主応力、

K、n、R_f:応力とひずみの関係から求まるパラメータ、

G、F、D:軸ひずみと側方ひずみの関係から求まるパラメータ。

	物理特性		静的変形特性						強度特性	
区分		度 飽和密度) ρ _{sat} (kg/m ³)	弹性係数 E,			ポアソン比 v _t				
	湿潤密度 ρ _ι (kg/m ³)		K	n	Rf	G	F	D	粘着力 c (kN/m ²)	内部摩擦角 φ(°)
コア	2,220	2,230	141	0 941	1 039	0 397	0 098	7 96	30 4	36 0
フィルタ	2,130	2,240	608	0 419	0 998	0 252	0 173	11 16	43 1	37 0
ロック	1,940	2,150	1,086	0 218	0 767	0 221	0 2	14 5	149 9	44 0
基礎	_	_	4,312 MN/m ²		0 25			—		

表-3.4 築堤解析に用いた物性値

(b) 最小主応力

* 圧縮側を(+)、引張側を(-)で表す。

図-3.6 主応力図(築堤終了時)

図-3.7 沈下量分布図(築堤終了時)

3.6.3 湛水解析

浸透流解析に用いたコア材料の物性値と不飽和浸透特性をそれぞれ表-3.5、図-3.8に示す。水位は堤高の92%(常時満水位相当)とした。浸透流解析によるコア部に発生する圧力水頭分布を図-3.9に示す。湛水解析では、コア部に下流側ロック部および下流側フィルタ部を追加したモデルにおいて、コア部の浸透流解析により得られた浸透力と浮力、および築堤終了時の弾性係数とポアソン比をもとに応力を計算した。上流側の浸潤線以下に位置するロック部およびフィルタ部の応力については、浮力による応力減少を考慮するため式(3.8)に示す係数を用いて築堤終了時の応力に乗じることで算定した。上流側の浸潤線以上のロック部およびフィルタ部の応力については、築堤終了時の応力のままとした。湛水解析による湛水後の堤体の主応力図を図-3.10に示す。

 $K = (\gamma_{sat} - \gamma_w) / \gamma_t$

(3.8)

ここに、Kは浮力による応力減少を考慮する係数、

γsatは築堤材料の飽和単位体積重量、

γtは築堤材料の湿潤単位体積重量、

γwは水の単位体積重量である。

表-3.5 浸透流解析に用いた物性値

図-3.8 コア材の飽和不飽和浸透特性

* 圧縮側を(+)、引張側を(-)で表す。

図-3.10 湛水後の主応力図

3.6.4 地震応答解析

堤体材料の初期せん断剛性や動的変形特性には、3章3節3項および3章4節3項において設定した代表 値を用いた。動的ポアソン比には沢田式²⁵⁾を用い、解析モデルには堤体のみモデル化しているため基礎地盤 でのエネルギー逸散を等価逸散減衰率として材料減衰率に一律15%上乗せして考慮した。境界条件は堤体底 面を固定とした。有効ひずみ計算のための係数を0.65とし、収束誤差は5%として解析を実施した。

入力地震動は、1995年の兵庫県南部地震において、箕面川ダム(中央土質遮水壁型ロックフィルダム)の 監査廊内で観測された波形を基本波形として用いた。観測された地震動時刻歴波形を図-3.11に示す。本検 討では、この基本波形の上下流方向の加速度時刻歴の最大値(絶対値)が3、5、7.5、10m/s²となるように振 幅調整した波形を入力地震動として用いた。鉛直方向の入力地震動については、上下流方向で振幅調整した 倍率と同倍率の値を用いて鉛直方向の地震動の振幅を引伸ばした。なお、入力地震動は、堤体底面から入力 した。

(a) 上下流方向

(b) 鉛直方向

* 上下流方向において上流から下流方向への加速度を(+)、鉛直方向において鉛直上向きの加速度を(+)で表す。

* 図中の引出し線の数値は加速度の絶対値の最大値を表す。

図-3.11 箕面川ダム観測波(1995年兵庫県南部地震)の加速度時刻歴

(a) 初期せん断剛性、ポアソン比

地震応答解析で設定した初期せん断剛性分布図を図-3.12に、動的ポアソン比分布図を図-3.13に示す。

図-3.13 動的ポアソン比分布図

(b) 上下流方向の最大応答加速度結果

上下流方向の入力地震動の最大加速度(以下、入力最大加速度という)が3、5、7.5、10m/s²の時に、地震 応答解析により得られる堤体の上下流方向の最大応答加速度分布図を図-3.14に示す。この最大応答加速度 は、各要素における全時刻歴での応答加速度を絶対値の最大値で示したものである。どの入力最大加速度の 場合も、上流側の高標高部において大きな加速度が発生している。また、入力最大加速度が3、5 m/s²では、 堤体底面から天端にかけて応答が大きくなるのに対し、7.5、10m/s²の場合では低標高から中標高付近まで小 さくなり、その後中標高から天端にかけて応答が大きくなる傾向にある。

図-3.15~図-3.18に、コア部の天端、中央、堤敷における応答加速度の時刻歴図を示す。

図-3.14 上下流方向の最大応答加速度分布図

*上下流方向において上流から下流方向への加速度を(+)、鉛直方向において鉛直上向きの加速度を(+)で表す。

図-3.15 上下流方向の応答加速度時刻歴(入力最大加速度 3m/s²)

*上下流方向において上流から下流方向への加速度を(+)、鉛直方向において鉛直上向きの加速度を(+)で表す。

図-3.16 上下流方向の応答加速度時刻歴(入力最大加速度 5m/s²)

* 上下流方向において上流から下流方向への加速度を(+)、鉛直方向において鉛直上向きの加速度を(+)で表す。

図-3.17 上下流方向の応答加速度時刻歴(入力最大加速度7.5m/s²)

* 上下流方向において上流から下流方向への加速度を(+)、鉛直方向において鉛直上向きの加速度を(+)で表す。

図-3.18 上下流方向の応答加速度時刻歴 (入力最大加速度 10m/s²)

(c) せん断剛性の低下率

せん断剛性の低下率を図-3.19 に示す。

3.6.5 ニューマーク法と渡辺・馬場法による塑性変形解析

すべり変形量の算出には、ニューマーク法²⁶⁾および渡辺・馬場法²⁷⁾による塑性変形解析を用いた。解析に 用いたせん断強度は、3章5節3項において設定した強度を用いた。想定するすべり円弧は、既往の検討¹²⁾ において上流側のすべり円弧に比べて下流側すべり円弧がすべり変形量が小さくなる場合が多いことから上 流側のすべり円弧を対象とした。すべり円弧の作成には、すべり変形量が最大となる円弧を半径と中心座標 を変えながら探索する方法²⁸⁾(任意円弧法)を用いた。すべり円弧の作成手順を以下に示す。

①格子範囲の設定および格子分割

図-3.20 に示すような格子範囲を設定し、その範囲で円弧の中心点となる格子分割を行った。本検討では、解析モデルの高さ方向に 15 点、上下流方向に 15 点の格子点を設定した。なお、格子の設定範囲については、従来よりすべり円弧の作成に用いられている無次元高さ y/H(ここに、H は堤高、y は天端から円弧の最深部までの深さとする)により、y/H=0.2、0.4、0.6、0.8、1.0の時に作成される円弧の中心点をすべて包含する範囲を設定した。

②格子点(円弧の中心点)の設定

格子点は円弧の中心点となる。すべり円弧はある格子点に対して③に示す方法により半径を設定し、 複数の円弧を作成する。その後に格子点を移動し、再び③に示す方法により半径の設定を行う。格子点の 移動は、格子範囲の最上部の最も上流側に位置する格子点(図-3.20における格子範囲の左上の格子点) を始点として、最も上流側に位置する最下部の格子点まで1点ずつ下方に移動する。最下部まで進んだ後 に、最上部の始点から下流側方向へ1つ隣の格子点を始点として、最下部へ向けて円弧を作成する。最終 的には、最下部の最も下流側の格子点(図-3.20の格子範囲の右下)まで移動する。

③すべり円弧(円弧の半径)の設定

円弧半径の設定を行う。ある格子点(円弧の中心点)に対して格子点を固定し、図-3.21に示す堤体 表面からの土被り厚が5mとなる基準円弧を設定し、堤敷を超えない半径となるまで円弧の半径を基準円 弧から刻み幅5mずつ増加させて複数のすべり円弧を設定する。なお、円弧の半径を刻み幅ずつ増加させ て作成した時の最大半径の円弧が、堤敷と接する最大半径と一致しない場合は、堤敷と接する最大半径を 持つ円弧も追加した。

上述した方法により円弧を作成した結果、設定する円弧の数は、上流側で2826個となった。

図-3.20 1つの格子点から設定した任意円弧による想定すべり円弧

図-3.21 任意円弧の作成条件

3.7 最大すべり変形量の簡易推定法の検討

3.7.1 ニューマーク法による解析結果

(a) 最大すべり変形量と円弧位置

_

すべりによる塑性変形解析結果から得られた最大すべり変形量と、その時の円弧の位置を表-3.6に示す。

		ケース名	円弧番号	最大すべり変形量 (m)	円弧の位置*)		
					Ι	J	R
入力最大加速度	3m/s ²	CASE1	1686	0.16	11	12	3
		CASE2	1455	0.03	10	12	2
		CASE3	1686	0.06	11	12	3
		CASE4	1441	0.00	10	11	3
		CASE5	1686	0.06	11	12	3
		CASE6	1441	0.03	10	11	3
	5m/s ²	CASE1	1947	0.70	12	13	2
		CASE2	1700	0.27	11	13	1
		CASE3	1686	0.37	11	12	3
		CASE4	1670	0.10	11	11	3
		CASE5	1686	0.35	11	12	3
		CASE6	1686	0.24	11	12	3
	7.5m/s ²	CASE1	1947	1.41	12	13	2
		CASE2	1700	0.78	11	13	1
		CASE3	1948	0.88	12	13	3
		CASE4	1948	0.35	12	13	3
		CASE5	1930	0.88	12	12	2
		CASE6	1930	0.69	12	12	2
	10m/s ²	CASE1	1963	1.64	12	14	1
		CASE2	1963	1.01	12	14	1
		CASE3	1930	1.10	12	12	2
		CASE4	1930	0.51	12	12	2
		CASE5	1930	1.10	12	12	2
		CASE6	1930	0.90	12	12	2

表-3.6 最大すべり変形量と円弧の位置(ニューマーク法)

*) 「I」、「J」「R」は、すべり円弧の中心点における格子位置および最小すべり円弧からの半径方向の位置を示す。 I:上下流方向の格子点位置を示す。最上流端の格子点を1とし、最下流端を15とする。

J:標高方向の格子点位置を示す。最上部の格子点を1とし、最下部を15とする。

R: すべり円弧の半径方向の位置を示す。最小すべり半径となる円弧を1とし、1増加するごとに半径が5m増加する。

解析ケースにおける最大すべり変形量を図-3.22に示す。

図-3.22 解析ケースの最大すべり変形量(ニューマーク法)

(b) すべり円弧の円弧形状

最大すべり変形量が発生したすべり円弧の形状を図-3.23に示す。

図-3.23 最大すべり変形量が発生したすべり円弧形状(ニューマーク法)

(c) 全円弧のすべり変形量

任意円弧により作成した全円弧のすべり変形量を図-3.24~図-3.31に示す。

図-3.24 全円弧のすべり変形量 (ニューマーク法、入力最大加速度 3m/s²、CASE1~CASE3)

図-3.25 全円弧のすべり変形量 (ニューマーク法、入力最大加速度 3m/s²、CASE4~CASE6)

図-3.26 全円弧のすべり変形量(ニューマーク法、入力最大加速度 5m/s²、CASE1~CASE3)

図-3.27 全円弧のすべり変形量(ニューマーク法、入力最大加速度 5m/s²、CASE4~CASE6)

図-3.28 全円弧のすべり変形量(ニューマーク法、入力最大加速度 7.5m/s²、CASE1~CASE3)

図-3.29 全円弧のすべり変形量(ニューマーク法、入力最大加速度 7.5m/s²、CASE4~CASE6)

図-3.30 全円弧のすべり変形量(ニューマーク法、入力最大加速度 10m/s²、CASE1~CASE3)

図-3.31 全円弧のすべり変形量(ニューマーク法、入力最大加速度 10m/s²、CASE4~CASE6)

(d) 全円弧の最小すべり安全率とすべり変形量

全円弧における最小すべり安全率とすべり変形量との関係を図-3.32~図-3.35に示す。

すべり円弧の土被り厚 Rd (m) ● Rd = 5 ■ Rd = 10 ○ Rd = 15 □ Rd > 15

図-3.32 全円弧の最小すべり安全率とすべり変形量(ニューマーク法、入力最大加速度 3m/s²)

すべり円弧の土被り厚 Rd(m) ● Rd = 5 ■ Rd = 10 ◎ Rd = 15 □ Rd > 15

図-3.33 全円弧の最小すべり安全率とすべり変形量(ニューマーク法、入力最大加速度 5m/s²)

すべり円弧の土被り厚 Rd (m) ● Rd = 5 ■ Rd = 10 ○ Rd = 15 □ Rd > 15

図-3.35 全円弧の最小すべり安全率とすべり変形量(ニューマーク法、入力最大加速度10m/s²)

3.7.2 渡辺・馬場法による解析結果

(a) 最大すべり変形量と円弧位置

_

渡辺・馬場法を用いたすべりによる塑性変形解析結果から得られた最大すべり変形量と、その時の円弧の 位置を表-3.7に示す。

		ケース名	円弧番号	最大すべり変形量 (m)	円弧の位置*)		
					Ι	J	R
入力最大加速度	3m/s ²	CASE1	1144	0.16	9	5	1
		CASE2	1144	0.03	9	5	1
		CASE3	1441	0.04	10	11	3
		CASE4	1172	0.00	9	7	3
		CASE5	1144	0.04	9	5	1
		CASE6	904	0.01	8	1	1
	5m/s ²	CASE1	1366	0.84	10	6	1
		CASE2	1352	0.44	10	5	1
		CASE3	1352	0.47	10	5	1
		CASE4	1352	0.10	10	5	1
		CASE5	1352	0.51	10	5	1
		CASE6	1352	0.35	10	5	1
	7.5m/s ²	CASE1	1636	1.48	11	9	1
		CASE2	1352	1.13	10	5	1
		CASE3	1352	1.16	10	5	1
		CASE4	1352	0.79	10	5	1
		CASE5	1352	1.19	10	5	1
		CASE6	1352	1.08	10	5	1
	10m/s ²	CASE1	1636	1.58	11	9	1
		CASE2	1636	1.26	11	9	1
		CASE3	1636	1.31	11	9	1
		CASE4	1352	0.94	10	5	1
		CASE5	1636	1.33	11	9	1
		CASE6	1636	1.20	11	9	1

表-3.7 最大すべり変形量と円弧の位置(渡辺・馬場法)

*) 「I」、「J」「R」は、すべり円弧の中心点における格子位置および最小すべり円弧からの半径方向の位置を示す。 I:上下流方向の格子点位置を示す。最上流端の格子点を1とし、最下流端を15とする。

J:標高方向の格子点位置を示す。最上部の格子点を1とし、最下部を15とする。

R: すべり円弧の半径方向の位置を示す。最小すべり半径となる円弧を1とし、1 増加するごとに半径が 5m 増加する。

解析ケースにおける最大すべり変形量を図-3.36に示す。

図-3.36 解析ケースの最大すべり変形量(渡辺・馬場法)

(b) すべり円弧の円弧形状

最大すべり変形量が発生したすべり円弧の形状を図-3.37に示す。

図-3.37 最大すべり変形量が発生したすべり円弧形状(渡辺・馬場法)

(c) 全円弧のすべり変形量

任意円弧により作成した全円弧のすべり変形量を図-3.38~図-3.45に示す。

図-3.38 全円弧のすべり変形量(渡辺・馬場法、入力最大加速度 3m/s²、CASE1~CASE3)

図-3.39 全円弧のすべり変形量(渡辺・馬場法、入力最大加速度 3m/s²、CASE4~CASE6)

図-3.40 全円弧のすべり変形量(渡辺・馬場法、入力最大加速度 5m/s²、CASE1~CASE3)

図-3.41 全円弧のすべり変形量(渡辺・馬場法、入力最大加速度 5m/s²、CASE4~CASE6)

図-3.42 全円弧のすべり変形量(渡辺・馬場法、入力最大加速度7.5m/s²、CASE1~CASE3)

図-3.43 全円弧のすべり変形量(渡辺・馬場法、入力最大加速度7.5m/s²、CASE4~CASE6)

図-3.44 全円弧のすべり変形量(渡辺・馬場法、入力最大加速度10m/s²、CASE1~CASE3)

図-3.45 全円弧のすべり変形量(渡辺・馬場法、入力最大加速度10m/s²、CASE4~CASE6)

(d) 全円弧の最小すべり安全率とすべり変形量

全円弧における最小すべり安全率とすべり変形量との関係を図-3.46~図-3.49に示す。

図-3.46 全円弧の最小すべり安全率とすべり変形量(渡辺・馬場法、入力最大加速度 3m/s²)

すべり円弧の土被り厚 Rd (m) ● Rd = 5 ■ Rd = 10 ○ Rd = 15 □ Rd > 15

図-3.47 全円弧の最小すべり安全率とすべり変形量(渡辺・馬場法、入力最大加速度 5m/s²)

すべり円弧の土被り厚 Rd(m) ● Rd = 5 ■ Rd = 10 ○ Rd = 15 □ Rd > 15

図-3.48 全円弧の最小すべり安全率とすべり変形量(渡辺・馬場法、入力最大加速度7.5m/s²)

すべり円弧の土被り厚 Rd (m) ● Rd = 5 ■ Rd = 10 ○ Rd = 15 □ Rd > 15

図-3.49 全円弧の最小すべり安全率とすべり変形量(渡辺・馬場法、入力最大加速度10m/s²)

3.7.3 結果の考察

(a) 最大すべり変形量

最大すべり変形量に着目した場合、図-3.22および図-3.36より、ロック材のせん断強度がどのケースにおいても、入力最大加速度の増加に伴い最大すべり変形量は増加していることがわかる。

設定したせん断強度の中で、すべり変形量が最大となるケースは CASE1 であり、ニューマーク法と渡辺・ 馬場法ともに、どの入力最大加速度においても同様に CASE1 が最大となった。本検討で最も変形が大きか ったのは、入力最大加速度 10m/s² における CASE1 であったが、両方法において差はほとんどなかった。ま た、本検討で入力最大加速度が最も小さい 3m/s² の場合では、大きくとも十数センチ程度のすべり変形量で あった。耐震性能照査での塑性変形解析方法には、一般的にニューマーク法が用いられる場合が多い。しか し、渡辺・馬場法の方がニューマーク法よりも最大すべり変形量が大きくなる場合があることや、後述する すべり円弧形状においてもニューマーク法と形状が異なるため、渡辺・馬場法を用いた検討を行うことは重 要であるといえる。

(b) すべり円弧形状

すべり円弧に着目した場合、図-3.23および図-3.37より入力最大加速度の増加に伴い、すべり円弧形状 は浅く、小さい円弧となる傾向がある。

ニューマーク法による結果をみると、CASE1(A=0.7、b=0.9)、CASE2(A=1.0、b=0.9)においてはbが1に近 いため直線的なせん断強度特性に近いことからロック部表層を通る円弧が多いが、CASE3(A=0.7、b=0.8)、 CASE4(A=1.0、b=0.8)ではコア部を通り、CASE1、CASE2の円弧よりも土被り厚が厚い円弧が多いことがわ かる。下流側におけるコア部のすべりを考える場合、コア部への浸透破壊を考慮する必要がある。本検討は、 上流側のみの結果であるが、下流側のすべりについても上流側のすべりと同様な現象が起きると想定される。 そのため、CASE2(A=1.0、b=0.9)とCASE3(A=0.7、b=0.8)の最大すべり変形量は同程度であるが、CASE3 にお いては最大すべり変形量が発生するすべり円弧がコア部を通っているため、浸透破壊に関する検討を行う場 合にCASE2 に比べて注意が必要となると考えられる。

渡辺・馬場法による結果では、どのケースにおいてもロックゾーンのみを通るような浅い円弧が支配的で あり、ニューマーク法によるすべり円弧と比べて入力加速度に対する円弧位置や円弧深さの変化が小さい。 これらは、ニューマーク法では応答加速度を,渡辺・馬場法では応力の釣合いを考慮していることによるも のと考えられる。ただし、比較的せん断強度が大きい CASE3 や CASE4 では、入力最大加速度が 3m/s²の場 合にコア部を横切るようなすべり円弧を持つ。円弧の中心位置を見ると、ニューマーク法では低標高で最大 すべりが発生しているのに対して、渡辺・馬場法では、中標高付近で発生している。

(c) 全円弧のすべり変形量

図-3.24~図-3.31 および図-3.38~図-3.45 に示す全円弧のすべり変形量図を見ると、ニューマーク 法では、土被り厚 5~15m 程度の円弧ですべり変形量が最大となり、入力最大加速度が大きくなるほど浅い 円弧(土被り厚 5~10m)となる。一方、渡辺・馬場法は、どのケースにおいても、ほとんどが土被り厚 5m の浅い円弧ですべり変形量が最大となる。

(d) 全円弧の最小すべり安全率とすべり変形量の関係

図-3.32~図-3.35 および図-3.46~図-3.49 に示す全円弧の最小すべり安全率とすべり変形量の関係 を見ると、ニューマーク法では最小すべり安全率が小さくなるほどすべり変形量は大きくなる傾向にある。 それに対して渡辺・馬場法では、入力最大加速度が 3m/s² や 5m/s²の場合は同様の傾向であるが、入力最大加 速度が 7.5m/s² や 10m/s² の時には、最小すべり安全率が小さくなった場合でもすべり変形量が大きくならな い円弧が増える傾向にあることがわかる。

3.7.4 入力最大加速度とせん断強度定数を変数とした最大すべり変形量の推定

CASE1~6で検討した入力最大加速度3、5、7.5、10m/s²とせん断強度定数A、bと最大すべり変形量の関係について、すべりによる塑性変形解析にニューマーク法を用いた結果を図-3.50に、渡辺・馬場法を用いた結果を図-3.51に示す。これにより、照査指針(案)に示す耐震性能の確保に必要な最大すべり変形量1m以下を確保できる入力最大加速度とロック材のせん断強度を簡易的に推定した。図-3.50、図-3.51を見ると、本検討で整理したロック材のせん断強度定数のAとbの範囲と解析条件では、せん断強度定数のAの値が小さいほど、また、bの値が大きいほど最大すべり変形量は大きくなることがわかる。

検討ケースで入力最大加速度が最も小さい 3m/s²の場合では最大でも十数 cm 程度のすべり変形量である。 照査指針(案)では、フィルダムの耐震性能として越流に対してすべりに伴う沈下量が 1m 以内であれば十 分な余裕をもって許容されると考えられている¹⁾。本検討の上流側において、ニューマーク法および渡辺・ 馬場法どちらにおいても、入力最大加速度が 10m/s²の場合で、CASE1、CASE2、CASE3 の最大すべり変形量 が 1m 以上となっており、CASE1 については入力最大加速度が 7.5m/s²の場合でも最大すべり変形量が 1m を 超えており、詳細な検討が必要と考えられる。それに対して、試算結果ではあるが本検討で設定した物性値 を用いた場合には、照査指針(案)に示す耐震性能の確保に必要な最大すべり変形量 1m について入力最大 加速度 5m/s²程度以下であれば確保できていると考えられる。ただし、本検討では、すべりによる変形量(ニ ューマーク法では円弧沿いの移動量、渡辺・馬場法では水平移動量)を算定しているため、本来の沈下量と は厳密には異なる。

本検討による図-3.50、図-3.51の解析結果は、堤高100m(上下流勾配は上流面1:2.4、下流面1:1.8) のモデルダムの結果である。今後、様々な堤高においても対応可能な指標とするためには、堤高と最大すべ り変形量との関係について検討し、その関係式を提案する必要がある。また、初期せん断剛性および動的変 形特性においても、本検討結果は代表値を定めた条件のものであり、その他に入力地震動の大きさや位相特 性などの物性値や入力条件の影響について検討を重ねる必要がある。その上で、図-3.50、図-3.51に示す これらの結果を活用すれば、室内試験結果から求められるロック材のせん断強度定数 A、b を用いて、地震 応答解析による検討を経ずに簡易的に最大すべり変形量を把握することが可能である。また、既往の大規模 地震による耐震性能照査の結果から見ても妥当なすべり量となっており、最大すべり変形量を簡易的に推定 する一つの方法として用いることができると考えられる。

- 104 -

図-3.50 ニューマーク法を用いた最大すべり変形量の簡易評価

図-3.51 渡辺・馬場法を用いた最大すべり変形量の簡易評価

3.8 まとめ

本検討では、照査指針(案)に基づき耐震性能照査を試行したロックフィルダムの物性値(初期せん断剛 性、動的変形特性、せん断強度)の整理を行った。さらに、整理した物性値から代表値を設定し、その代表 値を用いて、堤高 100m のモデルロックフィルダムのすべり変形解析を行い、簡易的に最大すべり変形量を 推定する方法を提案した。以下に検討結果をまとめる。

(1) 初期せん断剛性は、各ダムにおいて採用されている材料の岩種等が異なるため、ばらつきが大きい。

- (2)動的変形特性(Hardin-Drnevichモデル)において、せん断ひずみに対するせん断剛性低下率 G/G₀は、 佐藤ら²³⁾によって地震記録から定式化された曲線と概ね近い値となった。また、せん断ひずみに対す る減衰率 h については、最大減衰定数 h_{max} は概ね 10~20%で分布している。
- (3) ロック材のせん断強度定数は A の値が 0.7~1.2、b の値が 0.65~1.0 の範囲で分布しており、強度定数 b の値が増加するほど A の値が減少する傾向にある。
- (4)渡辺・馬場法を用いた最大すべり変形量は、耐震性能照査で一般的に多く用いられているニューマー ク法による最大すべり変形量よりも大きくなる場合があり、渡辺・馬場法を用いた検討も行うことは 重要である。
- (5)初期せん断剛性、動的変形特性、ロック材のせん断強度定数の整理結果より地震応答解析およびすべりによる塑性変形解析に必要な代表値を設定し、ロック材のせん断強度定数と入力最大加速度を変化させて最大すべり変形量を算出した。その結果をもとに、ロック材のせん断強度と入力最大加速度の関係から地震時の最大すべり変形量を簡易的に推定する方法を提案した。本検討で設定した物性値、および解析条件では、照査指針(案)に示されている耐震性能の確保に必要な最大すべり変形量1mを入力最大加速度5m/s²程度以下であれば確保できていると考えられる。本検討結果は、堤高100mのモデルダムについての結果である。様々な堤高においても対応可能な指標とするためには、堤高と最大すべり変形量との関係や用いた代表値について検討を重ねる必要がある。その上で、提案した方法を活用すれば、室内試験結果から求められるロック材のせん断強度定数A、bから、簡易的に地震時の最大すべり変形量を把握することが可能となる。

4. まとめ

本資料は、フィルダムの設計法の合理化・高度化として修正震度法に用いられる震力係数について、地震 記録の追加による震力係数の見直しと堤高 100m 以上にも適用可能な震力係数の拡張に関する検討および、 簡易的にロックフィルダムの耐震性能を照査する方法として照査指針(案)に基づき耐震性能照査を試行し たロックフィルダムの物性値(初期せん断剛性、動的変形特性、せん断強度)の整理を行い、堤高 100m の モデルロックフィルダムを対象にロック材のせん断強度定数より簡易的に最大すべり変形量を推定する方法 に関する検討を行ったものである。

以下に、各章の結論をまとめる。

2章 新たな震力係数に関する検討

- (1) 近年のダムサイトにおいて観測された 100gal 以上の地震動記録(48 地震動)を用い、修正震度法にお ける震力係数の見直しを行った。
- (2) 堤高 50m、75m、100m、125m、150m モデルの上流側すべりに対して実施した解析結果から、堤高 50m から 150m の範囲で、震力係数と堤高との間に高い相関があり、y/H=0.0、0.4、1.0 いずれにおいても 堤高が高くなるにつれ震力係数 k/k_F は直線的に低下する。
- (3) 上流側すべりと下流側すべりで実施した解析結果から、上流側すべり、下流側すべりの違いによる震力係数 k/k_Fへの影響はほとんどない。また、通常考えられるロックフィルダムの上下流面勾配の範囲において、斜面勾配の違いによる震力係数 k/k_Fへの影響もほとんどない。
- (4) (2) と(3) より、修正震度法における震力係数について、堤高のみの1次関数式として提案した。
- (5) 東北地方太平洋沖地震においてダムサイトで観測された7地震動を含めて、基本的な堤体断面を対象 として堤高の影響について震力係数 k/kFの検討を行ったが、既往の48 地震動による検討結果と同等 の値であった。したがって、(4) で提案した震力係数と堤高の関係式について、東北地方太平洋沖地 震の地震動を含めて提案可能な震力係数であると考える。
- (6)新たに提案する震力係数を用いて算定したすべり安全率は、現行の指針(案)によるすべり安全率と 同程度か若干大きくなった。また、両者のすべり安全率の差は、堤高が高いほど大きくなる傾向にあ り、指針(案)においては「堤高が 100m 以上となると堤高の固有周期が長くなり、岩盤における地 震加速度の周波数特性を考慮すると指針(案)で示した地震力を減ずることができる可能性がある」 と記述されていることから、新たに提案する震力係数は実際のフィルダムの応答を適切に表現してい るものと考えられる。
- (7)以上より、新たに提案する震力係数は、これまでの指針(案)に示された震力係数に比べてより合理 的であり、地震時のより実際に近い挙動を考慮することが可能となったと言える。また、大規模地震 時のフィルダムの耐震性能を照査する場合において、簡易的にすべりに対する安全性の程度を判断す る指標として用いる際や、山口ら¹²⁾の方法により最大すべり変形量算定する際に有用なものであると 考えられる。

3章 ロック材のせん断強度定数を変数とする最大すべり変形量簡易推定法の検討

- (1) 初期せん断剛性は、各ダムにおいて採用されている材料の岩種等が異なるため、ばらつきが大きい。
- (2) 動的変形特性 (Hardin-Drnevich モデル) において、せん断ひずみに対するせん断剛性低下率 *G*/*G*₀ は、 佐藤ら²³⁾によって地震記録から定式化された曲線と概ね近い値となった。また、せん断ひずみに対す る減衰率 *h* については、最大減衰定数 *h*_{max} は概ね 10~20%で分布している。
- (3) ロック材のせん断強度定数は A の値が 0.7~1.2、b の値が 0.65~1.0 の範囲で分布しており、強度定数 b の値が増加するほど A の値が減少する傾向にある。
- (4)渡辺・馬場法を用いた最大すべり変形量は、耐震性能照査で一般的に多く用いられているニューマー ク法による最大すべり変形量よりも大きくなる場合があり、渡辺・馬場法を用いた検討も行うことは 重要である。
- (5)初期せん断剛性、動的変形特性、ロック材のせん断強度定数の整理結果より地震応答解析およびすべりによる塑性変形解析に必要な代表値を設定し、ロック材のせん断強度定数と入力最大加速度を変化させて最大すべり変形量を算出した。その結果をもとに、ロック材のせん断強度と入力最大加速度の関係から地震時の最大すべり変形量を簡易的に推定する方法を提案した。本検討で設定した物性値、および解析条件では、照査指針(案)に示されている耐震性能の確保に必要な最大すべり変形量1mを入力最大加速度5m/s²程度以下であれば確保できていると考えられる。本検討結果は、堤高100mのモデルダムについての結果である。様々な堤高においても対応可能な指標とするためには、堤高と最大すべり変形量との関係や用いた代表値について検討を重ねる必要がある。その上で、提案した方法を活用すれば、室内試験結果から求められるロック材のせん断強度定数A、bから、簡易的に地震時の最大すべり変形量を把握することが可能となる。

参考文献

- 1) 国土交通省河川局:大規模地震に対するダム耐震性能照査指針(案)、2005.3
- 2) (財)国土技術研究センター編:改定 解説・河川管理施設等構造令、(社)日本河川協会、2000
- 建設省河川局監修:改訂新版 建設省河川砂防技術基準(案)同解説、設計編[I]、(社)日本河川 協会、1997
- 4) 建設省河川局開発課監修:フィルダムの耐震設計指針(案)、(財)国土開発技術研究センター、1991.6
- 5) (一社)日本大ダム会議 ダム地震記録データベース更新分科会:ダム地震記録データベース更新分 科会報告書、大ダム、No.231、p.13、2015
- 6) 建設省土木研究所:平成7年(1995年)兵庫県南部地震災害調査報告、建設省土木研究所所報、No.196、 pp.321-339、1996
- 7) 国土交通省国土技術政策総合研究所、独立行政法人土木研究所、独立行政法人建築研究所:平成 20 年 (2008 年) 岩手・宮城内陸地震被害調査報告、pp.9-137、2008
- 8) 国土交通省国土技術政策総合研究所、独立行政法人土木研究所:平成 23 年(2011 年)東北地方太平 洋沖地震土木施設災害調査速報、pp.342-366、2011
- 9) (財)ダム技術センター:ダム構造・設計等検討委員会 フィルダム設計合理化検討分科会 報告書、
 2001.3
- 10) 松本徳久、安田成夫、山邊建二:フィルダムに作用する地震力の評価、建設省土木研究所資料、第 2997 号、1991
- 11) 山口嘉一、冨田尚樹、水原道法:大規模地震時のロックフィルダムの最大すべり変形量を与える円弧の検討、ダム技術、No.229、pp.13-23、2005
- 12) 山口嘉一、冨田尚樹、水原道法:ロックフィルダムの地震時すべり変形量の影響分析と簡易推定方法、 独立行政法人土木研究所報告、No.212、pp.1-31、2009
- 13) 藤澤侃彦、永山 功、吉田 等、佐々木隆、岩下友也:地震時におけるダムの安全性に関する検討、 土木技術資料、Vol.39、No.3、pp.26-31、1997
- 14) 松本徳久、渡辺和夫、吉野内真二:ロック材料の調査・設計・施工に関する事例調査、建設省土木研 究所資料、第1839 号、1982
- 15) 松本徳久、安田成夫、大久保雅彦、境野典夫:七ヶ宿ダムの動的解析、建設省土木研究所資料、第2460 号、1987
- 16) (財) ダム技術センター:多目的ダムの建設 平成 17 年版、第4巻、設計 I 編、2005
- 17) 山口嘉一、佐藤弘行、澤田 尚:既設ロックフィルダムの設計地震係数と上下流面勾配の調査、第37 回地盤工学研究発表会発表講演集、pp.1281-1282、2002
- 18) 中村 昭、小嶋光博、藤澤侃彦、安田成夫、伊藤基博:フィルダムの挙動解析(その3)-土圧、間 隙水圧-、建設省土木研究所資料、第3422号、p.2、1996
- 19) 増田民夫: 玉原ダムの挙動について、大ダム、No.148、1994

- 20) Hardin, B. O. and Drnevich, V. P.: Shear modulus and damping in soils: design equations and curves, Journal of the Soil Mechanics and Foundations Division, ASCE, 98(SM7), pp.667-692, 1972
- 21) Ramberg, W. and Osgood, W. T.: Description of stress-strain curves by three parameters, TechNote 902, NACA
- 22) Okamoto, S.: Introduction to Earthquake Engineering, University of Tokyo Press, 1973
- 23) 佐藤信光、曽田英揮、太田垣晃一郎:実測地震記録による既設ダム堤体の動的特性および物性値の推定と適用、ダム技術、No.321、pp.40-47、2013
- Duncan, J. M. and Chang, C. Y.: Nonlinear Analysis of Stress and Strain in Soils, Journal of the Soil Mechanics and Foundations Division, ASCE, 96(SM5), pp.1629-1653, 1970
- 25) 沢田義博、高橋 忠、桜井彰雄、矢島 浩: ロックフィルダムの物性値分布特性および堤体の動的特 性-弾性波動に基づく考察-、電力中央研究所報告、研究報告 No.377008、pp.67-68、1977
- Newmark, N. M.: Effects of Earthquakes on Dams and Embankments, Geotechnique, Vol.15, No.2, pp.139-160, 1965
- 27) 渡辺啓行、馬場恭平、平田和太:フィルダムの動的解析に基づくすべり安定評価手法の一考察、電力 中央研究所報告、研究報告 No.381020、1981.12
- 28) 藤川 祥、佐藤弘行、山口嘉一:指定円弧と任意円弧が Newmark 法によるフィルダムの地震時すべり 変形量評価に及ぼす影響、ダム技術、No.342、pp.40-49、2015

付録

- 付録1 観測地震動データの整理方法
- 付録 2 震力係数の検討に用いた 48 地震動の加速度応答スペクトル
- 付録3 y/Hとk/k_Fの関係

付録1 観測地震動データの整理方法

1. 観測地震動データの整理

国土交通省国土技術政策総合研究所河川研究部から入 手可能である近年の観測地震動は全 4,273 データ存在す る。その中で最大加速度が 100gal を超える大規模地震動デ ータでダム上下流方向成分かつダム基礎岩盤付近のデー タと判断されるものは 66 地震動データ(うち水平動のみ 2 データ)を抽出した。

これらの 66 地震動データについて、以下の手順により の再選定を行った。

①土木研究所によりとりまとめられている「国土交通省 所管ダムの地震動計測装置(平成13年1月)」¹⁾により、地 震計設置位置の詳細を確認し、ダム基礎岩盤またはその直 近の観測地震動データのみを抽出する。

②同じ地震発生日時で、かつ地震計設置位置が非常に近 接しているデータ(波形も類似している)については1デ ータのみを採用する。

観測地震動データの整理手順を図-1 に示す。再選定の結 果、付録 1-1 に示す 48 地震動データ(うち水平動のみ1デ ータ)を選定した。

付録 1-1 ,	入力地震動データ	の選定結果
----------	----------	-------

N	水晶ケロロ	nt-tal	12.11	ム山田和田林之	十六十八	E	山山市内	
No.	免農平月日	時刻	タム名	使田奋設直固所	力回风分	取大加速度	地 展名	来却理田
No.1	1976.06.16	07:36:19.9	三保	漏水量觀測室	上下流	-125.57	山梨県東部	
No.2	1978.06.12	17:14:25.4	樽水	底設監查廊	上下流	178.43	宮城県沖地震	
No.3	1979.03.17	12:26:05.6	鶴田	上流岩盤	上下流	-220.40	鹿児島県北部	観測位置とダムに離隔距離がある。
No.4	1983.08.08	12:47:58.6	三保	漏水量観測室	上下流	-149.37	関東中部境界	
No.5	1986.06.27	<i>20:18:50.</i> 7	石淵	右岸地山	上下流	-180.30	岩手県南部	
No.6	1987.01.09	15:14:46.0	田瀬	監査廊	上下流	103.40	岩手県北部	
No.7	1987.12.17	11:08:16.8	長柄	堤体基礎	上下流	-262.00	千葉県東方沖地震	
No.8	1987.12.17	11:08:16.8	長柄	上流法面	上下流	-353.00	千葉県東方沖地震	観測位置が堤体法面表層?詳細不明。
No.9	1987.12.17	11:08:16.8	長柄	堤体内	上下流	-179.00	千葉県東方沖地震	観測位置が堤体中間部付近?詳細不明。
No.10	1987.12.17	11:08:16.8	長柄	下流法面	上下流	382.00	千葉県東方沖地震	観測位置が堤体法面表層?詳細不明。
No.11	1987.12.17	11:08:16.8	長柄	左岸地山	上下流	-281.00	千葉県東方沖地震	
No.12	1989.10.18	09:04:15.2	Anderson	下流地盤	上下流	238.84	Loma Prieta地震	海外地点である。
No.13	1989.10.27	07:41:17.9	菅沢	右岸地山	上下流	-101.36	島取県西部	
No.14	1993.07.12	22:17:11.7	美利河	監査廊	上下流	116.69	北海道南西沖地震	
No.15	1993.07.12	22:17:11.7	美利河	右岸基磷監查廊	上下流	113.66	北海道南西沖地震	No.14と同地震波であり、波形も類似。
No.16	1994.02.13	02:06:56.3	鶴田	上流右岸岩盤	上下流	171.58	鹿児島県北西部	観測位置とダムとの間に離隔距離がある。
No.17	1994 12 28	21.19.20.9	和田	右岸地山	上下流	108 75	三陸けるか沖伸電	MENDERCY - CONTRACTION OF DO
No.18	1994 12 28	21.10.20.0	下退	下海洪面	上下流	-102 20	三陸はるか神地震	観測位置が堪休法面中央部表展である
No.10	1005.01.17	05-46-51 0	推理	其磁细 鈔	上下流	102.20	丘庫県南部州雪	晚闲正臣》 发开公面十八种女信 (0) 3。
No 20	1995.01.17	05-46-51.8	一庫	<u>率爬住政</u> 下段虧本廠	上下流	-182.13	<u>兵库俱南部</u> 州雪	
No.20	1005 01 17	05.46.51.0	準置川	F校重直脚 底設影本廊	上下派	-124.00	天库东南即地震	
No.21	1006.02.06	00.40.01.0	<u> 美国川</u> 二周	底改重直脚	エア派	-140.06	大库宋用叩心质	
NO.22	1990.03.00	23:33:28.7	三体	浦小烈上主	エア派	-140.00	田米宗米印	
No.23	1997.03.16	14:51:39.1	/////	<u>新賀</u> 卿 北天中中	上下流	1/2./3	<i>变和乐礼果即</i>	坦体表明神白笔示相测作用之主义
No.24	1997.03.16	14:51:39.1	新登根	背面甲央	上下流	-205.43	愛知県北東部	堤体甲間部付近の観測位置である。
No.25	1997.03.26	17:31:47.9	鶴田	監査即	上下流	-154.94	鹿児島県北西部	
No.26	1997.03.26	17:31:47.9	鶴田	上流石岸岩盤	上卜流	375.50	鹿児島県北西部	観測位置とダムに離隔距離がある。
No.27	1997.03.26	18:05:00.9	鶴田	上流右岸岩盤	上下流	123.19	鹿児島県北西部	観測位置とダムに離隔距離がある。
No.28	1997.04.03	04:33:23.3	靏田	監査廊	上下流	-110.69	鹿児島県北西部	
No.29	1997.04.03	04:33:23.3	鶴田	上流右岸岩盤	上下流	-323.25	鹿児島県北西部	観測位置とダムに離隔距離がある。
No.30	1997.04.04	02:33:40.6	鶴田	上流右岸岩盤	上下流	100.19	鹿児島県北西部	観測位置とダムに離隔距離がある。
No.31	1997.05.13	14:38:27.5	鶴田	監査廊	上下流	-109.00	鹿児島県北西部地震	
No.32	1997.05.13	14:38:27.5	鶴田	上流右岸岩盤	上下流	-168.75	鹿児島県北西部地震	観測位置とダムに離隔距離がある。
No.33	1997.08.23	08:35:29.8	賀祥	底設監査廊	N方向	117.61	鳥取県西部	
No.34	1997.09.02	02:07:48.8	賀祥	底設監査廊	N方向	-113.37	鳥取県西部	
No.35	1997.09.04	05:15:43.2	賀祥	底設監査廊	N方向	344.02	鳥取県西部	
No.36	1997.09.04	05:15:43.2	賀祥	底設監査廊	E方向	-244.24	鳥取県西部	
No.37	2000.10.06	13:30:00	賀祥	底設監査廊	N方向	-528.49	鳥取県西部地震	
No.38	2000.10.06	13:30:00	賀祥	底設監査廊	E方向	-531.12	鳥取県西部地震	
No.39	2000.10.06	<i>13:30:00</i>	<i>菅沢</i>	下段監査廊	上下流	-157.60	鳥取県西部地震	
No.40	2000.10.06	13:30:00	菅沢	右岸地山	上下流	-295.85	鳥取県西部地震	No.41と同地震波であり、波形も類似。
No.41	2000.10.06	13:30:00	菅沢	右岸地山	上下流	-307.01	鳥取県西部地震	
No.42	2000.10.06	13:30:00	高瀬川	底部監査廊	上下流	-106.20	鳥取県西部地震	
No.43	2000.10.07	04:59:00	賀祥	底設監査廊	N方向	133.82	鳥取県西部	
No.44	2000.10.07	04:59:00	智祥	底設監査廊	E方向	-113.25	鳥取県西部	
No.45	2001.03.24	15:27:54.1	大渡	B1監査廊	上下流	-133.00	芸予地震	堤体天端付近の観測位置である。
No.46	2003 05 26	18.26.33.4	田瀬	ダム場体基盤	上下流	-232.09	宮城県沖	
No.47	2003.05.26	18:26:33 4	花山	右岸地山	上下流	237.20	宮城県沖	
No 48	2003.09.26	06:08:01.8	渔川	堤体内	上下流	158.91	十勝沖	堤体中間部付近の観測位置である
No 49	2004 10 23	17:56:0.3	下冬川	影香廊山山底如	上下流	215 11	新潟県中越ナ雪	ACT FIGHTING AT A MODULE IN CO. NO
No 50	2004 10 22	17:56:0.2	儲石川	監査廠底如	上下海	120.56	新潟県中越地震	
No.50	2004.10.23	17:56:0.3	協加加加加	<u>血且</u>	上下流	-161 55	新潟県中越地震	
No.51	2004.10.23	18:34:05.6	続石川	<u> 広 取 血 直 応 </u>	上下流	-231.20	新潟県由栽樹雪	
No.52	2004.10.23	19-34-05-0	起して	<u>血且</u> 即应即 <u></u> 広辺 監本 応	上下流	=101 79	新追追由訪協會	
No.53	2004.10.23	14.01.04.0	2007月 毎日本調査34	D制始出的	T L DIE	-191.73	が同所て感地展	
No.54	2004.10.24	14:21:34.9	利田平祠登他	D侧标石鉴	NEE CUM	751.01	利偽県中越地力 至2月日	
No.50	2004.10.24	14:21:34.9	利日平祠堂他	D例称石盤	NNW COD	-751.21	初倚乐 平 歴地力 至迫自由並且士	
No.56	2004.10.27	10:40:50.2	利山平調整池	D侧楸石盛	NEE OUT	-3/1.82	新潟県中越地力	
No.57	2004.10.27	10:40:50.2	利山本調整池	D 侧 楸 右 盤	NEE-SWW	-682.55	新偽県甲越地力	
No.58	2005.08.16	11:46:25.7	化女俗	延 体基礎	上下流	100.44	呂城県 神 御郡北自地震	
No.59	2007.03.25	09:41	八ケ川	本姫	上下流	166.78	能登半局地震 二 <u>一</u> 一一一一	10 March 10 / Dart as Add No. 11 mm as been
No.60	2007.04.15	12:19	滝川	水位計室	上下流	-134.28	三重県中部の地震	堤体天端付近の観測位置である。
No.61	2007.07.16	10:13	柿崎川	基礎	上下流	-143.34	新潟県中越沖地震	
No.62	2007.07.16	10:13	鯖石川	基礎	上下流	-129.46	新潟県中越沖地震	
No.63	2007.07.16	10:13	川内	基礎	上下流	291.50	新潟県中越沖地震	
No.64	2007.07.16	10:13	谷根	基礎	上下流	-157.25	新潟県中越沖地震	
No.65	2008.6.14	08:43	皆瀬	基礎	上下流	158.44	岩手·宮城内陸地震	
No.66	2008.6.14	08:43	石淵	基礎(推定)	上下流	-465.34	岩手·宮城内陸地震	

- 再選定による不採用データ

* 斜体は「フィルダム設計合理化検討分科会報告書(平成13年3月)」²⁾の検討に用いられている観測地震動

【付録1の参考文献】

- 1) 山口嘉一、岩下友也、松浦 旬:国土交通省所管ダムの地震動計測装置、国土交通省土木研究所資料、 No.3768、2001
- (財)ダム技術センター:ダム構造・設計等検討委員会 フィルダム設計合理化検討分科会 報告書、 2001.3

付録2 震力係数の検討に用いた48地震動の加速度応答スペクトル

※検討に用いた入力地震動は、観測波形における上下流方向の水平地震動の最大水平加速度を196gal(0.2G)となるように振幅調整し、鉛直地震動にも水平地震動と同じ比率(=196gal/元波形の最大水平加速度)を乗じて振幅調整した。

- 付録 2-1 加速度応答スペクトル図(100gal~300gal 未満)
- 付録 2-2 加速度応答スペクトル図(300gal 以上)
- 付録 2-3 加速度区分別の統計処理後加速度応答スペクトル図(平均値(μ))
- 付録 2-4 加速度区分別の統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+σ))
- 付録 2-5 加速度区分別の統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+2σ))
- 付録 2-6 地震タイプ別の統計処理後加速度応答スペクトル図(平均値(μ))(100gal~200gal未満)
- 付録 2-7 地震タイプ別の統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+σ))(100gal~200gal未満)
- 付録 2-8 地震タイプ別の統計処理後加速度応答スペクトル図(平均値(µ))(200gal~300gal未満)
- 付録 2-9 地震タイプ別の統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+σ))(200gal~300gal未満)
- 付録 2-10 内陸型地震における統計処理後加速度応答スペクトル図(平均値(μ))
- 付録 2-11 内陸型地震における統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+σ))
- 付録 2-12 海溝型地震における統計処理後加速度応答スペクトル図(平均値(μ))
- 付録 2-13 海溝型地震における統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+σ))

付録 2-1 加速度応答スペクトル図(100gal~300gal 未満)

付録 2-2 加速度応答スペクトル図(300gal 以上)

^{*)} 初期剛性から算定した各振動モードにおける固有周期。

(b) 鉛直地震動

付録 2-3 加速度区分別の統計処理後加速度応答スペクトル図(平均値(μ))

*) 初期剛性から算定した各振動モードにおける固有周期。

付録 2-4 加速度区分別の統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+σ))

*) 初期剛性から算定した各振動モードにおける固有周期。

付録 2-5 加速度区分別の統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+2σ))

*) 初期剛性から算定した各振動モードにおける固有周期。

付録 2-6 地震タイプ別の統計処理後加速度応答スペクトル図(平均値(μ)) (100gal~200gal 未満)

付録 2-7 地震タイプ別の統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+σ)) (100gal ~200gal 未満)

(b) 鉛直地震動

付録 2-8 地震タイプ別の統計処理後加速度応答スペクトル図(平均値(μ)) (200gal~300gal未満)

(b) 鉛直地震動

付録 2-9 地震タイプ別の統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+σ)) (200gal~300gal 未満)

(b) 鉛直地震動

付録 2-10 内陸型地震における統計処理後加速度応答スペクトル図(平均値(μ))

付録 2-11 内陸型地震における統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+σ))

(b) 鉛直地震動

付録 2-12 海溝型地震における統計処理後加速度応答スペクトル図(平均値(μ))

(b) 鉛直地震動

付録 2-13 海溝型地震における統計処理後加速度応答スペクトル図(平均値+標準偏差(μ+σ))

付録3 y/Hとk/k_Fの関係

- 付録 3-1 各区分の観測波最大水平加速度における y/H と k/k_Fの関係(平均値(μ))
- 付録 3-2 各区分の観測波最大水平加速度における y/H と k/k_Fの関係(平均+標準偏差(μ + σ))
- 付録 3-3 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 1~No. 7)
- 付録 3-4 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 11~No. 20)
- 付録 3-5 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 21~No. 31)
- 付録 3-6 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 33~No. 38)
- 付録 3-7 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 39~No. 46)
- 付録 3-8 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 47~No. 53)
- 付録 3-9 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 54~No. 59)
- 付録 3-10 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 61~No. 66)
- 付録 3-11 y/Hと k/k_Fの関係(全解析結果、ケース 3、上流面 1:2.4、下流面 1:1.8)
- 付録 3-12 y/H と k/k_Fの関係(全解析結果、ケース 3、上流面 1:3.0、下流面 1:2.2)

3

3

4

付録 3-1 各区分の観測波最大水平加速度における y/H と k/k_Fの関係(平均値(μ))

付録 3-2 各区分の観測波最大水平加速度における y/H と k/k_Fの関係(平均+標準偏差(μ+σ))

付録 3-3 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 1~No. 7) * No.の数字は付録 1-1 の「No.」と対応。

付録 3-4 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 11~No. 20) * No.の数字は付録 1-1 の「No.」と対応。

付録 3-5 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 21~No. 31) * No.の数字は付録 1-1 の「No.」と対応。

付録 3-6 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 33~No. 38) * No.の数字は付録 1-1 の「No.」と対応。

付録 3-7 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 39~No. 46) * No.の数字は付録 1-1 の「No.」と対応。

付録 3-8 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 47~No. 53) * No.の数字は付録 1-1 の「No.」と対応。

付録 3-9 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 54~No. 59) * No.の数字は付録 1-1 の「No.」と対応。

付録 3-10 上流側すべりと下流側すべりの震力係数の比較(堤高 100m モデル、No. 61~No. 66) * No.の数字は付録 1-1 の「No.」と対応。

(a) 上流側すべり

(b) 下流側すべり

付録 3-12 y/Hと k/k_Fの関係(全解析結果、ケース 3、上流面 1:3.0、下流面 1:2.2)

土木研究所資料 TECHNICAL NOTE of PWRI No.4325 March 2016

編集·発行 ©国立研究開発法人土木研究所

本資料の転載・複写の問い合わせは

国立研究開発法人土木研究所 企画部 業務課 〒305-8516 茨城県つくば市南原1-6 電話029-879-6754