ISSN 0386-5878 土木研究所資料 第4401号

土木研究所資料

コンクリート道路橋の性能規定及び部分係数 設計法に関する調査研究

令和2年5月

国立研究開発法人 土木研究所 構造物メンテナンス研究センター

Copyright © (2020) by P.W.R.I.

All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I.

この報告書は、国立研究開発法人土木研究所理事長の承認を得て刊行し たものである。したがって、本報告書の全部又は一部の転載、複製は、国 立研究開発法人土木研究所理事長の文書による承認を得ずしてこれを行っ てはならない。

土木研究所資料

第4401号, 2020年5月

コンクリート道路橋の性能評価及び部分係数設計法

に関する調査研究

- 構造物メンテナンス研究センター 上席研究員 石田 雅博
 - 研究員 野田 翼
 - 交流研究員 池田 唯順
 - ^元 主任研究員 大島 義信*
 - ^元研究員藤井雄介**
 - ^元交流研究員 林 克弘***
 - ^元 交流研究員 高瀬 弘****
 - *主任研究員在職期間(平成27年4月~令和2年3月)
 - **研究員在職期間(平成 27 年 7 月~平成 29 年 10 月)
 - ***交流研究員在職期間(平成 26 年 4 月~平成 29 年 3 月)
 - ****交流研究員在職期間(平成29年4月~平成31年3月)

要 旨

本研究では、コンクリート道路橋の上部構造に関して、性能評価や部分係数設計法の導入 に向け、材料強度の特性値やばらつき、部材耐力等のばらつき、及びその前提条件について、 従来の規定の背景や既往研究等に基づき調査や試算を行い、さらに、抵抗係数や制限値につ いて検討を行った。本資料は、それらの調査・分析結果をとりまとめたものである。

キーワード:コンクリート道路橋,部分係数設計法,制限値,抵抗係数,FOSM法

1章	はじ	めに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2章	使用	材料の調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.	1 =:	- クリート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	2.1.1	コンクリートの品質のばらつきの要因・・・・・・・・・・・・・・・・・・・・・・	2
	2.1.2	配合強度の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	2.1.3	コンクリートの圧縮強度のばらつき・・・・・・・・・・・・・・・・・・・・・・・	4
	2.1.4	コンクリートの引張強度のばらつき・・・・・・・・・・・・・・・・・・・・・・・・	7
	2.1.5	コンクリートのヤング係数のばらつき ・・・・・・・・・・・・・・・・・・・・・・	10
	2.1.6	コンクリートの乾燥収縮・クリープ係数のばらつき ・・・・・・・・・・	11
2.	2 鋼林	<i>†</i> · · · · · · · · · · · · · · · · · · ·	12
	2.2.1	鉄筋の降伏強度のばらつき・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
	2.2.2	前提とする PC 鋼材の引張強度のばらつき・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
	2.2.3	PC 鋼材のヤング係数·····	15
3章	応力	実制限値に対する調査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
3.	1 設言	+の前提条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	3.1.1	プレストレストコンクリート部材の設計に用いる定数の前提条件	18
	3.1.2	鉄筋コンクリート構造の応力算出時の前提条件・・・・・・・・・・・・・・	19
	3.1.3	プレストレストコンクリート構造の応力算出時の前提条件 ・・・・・・・・	21
3.	2 耐荷	苛性能の照査に対する応力度制限値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
	3.2.1	曲げモーメント又は軸方向力を受ける部材 ・・・・・・・・・・・・・・・・・・・・・	23
	3.2.2	せん断力及びねじりモーメントを受ける部材 ・・・・・・・・・・・・・・・	25
3.	3 耐久	、性能の照査に対する応力度制限値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
	3.3.1	内部鋼材の腐食・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
	3.3.2	コンクリート部材の疲労・・・・・	27
3.	4 架讀	没系に対する応力度制限値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
	3.4.1	材齢に応じた各強度の特性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
	3.4.2	応力度の制限値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33

目 次

4章 耐荷	生能に関する部材設計の照査式及び抵抗係数の調査 ・・・・・・・・・・	39
4.1 照3	室式及び特性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
4.1.1	降伏曲げモーメントの特性値・・・・・	39
4.1.2	コンクリートが負担できるせん断力の特性値 ・・・・・・・・・・・・・・・	39
4.1.3	ウェブコンクリートの圧壊に対するせん断耐力の特性値 ・・・・・	40
4.1.4	押抜きせん断力の特性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
4.1.5	ねじりモーメントによる補強鉄筋の応力度及び斜引張破壊に対する	
	ねじり耐力の特性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
4.1.6	コンクリートの支圧強度の特性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
4.1.7	相反応力部材に対する照査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	47
4.2 抵抗	亢係数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
4.2.1	部材設計に関する抵抗係数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
4.2.2	降伏曲げモーメント及び破壊抵抗曲げモーメントの評価式のばらつき ・・	55
5章 接合音	部の設計の照査式及び抵抗係数の調査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	60
5.1 照函	査式及び特性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	60
5.1.1	合成桁構造における桁と床版の接合部	60
5.1.2	ラーメン構造の端接合部・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62
5.1.3	アンカーボルトによる連結・・・・・・	64
5.1.4	プレキャストセグメントの接合部 ・・・・・	67
5.2 抵抗	亢係数	69
5.2.1	接合部の設計に関する抵抗係数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
6章 構造(の設計の検討及び構造細目・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	76
6.1 構造	きの設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	76
6.1.1	下フランジの腹圧力を考慮した設計・・・・・・・・・・・・・・・・・・・・・・・・	76
6.1.2	格子桁理論と版理論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	76
6.2 構造	き細目・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	82
6.2.1	鉄筋の継手・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	82
6.2.2	軸方向力又は曲げモーメントに対する棒部材・版部材の軸方向鉄筋の	
	最小・最大鉄筋量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	83
6.2.3	版部材の軸方向鉄筋量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88

7章 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
【付録】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	93
付録 1. コンクリート橋の構造諸元に関する資料・・・・・・・・・・・・・・・・・・・・・・	95
1.1 調査目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
1.2 データ概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
1.3 調査結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
1.3.1 大分類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
1.3.2 中分類・・・・・・	95
1.3.3 小分類・・・・・・	96
付録 2. FOSM 法による材料変動による耐力の試算 ・・・・・・・・・・・・・・・・・・・・・・・・	98
2.1 検討概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
2.2.1 検討内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
2.1.2 検討対象・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
2.2 許容応力度法に基づく断面決定	103
2.2.1 使用材料及び荷重条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	103
2.2.2 設計方法・・・・・・	103
2.2.3 設計結果・・・・・	105
2.3 FOSM 法による耐力試算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	156
2.3.1 FOSM 法 ·····	156
2.3.2 材料・施工による変動要因	158
2.3.3 耐力式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	159
2.3.4 試算結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	161
付録 3. 鉄筋拘束の影響の試算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	181
3.1 検討概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	181
3.2 検討結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	181
付録 4. 引張鉄筋の応力度制限値の試算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	183
4.1 検討概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	183
4.2 試算結果① · · · · · · · · · · · · · · · · · · ·	184
4.3 試算結果②	186

付録 5.	直交異方性版理論における横方向分配係数の表・・・・・・・・・・・・・・・・・	188
付録 6.	確率計算に関する留意事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	200
6.1	確率計算の基本・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	200
6.2	評価式のばらつきの考慮・・・・・	202

1章 はじめに

平成29年制定の道路橋示方書・同解説(以下,H29道示)では,信頼性の概念に基づく部分係数設計法を 採用するにあたり,材料強度のばらつきが再評価され,その結果に基づき一定水準の信頼性が得られるため の特性値や照査基準(部分係数や制限値)が設定されている。特性値は限界状態を説明でき,評価方法が明 確で安全側に算出できる値とされ,データの多寡や実務での取扱いのしやすさを考慮して決められている。 また,制限値は限界状態の評価や構造設計における様々な不確実性を部分係数として考慮して特性値に乗じ ることで,限界状態を超えないように安全余裕を確保した値とされている。

このように、部分係数設計法では様々な不確実性の要因を評価する必要があるが、構造設計における不確 実性の要因は多岐に渡り、その考慮の方法については統計的に考慮できるものもあれば、経験的に過去の実 績に基づいて考慮せざるを得ないものもある。そのため、対象とする部材や構造及びその設計の考え方ごと に特性値や照査基準を設定する必要がある。

本研究では、コンクリート道路橋の上部構造に関して、性能評価や部分係数設計法の導入に向け、材料強度の特性値やばらつき、部材耐力等のばらつき、及びその前提条件について、従来の規定の背景や既往研究等に基づき調査や試算を行い、さらに、抵抗係数や制限値について検討を行った。本書は、それらの調査・ 分析結果をとりまとめたものである。

本書の構成を表-1.1.1に示す。

	内容
1章 はじめに	研究の背景、及び性能評価や部分係数設計法の導入に向けた本研究の目的を示した。
2章 使用材料の調査	使用材料の特性について、既往文献や実績から再評価し、特性値やばらつ きを評価した結果を示した。
3章 応力度制限値に対する調査	耐荷性能や耐久性能,またその前提条件を評価するにあたり,特性値を評価するのではなく,制限値を応力度として直接定める必要があるものについて調査した結果を示した。
4章 耐荷性能に関する部材設計の 照査式及び抵抗係数の調査	部材設計における耐力照査式や特性値の背景を調査した結果や、公称ばらつきを設定して抵抗係数について調査した結果を示した。
5章 接合部の設計の照査式及び 抵抗係数の調査	接合部の設計における耐力照査式や特性値の背景を調査した結果や、公称 ばらつきを設定して抵抗係数について調査した結果を示した。
6章 構造の設計の検討及び 構造細目	構造の設計における特有の項目及び構造細目について調査した結果を示した。
7章 まとめ	本研究における調査結果及びそれにより得た知見についてのまとめを記載 した。

表-1.1.1 本書の構成

2章 使用材料の調査

2.1 コンクリート

2.1.1 コンクリートの品質のばらつきの要因

構造体コンクリートの品質は、主に次のような条件・要因によって変動する可能性が挙げられる。

- (a) 練り上げられたコンクリートの品質(構成材料のばらつきを含む)
- (b) 運搬
- (c) 打ち込み(材料分離, リフトの上の方か下の方か)
- (d) 養生(水分環境や温度の影響など)
- (e) 圧縮強度試験そのもののばらつき
- (f) コア採取の影響

(例えば,採取に伴う振動の影響やコアの整形の良否,骨材が円柱側面にあらわになっていることの影響など)

一方,構造体コンクリートの品質のばらつきを把握するのに、参考にすることができるデータとしては、 大きく分類すると表-2.1.1のようなものがある。

NO	種類	考慮される ばらつき	特 徵
(1)	現場で採取され、試験 室で水中養生された 供試体	主に製造, 運搬時の ばらつき	 ・比較的豊富にデータがある。 ・施工の影響の大部分が考慮されないので、実際の構造体コンクリートよりもばらつきが小さく、平均値もやや高めになるものと予想される。
(2)	現場で採取され,現場 環境で養生された供 試体	製造, 運搬時のばら つきに加え, 養生条 件の影響	 ・調査例はある。 ・養生時の気温などの影響は考慮されるが、施工の影響の全てではない。
(3)	単一の構造物から複 数採取した供試体	ほぼ全てのばらつ き	 ・調査例は限られる。 ・このデータは、コンクリートの製造や施工によって生じる避けられない誤差を反映しているものと考えられる。
(4)	複数の構造物の複数 の部位から採取した 供試体	ほぼ全てのばらつ き	 ・調査例はやや限られる。 ・必ずしもばらつきとは言えない要因も、ばらつきとして暗に含まれる。すなわち、季節に応じてコンクリートの配合を変更すること、工場の品質管理の良否によって割増し係数が異なることなどによる強度の平均値のシフトを、製造者が意図しない品質の変動と区別できない。

表-2.1.1 コンクリートの品質を把握するために用いることができるデータ

2.1.2 配合強度の設定

コンクリートの配合強度は、製造時におけるコンクリートの品質のばらつきを考慮して定められ、従来から道路橋示方書・同解説(以下,道示)には供試体のどの試験値も設計基準強度の85%以上,かつ,引き続き採取した供試体の試験値のどの3回の平均値も設計基準強度以上となるように規定されている。このように品質確認することで、製造時には28日強度として5%非超過確率をもって設計基準強度が得られることに

なる。このような制御を行うためには、目標強度として設計基準強度を割増した配合強度を設定する。

コンクリートの強度は、正規分布をなすと考えられている¹⁾ため、正規分布の性質を用いて、前述の条件 を満たす割増係数を算出できる。なお、試験値とは、供試体3体の試験結果の平均値である。

①「供試体のどの試験値も設計基準強度の0.85倍以上」とする場合の割増係数

試験値は標準偏差 σ , 平均値 f_{cr} の正規分布に従うことから, 試験値 f_i が設計基準強度 f_{ck} の 0.85 倍以上となる下側非超過確率が 0.13% (1/741) となる場合, $\frac{f_i - f_{cr}}{\sigma} \sim N(0,1)$ より, $\frac{0.85f_{ck} - f_{cr}}{\sigma} = -3.0$ となり, 式 (2.1.1)が得られる。

 $f_{cr} = 0.85 f_{ck} + 3\sigma$ (2.1.1)

変動係数は $v = \frac{\sigma}{f_{cr}}$ より、 $\sigma = v f_{cr}$ となるため、式 (2.1.1) は $f_{cr} = 0.85 f_{ck} + 3v f_{cr}$ となり、割増係数を α と すれば、 α は式 (2.1.2) で表わされる。

$$\alpha = \frac{f_{cr}}{f_{ck}} = \frac{0.85}{1-3\nu}$$
(2.1.2)

②「引き続き採取した供試体の試験値のどの3回の平均値も設計基準強度以上」とする場合の割増係数 試験値の平均値 \overline{f} は標準偏差 σ/\sqrt{n} ,平均値 f_{cr} の正規分布に従うことから、試験値のn個の平均値 \overline{f} が f_{ck} の 1.0倍以上となる下側非超過確率が 0.13% (1/741) となる場合、 $\frac{\overline{f}-f_{cr}}{\sigma/\sqrt{n}} \sim N(0,1)$ より、 $\frac{f_{ck}-f_{cr}}{\sigma/\sqrt{n}} = -3$ となり、 式 (2.1.3) が得られる。

 $f_{cr} = f_{ck} + 3\sqrt{n}\,\sigma = f_{ck} + 1.73\sigma$ (2.1.3)

変動係数 $v = \frac{\sigma}{f_{ex}}$ を用いて,式 (2.1.3)から割増係数 α を算出すると、 α は式 (2.1.4)で表わされる。

$$\alpha = \frac{f_{cr}}{f_{ck}} = \frac{1}{1 - 1.73\nu}$$
 (2.1.4)

②については、一度の測定(3個平均値で試験値1つ)で設計基準強度 f_{ck} と比較する場合には、試験値は 標準偏差 σ 、平均値 f_{cr} の正規分布に従い、試験値 f_i が f_{ck} 以上となる下側非超過確率が5%となる場合の割増 係数 α は $\frac{1}{1-1.64\nu}$ で表わされるため、5%非超過確率と同程度で安全側の割増係数を想定していることになる。

2.1.3 コンクリートの圧縮強度のばらつき

(1) 単一の構造物から採取したコンクリートコアの強度試験結果

1) 土木研究所での実験結果²⁾

①実験概要

- ・設計基準強度 18N/mm² (180kgf/cm²),スランプ 8cm (W/C=50%)または 18cm (W/C=55%),空気量
 4.5%のコンクリートを用いた供試体からコアを採取した。
- ・供試体は500×500×4000mmの柱状に製作した。
- ・供試体によってコンクリート打設時の打込み回数や間隔が異なる。
- ・採取したコアは12~16本/体である。

②実験結果の概要

- ・圧密等の影響で1回のリフトの上部では強度が小さく、下部では強度が大きい。
- ・スランプ8cmのコンクリートを使用した3体(コア42本)では、圧縮強度の平均値が18.7N/mm²、変動 係数が15.0%であった。
- ・スランプ 18cm のコンクリートを使用した 3 体 (コア 42 本) では、圧縮強度の平均値が 20. 6N/mm²、変 動係数が 15. 9%であった。

2) 高橋らの実験結果3)

①実験概要

- ・設計基準強度 21N/mm² (210kgf/cm²),スランプ 18cm,空気量 4%の建築用コンクリートを用いた供試体からコアを採取した。
- ・水セメント比53~59% (高さ4m), 壁 (高さ4m), 梁 (桁高70cm), 床スラブ (厚さ50cm)
- ・各部位からコアを10本以上採取した。

②実験結果の概要

- ・圧縮強度試験結果のばらつきが比較的大きいのは、夏季に打設した柱で、60 本採取したコアの平均が 26.0N/mm²、変動係数は13.7%である。
- ・柱供試体で試験結果のばらつきが大きくなるのは、圧密の影響等で、上部と下部のコンクリートの品質が異なるためと考えられる。なお、同じく夏季に打設した梁では、20本採取したコアの平均が22.3N/mm²、変動係数は7.4%と変動係数がやや小さくなっている。

3) 佐原らの実験結果 4)

①実験概要

- ・新設構造物(橋台,フーチング部)からコアを採取した。ただし、コンクリートの設計基準強度については、明らかにされていない。
- ・コアを6本または9本採取した。

②実験結果の概要

・A 橋台(試料数6)では、圧縮強度の平均値が30.8N/mm²、変動係数が10.9%であった。

・B橋台(試料数9)では、圧縮強度の平均値が35.3N/mm²、変動係数が7.5%であった。

・コンクリートの設計基準強度を24N/mm²と仮定すると、30.8N/mm²は1.28倍、35.3N/mm²は、1.47倍

4) 単一の構造物における強度のばらつき

これまで報告されている範囲では、同一のコンクリートを打設して製作した供試体(構造物大のもの) から採取したコアの強度のばらつき(変動係数)は、最大で15%程度と考えられる。

なお、試験結果を詳細に見ると、コンクリートの品質の変動は、一度に打ち込んだコンクリートの高さ と試料採取位置の影響を大きく受けることが明らかにされている。この影響は、コンクリートのワーカビ リティーや施工方法によっても変わってくると考えられるが、多数の試料を採取して品質の変動を検証し た事例は限られているので、検証することは困難である。

(2) 複数の構造物から採取したコンクリートコアの強度試験結果

1)建設省の調査結果⁵⁾

①調査概要

- ・建設省では、地域・竣工年代・外観上の変状の有無などに著しい偏りがないように選定した構造物(橋 梁下部構造、擁壁、カルバート、河川構造物)から、コアを採取した強度試験などを行った。
- ・コアは、各構造物から3本ずつ採取した。
- ・ここでは、古い構造物は、劣化の影響を受けている可能性があるため、調査時点から最大で14年前まで に竣工した構造物に着目してデータを整理した。
- ・ここでは、書類調査から設計基準強度が21 N/mm²と見られる構造物に着目してデータを整理した。 ②調査結果の概要
- ・条件を満たすコアのデータは19構造物の57試料とした。
- ・圧縮強度の平均は、28.0N/mm²で設計基準強度の1.33倍、変動係数は22.4%であった。

(3) 標準養生したレディーミクストコンクリートの強度のばらつき

1)建設省の調査結果6)

①調査概要

- ・建設省では、呼び強度21または24のコンクリートを打設していた現場でコンクリート試料を採取し、 28日の標準養生後、圧縮強度試験を行った。
- ・試料を採取する現場は、全国から、地域的な偏りが生じないように選定した。

2調査結果の概要

・呼び強度 21 のコンクリート(51 現場,各3 試料)の圧縮強度の平均は,27.3N/mm²で呼び強度の 1.30 倍であった。

- ・呼び強度 24 のコンクリート(46 現場,各 3 試料)の圧縮強度の平均は、29.6N/mm²で呼び強度の 1.23 倍であった。
- これらの結果は過去に行われた同種の調査の結果とも、概ね合致していると考えられる。

2) コンクリート橋小委員会(日本道路協会) での調査結果

①調査概要

- ・各社の品質管理記録を収集した(2007年, NEXCO 各社, PC 建協)。
- ・普通コンクリート186個に対するデータ(1データはテストピース3個の平均)である。
- 2調査結果
- ・標準養生した供試体の圧縮強度は、平均で設計基準強度の1.20~1.32倍、変動係数は7%前後であった (表-2.1.2,図-2.1.1参照)。圧縮強度の平均値は設計基準強度の1.3倍程度である理由としては、設 計基準強度よりも大きい呼び強度のコンクリートが用いられる場合もあること、材齢28日以降も強度の 増進があることから考えられる。

・調査した範囲では、設計基準強度の大小による品質管理状況の違いは明確ではない。

設計基準強度 (N/mm ²)	強度比 平均	標準偏差	変動係数	供試体数
24	1.32	0.10	6.60%	45
30	1.25	0.10	6.70%	73
36	1.25	0.10	6.40%	32
40	1.26	0.10	5.50%	25
50	1.18	0.04	3.00%	9
*60	1.20	0.10	8.33%	4

表-2.1.2 標準養生したコンクリートの圧縮強度試験結果

*60は早強セメント使用のため、28日強度は参考値としている。

図-2.1.1 コンクリート圧縮強度における強度比の頻度分布

(4) 標準的なコンクリート圧縮強度のばらつき

圧縮強度の平均値の標準値は、上記の統計量を参考にすれば、以下の値とするのが妥当と考えられる。

○圧縮強度の平均値:設計基準強度の1.26倍

○圧縮強度の変動係数:15%

2.1.4 コンクリートの引張強度のばらつき

コンクリート引張強度の特性値は、土木研究所資料第4373号「コンクリートはりのせん断耐荷力に関する研究,平成30年5月」の付録において整理されており、以下に示す通りである。

平成 24 年制定の道路橋示方書・同解説IV下部構造編(以下,H24 道示IV編)及びコンクリート標準示方書 で適用されているコンクリートの引張強度 σ_{ct} (N/mm²)の推定式は、コンクリートの圧縮強度 σ_{c} (N/mm²) を用いて、式(2.1.5)により表される。

$$\sigma_{ct} = 0.23\sigma_c^{\frac{2}{3}} \qquad (2.1.5)$$

ここでは、コンクリートの引張強度式の確からしさに関して、既往の実験結果と対比することで評価した。 評価に用いた実験データは参考文献7)~11)の n=50 体(弱材齢の供試体を含む)である。なお、引張強度は 割裂引張実験の値と同等であるため、割裂引張試験値と圧縮強度試験値を用いて評価している。

圧縮強度の 2/3 乗と実験結果の比較を図-2.1.2 に示す。実験値を圧縮強度の 2/3 乗で除した値は、バイアス 0.283、標準偏差 0.026、変動係数 0.090 となった。この場合の 2.3%フラクタイル値は、0.283(1 - 0.09 × 2) = 0.232 となることから、圧縮強度の特性値の 2/3 乗に 0.23 を乗じた引張強度の特性値は、引張強度の平均値に対して 2.3%フラクタイル値を与えるものであることがわかる。

図-2.1.2 コンクリートの引張強度式のばらつき

表-2.1.3 コンクリートの圧縮強度と割裂引張強度

<u>コンクリートの圧縮強度と割裂引張強度の関係</u>

	次则至日	/++ =+ /+		実測 (N/mm²)		推定式	(A) < (B)	
	貝科留方	(共武)本	が面印(ロ)	圧縮強度	割裂引張強度 (A)	$\sigma ck^2/3$ (B)	(A) > (D)	
1	1	封緘	4	23.44	2. 25	8.19	0. 27	
2	1	封緘	5	22.06	2. 43	7.87	0. 31	
3	1	封緘	7	27.56	2. 71	9.12	0.30	
4	1	封緘	14	29.32	3. 03	9.51	0. 32	
5	1	封緘	14	31.77	3.04	10.03	0.30	
6	1	封緘	28	36.28	3. 27	10.96	0.30	
7	1	封緘	29	35.79	3. 57	10.86	0.33	
8	1	気中	4	20.01	1.99	7.37	0. 27	
9	1	気中	4	21.18	2.04	7.66	0. 27	
10	1	気中	5	22.06	2. 15	7.87	0. 27	
11	1	気中	7	23.73	2. 42	8.26	0. 29	
12	1	気中	7	24. 42	2. 20	8. 42	0. 26	
13	1	気中	14	29.32	2.65	9.51	0. 28	
14	1	気中	14	28.44	2.63	9.32	0. 28	
15	1	気中	28	30.01	2.90	9.66	0.30	
16	1	気中	28	27.46	2.94	9.10	0. 32	
17	1	気中	28	27.46	2. 55	9.10	0. 28	
18	1	高温	4	23.34	2. 47	8.17	0.30	
19	1	高温	4	24. 42	2.36	8. 42	0. 28	
20	1	高温	5	25.30	2. 44	8.62	0. 28	
21	1	高温	7	26.28	2. 58	8.84	0. 29	
22	1	高温	7	26.77	2.65	8.95	0.30	
23	1	高温	14	31.48	2. 61	9.97	0. 26	
24	1	高温	14	28.44	2. 77	9.32	0.30	
25	1	高温	28	34.81	2. 91	10.66	0. 27	
26	1	高温	28	31.38	3. 24	9.95	0.33	
27	1	高温	28	33. 54	3. 11	10.40	0.30	
28	2	A-1		24.81	2. 29	8.51	0. 27	
29	2	A-2		27.26	2. 27	9.06	0. 25	
30	2	A-3-1		20.69	1.87	7.54	0. 25	
31	2	A-3-2		20. 59	1.87	7.51	0. 25	
32	2	C-1		20. 20	2. 03	7.42	0. 27	
33	2	C-2-1		20.89	1.92	7.59	0. 25	
34	2	C-2-2		21.08	1.95	7.63	0. 26	
35	3	1	28	58.25	4. 65	15.03	0. 31	
36	4	1	29	50.01	3. 57	13.57	0.26	
37	4	2	34	55.11	3.99	14.48	0. 28	
38	4	3	36	55.51	3. 72	14. 55	0.26	
39	4	22	62	49.72	3. 04	13.52	0. 22	
40	4	23	62	40.60	2. 45	11.81	0. 21	
41	5	普通砕石	28	22.65	2. 44	8.01	0.30	
42	5	普通砕石	28	27.56	2. 79	9.12	0. 31	
43	5	普通砕石	28	29.03	2. 89	9.45	0. 31	
44	(5)	普通砕石	28	30.50	2. 99	9.76	0.31	
45	(5)	普通砕石	28	35.99	2. 67	10.90	0. 24	
46	5	普通砕石	28	35.79	3. 14	10.86	0. 29	
47	5	普通砕石	28	35.01	3. 23	10.70	0.30	
48	(5)	普通砕石	28	41.48	3.57	11.98	0.30	
49	(5)	普通砕石	28	42.46	3. 36	12.17	0. 28	
50	5	普通砕石	28	43.74	3. 62	12.41	0. 29	

2.1.5 コンクリートのヤング係数のばらつき

前項2.1.3(3)2)で収集した試験結果のヤング係数の実測と、平成24年制定道路橋示方書・同解説 I 共通編(以下,H24道示 I 編) に示される設計基準強度ごとのヤング係数を比較する(図-2.1.3及び図-2.1.4参照)。実測データ数は241個である。

図-2.1.3 ヤング係数の実測結果とH24 道示 I 編のヤング係数

図-2.1.4 ヤング係数の実測値と推定値の比の頻度分布

圧縮強度*σ_{ck}とヤング係数の実測値E_{cexp}の関係を対数関数で回帰すると、以下の回帰式が得られる。回帰 式から算出されるヤング係数は、H24 道示 I 編で示されているコンクリート部材の設計計算に用いるヤング 係数と大きく変わらない。*

 $E_{cexp} = 1.0487 \times \ln(\sigma_{ck}) - 0.8426 \quad (2.1.6)$

推定値と実測値との比を取った頻度では、平均が0.99、変動係数が11.12%となる。これより、ヤング係数の標準値としては、以下の値とするのが妥当と考えられる。

○<u>ヤング係数の平均値:H24 道示 I 編に示される値</u>

○ヤング係数の変動係数:10%

2.1.6 コンクリートの乾燥収縮・クリープ係数のばらつき

乾燥収縮およびクリープ係数については、現状ではばらつきを議論できるだけのデータが揃ってないのが 現状である。そのため、設計計算上は、乾燥収縮およびクリープ係数の平均値の標準値は、H24 道示 I 編に 示される値とするのが妥当である。また、乾燥収縮における変動係数は過去のデータ¹²から17%と定め(以 下参照)、クリープについては乾燥収縮と同程度と考えるのがよいと考えられる。

図-2.1.5 乾燥収縮ひずみのばらつき¹²⁾

〔実験結果に基づきばらつきを17%とする根拠〕

- ・乾燥収縮予測値の最終結果は50%以内
- ・試験体数は310
- ・平均値m,分散σ²の正規確率分布を仮定し、図−2.1.5より任意の乾燥収縮ひずみXが50%を超える確率
 を1/741とすれば、

 $\frac{x \pm m}{r} = 3$ (X = 0.5m, or 1.5m) となり, $\sigma = 0.166m$ となる。

すなわち、変動係数を16.6%とみなすことができる。これより、乾燥収縮の変動係数は17%と想定する。よって、乾燥収縮ひずみ及びクリープひずみの標準値は次の通りとするのがよいと考えられる。

○乾燥収縮ひずみ・クリープひずみの平均値:H24 道示 I 編に示される値

○乾燥収縮ひずみ・クリープひずみの変動係数:17%

2.2 鋼材

2.2.1 鉄筋の降伏強度のばらつき

電炉鉄筋棒鋼品質調査報告書¹³によると鉄筋(電炉鋼)の降伏強度のばらつきは,表-2.2.1の通りである。 また,SD345及びSD390についての降伏強度,引張強度の最大値,最小値,平均値の頻度分布を図-2.2.1お よび図-2.2.2に示す。

種類	径	平均值(MPa)	標準偏差(MPa)	変動係数
SD295A	D13	363.7 (1.23)	13.8	3.8%
	D19	397.2 (1.15)	11.2	2.8%
SD345	D25	394.9 (1.14)	7.9	2.0%
	D51	395.7 (1.15)	8.7	2.2%
50200	D29	449.8 (1.15)	13.6	3.0%
20290	D38	444.4 (1.14)	12.0	2.7%

表-2.2.1 鉄筋 (電炉鋼)の降伏強度のばらつき (2004年)

(平均値の欄の括弧付き数字は、規格値に対する比)

土木学会の調査結果¹⁴⁾(当時の複数の調査事例に基づく)によると、SD345(当時はSD35)の引張降伏強度の規格値に対する比は1.13程度であり、変動係数は4~5%程度である。また、高速道路調査会の調査¹⁵⁾では、1972~73年ごろの試験結果では、上記よりもやや小さい場合もあることが示されている。

上記の結果を総合的に判断すると,設計計算上は,鉄筋の降伏強度の標準値は次の通りとするのがよいと 考えられる。

○降伏強度の平均値:規格の最低値の1.14倍

○降伏強度の変動係数:4%

図-2.2.1 SD345 (D19, D25, D51)の降伏強度,引張強度のばらつき

図-2.2.2 SD390 (D29, D38) の降伏強度, 引張強度のばらつき

2.2.2 前提とする PC 鋼材の引張強度のばらつき

近年の鋼材の品質に関する調査結果は、いずれも製造者による報告しかないのが現状である。PC 鋼材の製造者が(社) プレストレストコンクリート建設業協会に提出した報告書をもとに2007年の試験結果を整理すると表-2.2.2 の通りである。

纪时七年新来石		引張強度(kN)		0.2%永久伸びに対する荷重(kN)		
亚叫竹勺个里头只	規格値	平均值標準偏差		規格値	平均值	標準偏差
CWDD7D 19 7mm	183	190.7	2.0	156	178.0	5.2
SWPR/D 12. /mm		(1.04)	(1.1%)		(1.14)	(2.9%)
SWDD7DI 15 9mm	261	274.3	2.2	222	245.7	3.9
SWEIGDL 13. ZHIII		(1.05)	(0.8%)		(1.11)	(1.6%)

表-2.2.2 PC 鋼材の品質 (2007 年)

(平均値の欄の括弧付き数字は、規格値に対する比)

(標準偏差の欄の括弧付き数字は変動係数)

土木学会の調査結果¹⁴⁾(1981 年ごろの PC 鋼材メーカの試験結果)によると,SWPR7B(12.7mm)の引張強度は規格値の1.04 倍(変動係数は4%),降伏点強度は規格値の1.14 倍(変動係数は1.3%)である。また,高速道路調査会の調査¹⁵⁾でも,ほぼ同様な結果が得られている。これらの結果から,PC 鋼材の平均的な品質,品質のばらつきについては,年代による差は著しくはないものと推測される。

上記の結果を総合的に判断すると,設計計算上,PC鋼材の引張強度の標準値は次の通りとするのがよいと 考えられる。

○引張強度の平均値:規格値の1.03倍

○引張強度の変動係数:1.0%

2.2.3 PC 鋼材のヤング係数

PC 鋼のヤング係数については、種類によらずこれまで2.0×10⁵ N/mm²とされてきたが、実績調査の結果との乖離があることが確認されている(表-2.2.3及び図-2.2.3参照)。

よって,設計計算上, PC 鋼材のヤング係数の標準値については,以下の通りとするのがよいと考えられる。

○PC 鋼線のヤング係数	$: 2.00 \times 10^5 \text{ N/mm}^2$
○PC 鋼より線のヤング係数	$: 1.95 \times 10^5 \text{ N/mm}^2$
○PC 鋼棒のヤング係数	$: 2.00 \times 10^5 \text{ N/mm}^2$

括印	*6	ヤング係数(N/mm ²)		
作业力引	剱	最小值-最大值(平均值)	標準偏差	
15.2mmPC 鋼より線 (JIS G 3536 SWPR7BL)	253	191. 3—196. 3 (193. 6)	1. 25	
21.8mmPC 鋼より線 (JIS G 3536 SWPR19L)	50	188. 3—192. 3 (190. 1)	1. 31	
7mmPC 鋼線 (JIS G 3536 SWPR1AN/L)	30	200. 6—203. 7 (201. 5)	0. 93	
32mm 総ネジPC 鋼棒 (JIS G 3109 SBPD930/1080)	30	201. 1—203. 7 (202. 2)	0. 77	

30

200 6

201 5

203 7

0 93

n数

最小

平均

最大

標準偏差

表-2.2.3 PC 鋼材のヤング係数の調査結果

16

14

12

10

6

4

2

0

200 201

頻度 8

(a) 15. 2mmPC 鋼より線 (JIS G 3536 SWPR7BL)

(b) 21. 8mmPC 鋼より線 (JIS G 3536 SWPR19L)

(d) 32mm 総ネジPC 鋼棒 (JIS G 3109 SBPD930/1080)

(c)7mmPC鋼線 (JIS G 3536 SWPR1AN/L)

ヤング係数 (kN/mm²)

204 205

202 203

図-2.2.3 PC 鋼材のヤング係数の調査結果 (頻度分布)

2章 参考文献

- 1) 町田篤彦:統計とコンクリートの品質の変動との関係,コンクリート工学, Vol. 15 No. 9, 1977.9
- 2) 建設省土木研究所:施工によるコンクリートの品質のばらつき調査報告書,土木研究資料第 632 号, 1971.1
- 3) 高橋久雄ほか:構造体コンクリートの強度管理に関する研究(その1~5),日本建築学会大会学術講 演梗概集,pp.123-132,1977
- 4) 佐原晴也,森濱和正,野永健二,渡辺正:小径コアによる実構造物コンクリートの圧縮強度の推定,土
 木学会第58回年次学術講演会,V-427,2003.9
- 5) 独立行政法人土木研究所:既存コンクリート構造物の健全度実態調査結果-1999年調査結果-,土木研 究所資料第3854号,2002.3
- 6) 独立行政法人土木研究所:レディーミクストコンクリートの品質実態調査-(2)1999 年調査結果-,土
 木研究所資料第 3838 号,2001.11
- 7) 建設省土木研究所:コンクリートの引張強度に関する調査報告書-持続荷重および寸法効果に関する検討-,土木研究所資料第3418号,表-3.2~表-3.4,1996.1(図-2.1.2及び表-2.1.3の①)
- 8) 建設省土木研究所:大型 RC はり供試体のせん断強度に関するデータ集,土木研究所資料第 3426 号, 1996.1 (図-2.1.2 及び表-2.1.3 の2)
- 9) 建設省土木研究所・プレストレスト・コンクリート建設業協会:高強度コンクリート部材の設計法に関する共同研究報告書一高強度コンクリート PC はり部材の終局曲げ強度・変形性能に関する調査一,共同研究報告書第96号, P12, 1994.3 (図-2.1.2及び表-2.1.3の③)
- 10) 建設省土木研究所・プレストレスト・コンクリート建設業協会:高強度コンクリート部材の設計法に関する共同研究報告書一高強度コンクリート PC はり部材の曲げせん断強度に関する調査一,共同研究報告書第122号, P18~, 1995.3 (図-2.1.2及び表-2.1.3の④)
- 11) 建設省土木研究所:高炉スラグ砕石コンクリートのせん断試験,土木研究所資料第1981号,P7 図6,
 1983.3 (図-2.1.2 及び表-2.1.3 の⑤)
- 12) 阪田憲次,椿龍哉,井上正一,綾野克紀:高強度域を考慮した乾燥収縮ひずみおよびクリープ予測式の
 提案,土木学会論文集,No. 690 V-53, 1-19, 2001.
- 13) 普通鋼電炉工学会 電炉鉄筋棒鋼品質調査委員会:第6回 電炉鉄筋棒鋼品質調査報告書, 2004.10
- 14) 土木学会:コンクリート構造の限界状態設計法指針(案),コンクリートライブラリー,第 52 号,
 pp. 218-227,1984.2
- 15) 高速道路調査会橋梁研究委員会コンクリート道路橋の限界状態設計法に関する調査研究委員会:コンク リート道路橋の限界状態設計法に関する調査研究(その2)報告書, 1989.2

3章 応力度制限値に関する調査

3.1 設計の前提条件

3.1.1 プレストレストコンクリート部材の設計に用いる定数の前提条件

(1) コンクリートの圧縮応力度の制限値

コンクリートのクリープは圧縮応力度が圧縮強度の 40%以上となると急激に増加する ¹ことが知られている。そのため、一定荷重下のコンクリートに発生する圧縮応力度がクリープひずみと比例関係にあることを前提として H24 道示 I 編に規定されているクリープ係数を適用する場合には、永続作用支配状況のような持続荷重下において、コンクリートの圧縮応力度を圧縮強度の 40%以下に抑える必要がある²⁰。

また,曲げ圧縮を受けるT形や箱形断面では,圧縮部であるフランジの幅がウェブの幅より大きくなると, 幅方向における圧縮部の応力分布が長方形断面に比べて不均一となることから³,平成24年制定の道路橋示 方書・同解説Ⅲコンクリート橋編(以下,H24道示Ⅲ編)では長方形断面における値から1N/mm²を減じた値 とされている。

軸圧縮応力度は、軸方向荷重が増加すると部材が弾性収縮を生じてプレストレスが減少することや、曲げ 圧縮応力度と異なり部材全長にわたり一様に生じること、柱におけるコンクリート強度が標準供試体のコン クリート強度に比べて多少低下すること⁴などを考慮して、H24 道示Ⅲ編では T 形及び箱形断面の曲げ圧縮 応力度の許容値の 85%程度となる値とされている。

以上より、持続荷重下において、プレストレストコンクリート部材の圧縮応力度の制限値をH24 道示Ⅲ編 のプレストレストコンクリート構造に対する死荷重時の圧縮応力度の許容値と同等とすれば、H24 道示 I 編 のクリープ係数を適用できると考えられる(**表-3.1.1**参照)。

コンクリート設計基準強度 応力度の種類		30	40	50	60	70	80
	(1) 圧縮強度の40%	12.0	16.0	20.0	24.0	28.0	32.0
曲げ王縮 応力度の 制限値	(2)H24道示III編の許容応力度 (長方形物面の場合)	12.0	15.0	17.0	19.0	23.0	27.0
	(3) H24 道示Ⅲ編の許容応力度(1 形及び箱形)(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	11.0	14.0	16.0	18.0	22.0	26.0
(4) $\{(1)-1, 0\} \times 85\%$		9.3	12.8	13.5	16.2	22.9	26.4
(5) H24 道示Ⅲ編の許容応力度(軸王縮)		8.5	11.0	13.5	15.0	18.5	22.0

表-3.1.1 コンクリートの圧縮応力度の制限値 (N/mm²)

(2) コンクリートの引張応力度の制限値

H24 道示Iに規定されているクリープ係数は、持続荷重を受ける全圧縮状態の供試体におけるクリープの 影響を実測した結果に基づき設定されている。そのため、設計上そのクリープ係数を適用する場合には、持 続荷重下においては部材が全圧縮状態にあることが前提となる。また、乾燥収縮の影響についても、持続荷 重下において引張が生じることによってひび割れが生じる可能性が増すことから、持続荷重下において全圧 縮状態を前提としていると考えられる。そのため、コンクリートの引張応力度についても、クリープ係数及 び乾燥収縮に関する係数の適用条件として、一定荷重下として考慮する永続作用支配状況では、持続的に引 張応力が生じないことが求められる。斜引張応力度については、定まった考え方はないが、H24 道示Ⅲ編の プレストレストコンクリート構造に対する死荷重時の引張応力度の許容値と同等とすれば、フルプレストレ ッシングを想定した値と考えられている(本書の3.2.2 参照)。

そのため、持続荷重下において、プレストレストコンクリート部材の引張応力度の制限値を表-3.1.2とすれば、H24 道示 I 編のクリープ係数を適用できると考えられる。

応力度の種	コンクリート設計 基準強度 類	30	40	50	60	70	80			
(1)曲げ引	張応力度の制限値			0.	0					
(2)軸/張	応力度の制限値		0.0							
斜日張忘 力度の制 限値	(3) H24 道示Ⅲ編の許容応 力度(せん断力 or ねじ りモーメント)	0.8	1.0	1.2	1.3	1.3	1.3			
	 (4) H24 道示Ⅲ編の許容応 力度(せん断力+ねじり モーメント) 	1.1	1.3	1.5	1.6	1.6	1.6			

表-3.1.2 コンクリートの引張応力度の制限値 (N/mm²)

(3) PC 鋼材の引張応力度の制限値

初期導入力によって PC 鋼材に生じる引張応力が引張強度の 80%以上になると、リラクセーションが急激に 増加する傾向にあることが知られている。PC 鋼材の降伏強度は引張強度の 85~88%程度であるため、PC 鋼材 の引張応力を降伏強度の 80%以下とすれば、引張強度の 70%程度となり、リラクセーションが特に大きくなる ようなことはないと考えられている⁵⁰。そのため、コンクリートの弾性変形による損失分を 5%程度見込むと、 PC 鋼材のリラクセーションの影響を評価する前提としてのプレストレッシング直後の PC 鋼材の引張応力度 の制限値は、0.70*σ_{pu}*又は0.85*σ_{py}のうち小さい方の値となる。*

3.1.2 鉄筋コンクリート構造の応力算出時の前提条件

(1) 応力算出時のクリープを考慮する方法

鉄筋コンクリート構造とプレストレストコンクリート構造では、応力算出時にクリープを考慮し、想定する耐荷機構となるように挙動を制御する方法が異なる。図-3.1.1 は鉄筋コンクリート構造とプレストレストコンクリート構造において設計上で想定する耐荷機構を示している。プレストレストコンクリート構造は発生する引張応力に対して引張鉄筋を配置し、かつ、応力の発生を抑制することで全断面が有効となる耐荷機構を仮定している。このとき、クリープや乾燥収縮の時間依存性挙動について適切に評価したプレストレスカを算出しているため、使用材料の特性に応じたヤング係数比を用いている。一方、鉄筋コンクリート部材では、発生する引張応力に対してコンクリートの引張抵抗を見込まず、部材断面が全圧縮である状態を前提としていないため、ヤング係数比を $n = E_s/E_c = 15$ とすることでクリープの影響を考慮している⁶。また、鉄筋コンクリート構造においては、一定荷重下においてコンクリートの圧縮応力度が圧縮強度の1/3 程度以下となるようにしている。

図-3.1.1 PC構造と RC構造の想定する耐荷機構

(2) ヤング係数比 15 の解釈

鉄筋コンクリート構造において応力度算出時のヤング係数比の設定に際しては、コンクリート圧縮強度に 応じて*E*_cが変化することや、コンクリートのクリープによって見かけの*E*_cが小さくなることを考慮して、コ ンクリート圧縮強度などを考慮したヤング係数比nを設定するという考え方がある⁷。しかし、単にヤング係 数だけクリープを考慮して増大させると、コンクリートや鉄筋の応力度はクリープ後に制限値内に収まるに すぎず、クリープ前においてはコンクリートの圧縮応力が制限値を上回り、危険側の設計となることがある。 そのため、これまでから道示ではヤング係数比 15 という一定値を用いて、コンクリートの圧縮応力度は圧縮 強度の 1/3 程度以下とする方法が用いられている。

表-3.1.3 及び表-3.1.4 に各国設計基準の取り扱い及びヤング係数比について調査した事例をそれぞれ示す。

ヤング係数比を実態に近い値に変更することは、鋼橋及び下部構造の設計への影響を踏まえた慎重な検討 が必要と考えられる。なお、ヤング係数比の違いによる鉄筋応力度の影響の試算結果で大きな差異は見られ なかった。

設計基準	弾性係数比	理由
AASHTO LRFD ⁸⁾	永久荷重作用時の応力算定には有効ヤ ング係数比である 2n (nはヤング係数 比)を使用	クリープの影響を考慮して、コンクリー トの有効ヤング係数比を用いるものと 推定
EC2 【Euro Code】 ⁹⁾	本文中には規定は無いが、解説書および 設計例では、n=15を適用 (但し、変動荷重が支配的な場合は、ク リープの影響を無視したnを用いても 良い。)	クリープの影響を考慮

表-3.1.3 設計基準の取り扱い

表-3.1.4 試算事例

出典	試算内容
B. P. Hughes 著	ヤング係数比が 9→15→30 に変化しても,鉄筋応力度の変化量は
"Limit state theory for reinforced	5%, 8%程度に過ぎない。
concrete design" ¹⁰⁾	
日本建築学会	ヤング係数比が10→15に変化しても、引張鉄筋応力度の変化量は
"鉄筋コンクリート構造規準・同解説"	2%に過ぎない。
7)	
M.Taliano著	簡便法 n=15 と載荷時材齢及び載荷期間等を厳密に考慮する厳密
"The improved n-method for the	法と比較し,鉄筋の引張応力度は殆ど差異が無い(1-2%程度)
calculation of stresses in service" ¹¹⁾	ことを確認した。しかし、コンクリートの圧縮応力度は高強度に
	なるほど大きな差異が生じることを確認した。
	例 f _{ck} =20~50 10%程度の差異
	f _{ck} =90 25%程度の差異

3.1.3 プレストレストコンクリート構造の応力算出時の前提条件

前述の3.1.2 に示しているが、プレストレストコンクリート構造で全断面が有効となって抵抗する耐荷機 構を想定する場合は、断面に発生する引張応力に対して引張鉄筋を配置する必要がある。引張鉄筋の配置に 関しては、鉄筋やPC鋼材に負担させる引張応力度を検証する必要がある。

鉄筋がプレストレス、クリープ及び乾燥収縮を拘束する影響を適切に考慮するプレストレス力を断面に作 用させることについて、鉄筋拘束の影響の試算は本書の「付録3.鉄筋拘束の影響の試算」に記載している。

(1) 引張鉄筋に負担させる引張応力度について

これまでの道示が用いていた許容応力度設計法では、荷重組合せごとの発生頻度の違いが許容応力度の割 増係数として考慮されていたが、部分係数設計法では荷重組合せ係数を用いて、作用の同時載荷状況の頻度 が調整された作用の組合せが与えられる。すなわち、これまでの示方書で見込んでいたコンクリートの引張 応力の安全余裕は荷重側で考慮されるため、同等の安全余裕を従来の制限値(180N/mm²)に考慮する必要が ある。

次に示す事項を踏まえると、引張鉄筋に負担させる引張応力度は210N/mm²となる。

- 1)鉄筋応力度が 210N/mm²までは全断面有効とした計算とひび割れを想定した計算との乖離が小さいこと が示されている¹²⁾。
- 2) 210N/mm²はかぶり 5cm とした場合にひび割れ幅 0.3mm に相当することから、従来のかぶりの前提とした ひび割れ幅の状況とも大きな差は生じない¹³(図-3.1.2 参照)。
- 3) PC3 径間連結ポストテンション方式 T 桁橋で、引張鉄筋に負担させる引張応力度を 200, 210, 220N/mm² と 3 種類の最大値で鉄筋量の変化を検討したが、ほとんどの箇所は引張鉄筋の応力度制限値の影響を受 けないこと、応力度制限値が異なる影響による鉄筋量に与える影響はわずかである(「付録 4. 引張鉄 筋の応力度制限値の試算」参照)。

図-3.1.2 かぶり、ひひ害い幅、及び鉄筋応力度の関係13

(2) PC 鋼材を引張鉄筋とみなす場合の PC 鋼材の引張応力度の制限値

全断面を有効とした抵抗機構を想定する場合に PC 鋼材を引張鉄筋とみなせる前提条件として、これまでの 道示では、設計荷重時の PC 鋼材の引張応力度が 0.60 σ_{pu} 又は 0.75 σ_{py} のうち小さい方の値以下であることが 規定されていた。永続作用及び変動作用支配状況において、これまでと同等の安全余裕を確保するとすれば、 キャリブレーション結果より、温度作用時の安全余裕 1.15 と仮定すると、0.60 σ_{pu} ×1.15=0.65 σ_{pu} , 0.75 σ_{py} ×1.15=0.85 σ_{pv} となる。

3.2 耐荷性能の照査に対する応力度制限値

3.2.1 曲げモーメント又は軸方向力を受ける部材

(1) プレストレストコンクリート構造の圧縮応力度の制限値

曲げモーメントや軸方向力を受けるプレストレスを導入するコンクリート部材では、作用に対して部材全 体が弾性挙動する限界の状態が、部材としての可逆性の限界の状態と考えられる。圧縮強度が 50N/mm² 程度 までのコンクリート材料については、圧縮応力に対して圧縮強度の 2/3 を超えない範囲まで、非線形性が顕 著とならず材料としての可逆性を有すると考えられる¹⁴⁾。そのため、部材断面を構成するコンクリートに対 して、断面に発生する圧縮応力度が圧縮強度の 2/3 を超えないことが、部材が可逆性限界に達しないことの 一つの条件となる。ただし、圧縮強度の 2/3 となる応力の状態は、鉄筋コンクリート部材を構成するコンク リートを前提として、安全余裕が少ない状態を想定している。そのため、プレストレストコンクリートにつ いては、圧縮強度が 50N/mm²を超えるコンクリートの場合と同様、圧縮強度の 40%程度となる状態を、非線 形性が顕著となる限界の状態と考えるのがよい¹⁾。

圧縮応力度に関する制限値を表-3.2.1に示す。応力ひずみ曲線は、円柱供試体などの一軸状態における挙 動に基づき設定されていることから、軸圧縮応力に着目する。圧縮強度の40%となる値は、H24道示Ⅲ編に規 定されている許容応力度を1.5倍した値とほぼ同値となる。これまでの設計においては、地震時においても 上部構造に対しては可逆性を有する状態にとどまるよう制御されていたと考えられる。そのため、圧縮強度 の40%となる値までは、これまでも可逆性を有するものとして扱っていたと考えられる。また、許容応力度 を1.5倍することについては、鋼材降伏の安全率1.7に対し、温度作用時の割増しを考慮した係数、すなわ ち1.7/1.15≒1.5を乗じたものと解釈することができる。いずれの解釈においても、これまでの許容応力度 に対して1.5倍となる値を制限値とすればよく、その値は圧縮強度のおよそ40%となる値である。

なお、割増し後の応力を想定していることから、T 形及び箱形断面の場合の制限値については、長方形断面に対して 1.5×1.0N/mm²=1.5N/mm²減じた値となる。また、軸圧縮応力度の制限値と曲げ圧縮応力度の制限値の差異については、T 桁及び箱桁断面の場合の制限値に対して、85%とした値となっている。

応力度	コンクリート設計基準強度の種類	30	40	50	60	70	80
(1)	H24道示に規定されている許容応力度(軸王縮)	8.5	11.0	13.5	15.0	19.5*	22.5*
(2)	圧縮強度の40%	12.0	16.0	20.0	24.0	28.0	32.0
(3)	((1)の値)×地震時の割増し(1.5)	12.5	16.5	20.0	22.5	28.0	33.0
(4)	曲げ王縮応力度の制限値(長方形物面) ((3)の値)/0.77~0.85) =H24道示に規定されている許容 応力度(曲げ圧縮:長方形物面)の1.5倍	18.0	22.5	25.5	28.5	34.5	40.5
(5)	(4)の値から1.5N/mm ² (1.0N/mm ² ×1.5)減じた値=H24道 示に規定されている許容応力度(曲げ圧縮:T形及び箱形 断面)の1.5倍	16.5	21.0	24.0	27.0	33. 0	39.0

表-3.2.1 プレストレストコンクリート構造に対する圧縮応力度の制限値 (N/mm²)

*:長方形断面の制限値×0.85(H24道示解説の表から逆算)

(2) プレストレストコンクリート構造の引張応力度の制限値

これまでの道示において,設計荷重時 (D+L)の荷重組合せに対してプレストレストコンクリートで引張応 力の制限値が設定されていた理由は,全断面有効として計算した応力状態と,コンクリートの引張抵抗を見 込まず計算した応力状態との乖離を小さくするためと考えられる。そのことは1961年の土木学会標準示方書 の解説及び改定資料に明記されている³¹²⁾。すなわち,この応力制限の目的は,全断面有効として計算させ ることの計算精度を保証するものであり,また,このように全断面有効とすることで,断面力を線形的に加 算できることから,一つの簡易計算の手法と位置付けることができる。なお,プレストレストコンクリート においても,引張応力に対してはコンクリートの引張抵抗を見込まず,鉄筋により受け持たせることも明記 されている。これは,実際にひび割れが生じるかという実現象とは別に,設計上の仮定として全断面有効を 想定していたことになる。このような仮定は,RCの計算で実際にはひび割れが生じないにもかかわらず引張 抵抗を無視することと同じであり,これまで設計荷重時 (D+L)では引張応力に対して 2N/mm²の許容応力度 が与えられていた。

一方,これまでも頻度が稀で比較的荷重が大きいものに対しては、引張応力度の許容値が 3.0N/mm²まで許 されていた。この範囲までは、全断面有効と引張無視の断面とでの乖離も比較的小さく、全断面有効とみな せる範囲であること、また、コンクリートの引張強度以下であることから、全断面有効の成立性を仮定して いたものと考えられる。実際、S53 年の土木学会標準示方書²⁰では、60N/mm²に対して 3.5N/mm²までの引張応 力が許されている。そのため、発生応力が引張強度以下となり、物理的にひび割れが発生しないとみなせる 制限値として、コンクリートの引張強度の下限値(0.23 σ_{ck} の 2/3 乗:2 σ 下限相当)が考えられる。このよ うな制限値とすることで、全断面有効とした場合の計算では、RC 計算よりも必要な引張鉄筋量が増えるため、 引張鉄筋の配置により引張無視の断面との乖離はさらに小さくなる。

以上を踏まえると、

1) 例えば 100 年間最大級の荷重は在来の地震時に匹敵すること

2) 引張鉄筋の必要量は本来コンクリートを無視した状態での計算とすべきところ,計算の簡易化のため全 断有効とした計算により算出していたこと

3)全断面有効としたほうがより多くの引張鉄筋が配置され、引張無視した場合との乖離が小さくなること4)物理的には発生応力が引張強度以下ならばひび割れが生じないと考えてよいこと

から、式(2.1.5)より算出されるコンクリートの引張強度の下限値を上限値とすればよいことがわかる。なお、この数値の設定により、これまでのPC桁とほぼ同等の設計が行えることも確認されている。軸引張応力度については、物理的に引張を許容できないため、いかなる荷重体系においても制限値は0となる。想定される制限値は**表-3.2.2**の通りとなる。

コンクリート設計 基準強度 応力度の種類	30	40	50	60	70	80
1)曲げ引張忘力度の制限値 (= 0.23×σ _{ck} の2/3 乗) 上限値 3.5N/mm ²	2.2	2.7	3. 1	3. 5	(3.5)	(3.5)
2) 軸引張応力度の制限値	0.0	0.0	0.0	0.0	0.0	0.0

表-3.2.2 プレストレストコンクリート構造に対する引張応力度の制限値 (N/mm²)

3.2.2 せん断力及びねじりモーメントを受ける部材

せん断力及びねじりモーメントを受けるプレストレスを導入するコンクリート部材に関しても、3.2.1 と 同様に作用に対して部材全体が弾性挙動する限界の状態が部材としての可逆性の限界の状態と考えられる。 全断面を有効とする耐荷機構が成立することを照査するため、これまでの道示では、部材に斜めひび害れを 生じさせないために主引張応力度に制限が設けられ、斜引張応力度は「衝突荷重又は地震の影響を考慮しな い荷重の組合せ」の許容値が与えられていた。

コンクリートの全断面を有効とした主応力σ₁は、モールの応力円による応力状態を考慮し、式(3.2.1)から応力円の中心座標+半径で示されたものである。

ここに、 σ_x は部材軸方向圧縮応力度、 σ_y は部材直角方向圧縮応力度、 τ は部材断面に生じるコンクリートのせん断応力度である。

中立軸位置においてひび割れが発生する限界の公称せん断応力度をコンクリートの引張強度とした場合, コンクリートのみで負担できるせん断力の最大値は,式(2.1.5)より算出されるコンクリートの引張強度で あり,斜引張応力度の制限値は引張強度と考えられる。よって,プレストレストコンクリート構造に対する 斜引張応力度の制限値として,せん断力とねじりモーメントをともに考慮する場合の斜引張応力度をコンク リート引張強度とすれば,**表**-3.2.3の通りとなる。

表-3.2.3において、「1) せん断力のみ又はねじりモーメントのみを考慮する場合」と「2) せん断力とねじ りモーメントをともに考慮する場合」では、斜引張応力度の制限値はこれまでの示方書と同様に 0.5N/mm²の 差が設けられている。

応力度の種	コンクリート設計基準領度額	30	40	50	60	70	80
(1) せん断力とねじりモーメントをとれに考慮する場合 (こ考慮する場合 力度の制 上限値3.5N/mm ² (2) せん断力のみ又はねじりモーメントのみを考慮する場合 = ((1) の値) -0.5N/mm ²	2.2	2.7	3. 1	3. 5	(3. 5)	(3. 5)	
	 (2) せん断力のみ又はねじりモーメントのみを考慮する場合 = ((1)の値) -0.5\/mm² 	1.7	2.2	2.6	3. 0	(3.0)	(3. 0)

表-3.2.3 プレストレストコンクリート構造に対する斜引張応力度の制限値 (N/mm?)

H24 道示Ⅲ編の表-3.2.5の3)4) 衝突荷重又は地震の影響を考慮しない荷重の組合せは、H14 道示Ⅲ編で改

定されたときに追加されたものである。H14 道示III編改定時の斜引張応力度は、改定資料¹⁵によれば当時H8 道示III編の斜引張応力度は、国内及び諸外国とくらべて安全側であったため、制限値を緩めて設定したもの である。S53 年制定プレストレストコンクリート標準示方書(土木学会)²⁰の表 5.1.3 がフルプレストレッシ ング相当の I 種 PC, パーシャルプレストレッシング相当が II 種 PC であった。H8 道示III編は、フルプレスト レッシング相当(I 種 PC)の斜引張応力度であったが、H14 道示III編にてパーシャルプレストレッシング相 当(II 種 PC)まで許容された。また、H14 道示III編改定時に、実物大載荷試験による結果¹⁶⁾や国内及び諸外 国の規定を参考に、せん断又はねじりが単独で作用する場合は、0.75 σ_{ct} (コンクリート引張強度の75%)とし て、2.0N/mm² (設計基準強度 40N/mm²の場合)を決定し、せん断又はねじりが同時に作用する場合は、0.5N/ mm²差をつけ、2.0+0.5=2.5 N/mm²として決定された。これにより、PC 箱桁橋等のウェブに配置されていた せん断鋼棒等の削減が図られた。

【H14 道示Ⅲ編 3.2 許容応力度 p126】

応力度の種類	コンクリート設計基準鎖度	30	40	50	60
活荷重及び衝撃 以外の主荷重	1) せん断力のみ又はねじりモーメントのみ を考慮する場合	0.8	1.0	1.2	1.3
	2) せん断力とねじりモーメントをともに考 慮する場合	1.1	1.3	1.5	1.6
衝突荷重又は地震 の影響を考慮しな い荷重の組合せ	3) せん断力のみ又はねじりモーメントのみ を考慮する場合	1.7	2.2	2.3	2.5
	4) せん断力とねじりモーメントをともに考 慮する場合	2.2	2.5	2.8	3.0

表-3.2.5 プレストレストコンクリート構造に対する許容斜引張応力度 (N/mm?)

0. 75*σ_{ct}*

0. 75*σ_{ct}*+0. 5

【H8 道示Ⅲ編 3.3 プレストレストコンクリート部材に対する許容応力度 p160】

コンクリートの設計基準強度応力度の種類	300	400	500	600
1) せん断力のみまたはねじりモーメントのみを考 慮する場合	8	10	12	13
2) せん断力とねじりモーメントをともに考慮する 場合	11	13	15	16

表-3.3.3 コンクリートの許容斜引張応力度 (kgf/cm²)

【昭和 53 年制定プレストレストコンクリート標準示方書 土木学会】

表-5.1.3	コンクリー	トの許容斜引張応力度	(kgf/cm ²)
---------	-------	------------	------------------------

<u>`</u> #		設計基準強度	300	400	500	600	行
迥	「川車山」						
庙	Į	せん断による応力	8	9	10	11	1
佐用状態Ⅱ種	悝	せん断とねじりによる応力	11	13	15	17	2
	Ī	せん断による応力	16	20	24	28	3
	種	せん断とねじりによる応力	20	25	30	35	4

※フルプレストレッシングはⅠ種,パーシャルプレストレッシングはⅡ種
3.3 耐久性能の照査に対する応力度制限値

3.3.1 内部鋼材の防食

内部鋼材の防食に関しては、かぶりの最小値を確保することを前提として、鉄筋の応力度を制限することでひび割れ幅を間接的に制御する方法がある¹⁷⁾¹⁸。

表-3.3.1に示す鉄筋の応力度制限値は、H8 道示Ⅲ編以前の道示や塩害対策指針(案)¹⁹⁾では解説に記載さ れ、H14 道示Ⅲ編以降に条文に記載された値であり、持続的に作用する死荷重作用時における鉄筋の引張応 力度の許容値である。この値は、既往の構造物に生じたひび割れ幅と設計上の鉄筋応力度の関係等から、コ ンクリート表面のひび割れ幅が 0.2mm 程度以下となる鉄筋応力度を示したものであり、乾燥収縮やクリープ の影響で初期に発生するひび割れが拡大することを抑制するひび割れ幅とされている(図-3.3.1参照)。ま た、制限値はひずみ量から定まるため、鉄筋の種類によらず一定値とされている。

	表-3.3.1	鉄筋の引張い	応力度の制限	と値 (N/mm²)	
动度		鉄筋の種類	SD345	SD390	SD490

100

鉄筋の引張応力度の制限値

図-3.3.1 鉄筋の引張応力度とひび割れ幅の関係19

3.3.2 コンクリート部材の疲労

コンクリートの圧縮応力に対する疲労強度については、土木学会式²⁰⁾(5%フラクタイル値)を用いて以下 のように表すことができる。

 $f_{cr} = f_{cd}k_1 \left(1 - \frac{\sigma_p}{f_{cd}}\right) \left(1 - \frac{\log N}{k_2}\right) \quad \dots \qquad (3.3.1)$

ここに、 f_{cr} は応力振幅(最大応力ではない)、 f_{cd} は設計基準強度、 σ_p は永続作用により生じている応力 (一般に 0 とする。)、Nを繰り返し回数(N = 2 × 10⁶:200 万回とする)、 k_1 は応力の方向による補正 (圧縮で 0.85、引張で 1.0)、 k_2 は環境要因による補正(湿潤等で 10、通常で 17)である。いま、通常の 環境下において圧縮を受けるコンクリートを想定する。すなわち $k_1 = 0.85, k_2 = 17$ とする。このとき、極 端な場合、つまり永続作用による応力がゼロで、制限値のすべてが応力変動だと仮定すれば、コンクリート 圧縮応力に対する疲労強度は、**表**-3.3.2 の通りとなる。

設計基準強度	24	27	30	40	50	60
疲労強度(最大)	12.8	14.4	16.0	21.4	26.7	32.1
H24 道示Ⅲ制限值 (RC) (曲げ圧縮)	8.0	9. 0	10.0	_	_	_
H24 道示Ⅲ制限值 (PC) (曲げ圧縮)	_	_	12.0	15.0	17.0	19.0
設計基準強度×1/2	12.0	13.5	15.0	20.0	25 . 0	30 . 0
設計基準強度×1/2/1.2	10. 0	11.0	12.5	16.5	20.0	25.0

表-3.3.2 コンクリートの圧縮応力に対する制限値 (N/mm²)

疲労強度を考慮した応力制限値は設計基準強度の約半分となる。実際には永続作用はゼロではないため, 活荷重による応力振幅は必ず想定よりも小さくなる。また,疲労強度式は5%フラクタイルを与える式²¹⁾であ るので,疲労破壊に対しては十分な余裕がある。そのため、制限値をf_{cd}/2と設定すれば、PCおよびRCによ らず疲労破壊の可能性は低い。ここで、学会式の前提としてコンクリート圧縮強度のばらつきを5%(管理供 試体)と見込んでいる。そのため、道示で前提とする15%のばらつき(打設後)に対して、同程度の安全性 を確保するためには、1.2の安全率を確保すればよい。そのため、設計基準強度の1/2/1.2が基本値となる。

この基本値は、在来のDHL 作用時の許容応力度よりも大きい値であり、在来のDHL 作用時の許容応力度を 制限値とすれば、十分疲労耐久性を有していると考えられる。そのため、DHL を含む代表的な荷重組合せで ある式 (3.3.2) で算出されるコンクリートの応力度が、これまでの許容応力度を超えない場合には、疲労の 影響が生じにくいものと考えられる。

1.00(D + L + PS + CR + SH + E + HP + U) (3.3.2)

鉄道標準²²でも*f_{cd}*/2であれば疲労照査を省略できるとしている(高強度・軽量を除く)。なお、この方 法はあくまでも在来の設計において疲労の影響が生じていないという知見に基づく経験則であり、在来設計 と同等の応力状態を実現することを手段としたみなし規定である。疲労設計を正しく行う場合には、作用荷 重を定めるとともに、作用回数を設定する必要がある。ただし、活荷重による応力振幅を想定したが、作用 組合せにLだけのものがない。Lの作用に相当するのはD+Lとなるが、DとLが異符号で均衡するときLの振 幅を適切に評価できないことになる。これには、相反応力部材の取り扱いによって異符号の効果を考慮して いることから、Lによる効果D+Lによる効果と考えてよいものと考えられる。 一方,鉄筋の引張応力に対する疲労強度については、土木学会式²⁰⁾(5%フラクタイル値)を用いて以下のようにあらわすことができる。

$$f_{srd} = 190 \frac{10^{\alpha}}{N^{k}} \left(1 - \frac{\sigma_{sp}}{f_{ud}} \right) \quad \dots \tag{3.3.3}$$

ただし、 f_{srd} は鉄筋の疲労強度(振幅)、 f_{ud} は鉄筋の引張強度、 σ_{sp} は永続作用により生じている応力、Nは繰返し回数である。また、 $\alpha = k_{0f}(0.81 - 0.003\phi)$ 、k = 0.12としてよいとされている。ただし、 ϕ は鉄筋直径(mm)、 k_{0f} はふしに関する補正で一般に1.0としてよい。いま、設計試算において RC 橋の3 橋での死荷重による鉄筋引張応力がおよそ 100 N/mm²であったことから、 σ_{sp} =100 N/mm²とする。この値から疲労強度を計算すると表-3.3.3の通りとなる。これより、最も疲労破壊が厳しくなる ϕ 32 を用いた場合においては、いずれの鋼種においても疲労強度は 240N/mm²程度となっている。永続作用における応力を半分の 50N/mm² と 仮定した場合には、疲労強度は 200N/mm²程度となる。これより、疲労破壊に対しては、鋼種によらず 200N/mm²とすれば十分安全であることがわかる(なお、海外の基準でも疲労限界としての応力振幅は 140N/mm²とされており、永続作用を 50 N/mm²としても、190N/mm²となりほぼ近い値となっている)。

なお、圧縮鉄筋については、コンクリートの圧縮応力度制限によって、事実上制限されている。例えば、 $f_{ck}=24$ N/mm²のとき、コンクリート圧縮応力度制限値は 8.0N/mm²である。この時のヤング係数比倍の応力が 作用すると考えれば、単純に 15×8=120N/mm²であり、十分これらの値を下回る。

鉄筋の種類	SD345	SD390	SD490
疲労強度(最大)(σ _{sp} = 100, φ = 32)	237	242	245
疲労強度(最大)(σ _{sp} = 100, φ = 13)	256	262	265
疲労強度(最大)(σ _{sp} = 50, φ = 32)	205	207	209
疲労強度(最大)(σ _{sp} = 50, φ = 13)	227	229	231
H24 道示 許容応力度	180	180	180

表-3.3.3 鉄筋の応力度制限値 (N/mm²)

PC 鋼材の引張応力に対する疲労強度については、完全片振りに変換した土木学会式²⁰⁾を用いて以下のようにあらわすことができる。

$$f_{srd} = 280 \frac{10^{\alpha}}{N^{k}} \left(1 - \frac{\sigma_{sp}}{f_{ud}} \right)$$
(3.3.4)

ただし、 f_{srd} は鋼材の疲労強度(振幅)、 f_{ud} は PC 鋼材の引張強度、 σ_{sp} は永続作用により生じている応力、Nは繰返し回数である。また、より線については $\alpha = 1.14$, k = 0.19、鋼棒については $\alpha = 0.96$, k = 0.16としてよいとされている。(元式 $\sigma_r = \frac{10^{4.6}}{N^{0.19}}[kgf/cm^2] = \frac{10^{3.6}}{N^{0.19}}[N/mm^2] = 280\frac{10^{1.14}}{N^{0.19}}[N/mm^2]$)

なお, PC 鋼材の疲労強度についても, 5%フラクタイルを取るよう設定されている。そのため,鉄筋やコンクリートの疲労強度と異なり, PC 鋼棒の疲労強度式は安全側の下限式であることに留意が必要である。

いま、変動支配時の PC 鋼材に発生する応力として、現状の許容値に対して 95%まで許容するよう設計して いるとする。また、変動作用により 5%の応力変動が生じたと仮定する。制限値を 0.60 σ_{pu} , 0.65 σ_{pu} , 0.70 σ_{pu} とした場合について、疲労強度(最大値)と制限値を比較した。その結果を表 3.3.4 に示す。なお、0.60 σ_{pu} 以外は疲労強度が制限値を下回ることになるが、この疲労強度は「下限値」であるため、必ずしも疲労破壊 することにはならない。表 3.3.4 より、0.60 σ_{pu} とすれば十分に疲労耐久性があると考えられる。

制限值	$0.60\sigma_{pu}$	$0.65\sigma_{pu}$	$0.70\sigma_{pu}$
SWPR7BL (N/mm²)	1100	1192	1283
制限値の95%(変動作用)	1045	1132	1219
永続作用(変動作用の 95%)	993	1075	1158
応力変動(変動作用の 5%)	52	57	61
疲労強度(振幅)	112.5	101.5	90.4
疲労強度(最大)	1105	1177	1249

表-3.3.4 PC鋼材(より線)の引張応力に対する制限値(N/mm²)

設計上,許容される応力振幅について試算する。フルプレストレスの場合,PC 鋼材に許容される応力変 化 $\Delta \sigma_p$ は式 (3.3.5) とすることができる²³⁾。

 $\Delta \sigma_n = n (\sigma_{ca} - \sigma_{c\phi}) \quad \dots \qquad (3.3.5)$

ここで、nはヤング係数比、 σ_{ca} はプレストレスト直後のコンクリートに許容される圧縮応力度、 $\sigma_{c\phi}$ はク リープ等による下縁プレストレスの減少量である。ここで、設計基準強度30N/mm²として、 $\sigma_{ca} = 15N/mm^2$ 、 $\sigma_{c\phi} = 3N/mm^2$ 、n = 7.1と仮定すると、 $\Delta \sigma_p = 85N/mm^2$ となる。このため、変動作用による応力変動は およそ 85N/mm²程度と推定できるが、いずれの疲労振幅強度にも達していない。

なお、ACI215²⁴では、0.60 σ_{pu} 以下に永続作用を制限した上で、応力振幅の制限値として 0.12 σ_{pu} という値 を示している。例えば、SWPR7BL の場合、0.12 f_{pu} は 220N/mm²である。これは、変動作用時の応力制限を 0.65 σ_{pu} とした場合に相当している。(0.65 σ_{pu} のとき、永続作用を0.95 × 0.95 = 0.9まで抑えたとすれば、 0.58 σ_{pu} <0.60 σ_{pu} としたことに相当する。このとき、許される変動を 0.12 f_{pu} とすれば、最大で 0.72 σ_{pu} ま で許容できる。この値は 0.60 σ_{pu} よりも十分小さいことから、制限値を 0.60 σ_{pu} とすれば、疲労の影響は生 じないと考えられる。)

3.4 架設系に対する応力度制限値

これまでの道示では、施工時荷重を考慮した場合の許容引張応力度はコンクリートの設計基準強度に応じ て定められており、コンクリートの設計基準強度が 30N/mm² で 2.2N/mm², 40N/mm² で 2.5N/mm², 50N/mm² で 2.8N/mm², 60N/mm² で 3.0N/mm² となっている。設計基準強度は、材齢 28 日における圧縮強度に相当するため、 施工時の許容値は、材齢 28 日に対して定められたものであり、コンクリートの発現強度にかかわらず規定さ れていた。

しかし、張出架設など施工初期段階の若材齢時において、コンクリート引張強度がまだ低い段階でも、施 工時荷重などの影響でコンクリートに引張応力度が発生する可能性があり、施工時にひび割れを発生させる リスクとなっている。材齢に応じた制限値の設定方法について検証する。

3.4.1 材齢に応じた各強度の特性値

コンクリートの強度が材齢に応じて変化することを想定したコンクリート圧縮強度及び引張強度は、材齢、 温度依存性、セメントの種類、水セメント比の影響を考慮できる「日本コンクリート工学会(以降 JCI)²⁵⁾」 の式(3.4.1)を参考とできる。

JCI の圧縮強度をもとに、施工時応力度制限値の算定を行う。

(1) 圧縮強度の特性値の予測式

設計時には標準的なコンクリートの配合を適切に設定し、発現強度から施工時制限値を設定する。設計時 点の施工工程計画・架設設計(架設系における応力度制限)に用いるために参考とする標準的なコンクリー ト配合の条件を示す。

- ・水セメント比:早強ポルトランドセメント W/C=43%
- ・管理材齢:28日
- ・コンクリート養生温度(外気温として一定)標準温度相当:20℃
- ・圧縮強度は、平均値相当であると想定する。

なお、施工時には各作業段階(型枠の脱型,ワーゲンの移動等)と同様の期間をとった現場封緘養生供試体の圧縮試験結果をもって、設計で想定した施工時制限値と発現強度の確認を行う必要がある。

有効材齢 t_e (日)における圧縮強度 $f'_c(t_e)$ (N/mm²)は、式(3.4.1)により算出することができる。

$$f'_{c}(t_{e}) = \frac{t_{e} - S_{f}}{a + b(t_{e} - S_{f})} f'_{c}(t_{k}) \quad \dots \quad (3.4.1)$$

ここで,

a,b :セメントの種類及び基準材齢に応じた係数であり、次の通りとなる。

$$a = \alpha_1 + \beta_1(\frac{1}{0.43}) = 4.39 - 1.19 \div 0.43 = 1.623$$

b = $\alpha_2 + \beta_2(\frac{1}{0.43}) = 0.841 + 0.0428 \div 0.43 = 0.941$

 S_f :セメントの種類に応じた硬化原点に対応する有効材齢(日)で,ここでは、 S_f =0.30 $f'_c(t_k)$:基準材齢 t_k 日における圧縮強度(N/mm²)で式(3.4.2)で表される

 $f'_{c}(t_{k}) = p_{1} + p_{2}(C/W)$ (3.4.2)

ただし,

 p_1, p_2 :セメントの種類及び基準材齢に応じた係数(ここでは $p_1 = -14.9, p_2 = 30.9$) C/W:セメント水比

なお、有効材齢はとは温度の影響を考慮した等価材齢であり、式(3.4.3)から算出することができる。

$$t_e = \sum_{i=1}^{n} \Delta t_i \cdot \exp\left[13.65 - \frac{4000}{273 + T(\Delta t_i)/T_0}\right] \dots (3.4.3)$$

ただし,

$$\Delta t_i$$
 : 一定のコンクリート温度が継続する期間(日)
 $T(\Delta t_i)$: Δt_i の間継続するコンクリート温度(°C)(ここでは20°C)
 T_0 : 1°C

これより、 $f'_c(t_e)$ は材齢に応じた強度式となる。

$$f'_{c}(t_{e}) = \frac{(t_{e} - 0.30)57}{1.623 + 0.941(t_{e} - 0.30)} \cdots (3.4.4)$$

以上のように推定した $f'_c(t_e)$ に対して、圧縮強度の変動係数を10%と想定することで、圧縮強度の5%フラ クタイル値として特性値 $f'_{ck}(t_e)$ を次のように推定することができる。

ただし、設計上はコンクリートには設計基準強度以上の圧縮強度を期待しないことから、 $f'_{ck}(t_e)$ は設計 基準強度を上限値とする。

(2) 引張強度の特性値の予測式

コンクリートの曲げ引張強度は、式(3.4.6)を用い、 $\sigma_c(t_e)$ は式(3.4.4)の $f'_c(t_e)$ を用いる。また、曲げ引 張強度の5%フラクタイル値には、 $\sigma_c(t_e)$ は式(3.4.5)の $f'_{ck}(t_e)$ を用いる。

 $\sigma_{ct}(t_e) = 0.23 \cdot \sigma_c(t_e)^{\frac{2}{3}}$ (3.4.6)

3.4.2 応力度の制限値

制限値の設定に必要な安全余裕は、これまでの道示と同等となるように想定する。また、温度作用時の荷 重組合せに対して発生する応力度と各強度の特性値との比率を基に、材齢に応じた発現強度の特性値に対し て、これらと同程度の比率となるように施工中における応力度の制限値を設定する。

(1) 基本条件

各設計基準強度の曲げ引張強度を表-3.4.1 に示し、H24 道示Ⅲ編における許容応力度を表-3.4.2 及び表-3.4.3 に示す。なお、ここでは、一般的な矩形断面の部材を想定している。

	表-3.4.1 曲げ引張強度					
	算定式	単位		基本ラ	データ	
設計基準強度	σck'	N/mm^2	30	40	50	60
設計基準σt	σt(=0.23σck' ^(2/3))	N/mm^2	2.2	2.7	3.1	3.5

		111/11/11文				
〔详示	· (494) 〕 許宏広力府	畄位	設計基準強度 σck'			
		平江	30	40	50	60
曲げ圧縮応力度	表3.2.2 その他 4)長方形	N/mm^2	12.0	15.0	17.0	19.0
軸圧縮応力度	表3.2.2 その他 6)	N/mm^2	8.5	11.0	13.5	15.0
曲げ引張応力度	表3.2.3 5)その他	N/mm^2	1.2	1.5	1.8	2.0
斜引張応力度	表3.2.5 主荷重 2)せん断とねじり モーメントをともに考慮する場合	N/mm^2	1.1	1.3	1.5	1.6
プレ直後曲げ圧縮応力度	表3.2.2 プレ直 1)長方形	N/mm^2	15.0	19.0	21.0	23.0
プレ直後軸圧縮応力度	表3.2.2 プレ直 3)	N/mm^2	11.0	14.5	16.0	17.0
プレ直後曲げ引張応力度	表3.2.3 1)プレ直後	N/mm^2	1.2	1.5	1.8	2.0
プレ直後斜引張応力度		N/mm^2	-	_	-	_
施工時曲げ引張応力度	表3.2.4 8)施工時荷重	N/mm^2	2.2	2.5	2.8	3.0

表-349 H24 道示Ⅲ編における許容応力度

表-3.4.3 H24 道示Ⅲ編における許容応力度(温度作用時)

〔造云 (1194)	畄位	設計基準強度 σck'				
〔追小 (1124)	」 叶谷心刀凌(温度 用时)	中位	30	40	50	60
曲げ圧縮応力度	表3.2.2 その他 4)長方形 ×1.15 ※	N/mm^2	13.8	17.3	19.6	21.9
軸圧縮応力度	表3.2.2 その他 6) ×1.15 ※	N/mm^2	9.8	12.7	15.5	17.3
曲げ引張応力度	表3.2.4 1)主荷重+温度変化の影響	N/mm^2	1.7	2.0	2.3	2.5
斜引張応力度	表3.2.5 主荷重 2)せん断とねじり モーメントをともに考慮する場合	N/mm^2	1.1	1.3	1.5	1.6

※温度作用時の許容応力度の割増係数(1.15)

但し, 表-3.4.3 に示す斜引張応力度に関しては, 土木研究所他: プレストレストコンクリート橋における 初期変状の影響評価と対策に関する共同研究報告書(その2)(共同研究報告書第498号, 平成30年7月) 等²⁶⁾²⁷⁾で実施した実橋における施工時の挙動計測及び再現解析結果を参考に, 施工時の温度日変動応力度が 大きいことなどの理由からフルプレストレッシング相当の斜引張応力度を想定している。

(2) H24 道示Ⅲ編で確保していた安全率

H24 道示III編における温度作用時の許容応力度と各強度(表-3.4.1参照)の比率を表-3.4.4に示す。

安全率(設計基進強度÷温度作用時許容応力度)		畄⇔	設計去	基準強度	σck'(N	ck' (N/mm^2)	
女主中 (取訂本)	产强度・温度作用時計各心力度)	中位	30	40	50	60	
曲げ圧縮応力度	設計基準強度:曲げ圧縮応力度	-	2.2	<u>2.3</u>	2.6	2.7	
軸圧縮応力度	設計基準強度÷軸圧縮応力度	-	3.1	<u>3.2</u>	3.2	3.5	
曲げ引張応力度	設計基準σt÷曲げ引張応力度	-	1.3	<u>1.3</u>	1.3	1.4	
斜引張応力度	設計基準σt÷斜引張応力度	-	2.0	<u>2.0</u>	2.0	2.2	

表-3.4.4 H24 道示III編における温度作用時の許容応力度と各強度の比率

プレストレス導入直後の安全率は、H24 道示III編に示されている通り、コンクリートに生じる最大圧縮応 力度の1.7 倍以上の圧縮応力度を確認する必要がある。圧縮強度の安全率を1.7 としているのは、プレスト レス導入直後のため、PC 鋼材のリラクセーション、コンクリートのクリープ・乾燥収縮による PC 鋼材緊張 力の減少が生じないこと、圧縮強度試験を行い発現強度が必要強度以上(最大圧縮応力度の1.7 倍以上)あ ることを確認することから完成時の安全率(2.3、3.2)より低い安全率となっている。なお、発現強度に対 して1.7 倍以上の安全率を確保するということであるため、変動係数10%の5%フラクタイル値とすると、圧 縮強度の特性値に対しては 1.7×(1-0.1×1.64) = 1.4 となる。

軸圧縮強度の安全率は、曲げ圧縮強度の安全率÷85%(1.4÷0.85=1.7)とすると、プレストレス導入直後の安全率は表-3.4.5の通りとなる。

プレストレッシング直後の安全率		用任	設計	基準強度	σck'(N	$/\text{mm}^2$)
ノレハト	レッシンシン巨後の女主牛	中位	30	40	σck' (N/mm 50 1.4 1.7	60
プレ直後曲げ圧縮応力度	1.7× (1–0.1×1.64)	-	1.4	<u>1.4</u>	1.4	1.4
プレ直後軸圧縮応力度	プレ曲げ圧縮安全率1.7÷0.85	-	1.7	<u>1.7</u>	1.7	1.7

表-3.4.5 プレストレス導入直後の安全率

(3) 施工時に確保する安全率

ポストテンション方式の場所打ち桁として,設計基準強度の標準値 40N/mm² を代表として施工時に確保すべき安全率を表-3.4.6 にまとめる。

表-3.4.6 施工時に対する安全率一覧

応力度の種類	算定式	安全率
曲げ圧縮応力度	設計基準強度:曲げ圧縮応力度	2.3
軸圧縮応力度	設計基準強度÷軸圧縮応力度	3.2
曲げ引張応力度	設計基準σt÷曲げ引張応力度	1.3
斜引張応力度	設計基準σt÷斜引張応力度	2.0
プレストレス導入直後の曲げ圧縮応力度	1.7× (1–0.1×1.64)	1.4
プレストレス導入直後の軸圧縮応力度	プレ曲げ圧縮安全率1.4÷0.85	1.7
プレストレス導入直後の曲げ引張応力度	設計基準σt÷曲げ引張応力度	1.3
プレストレス導入直後の斜引張応力度	設計基準σt÷斜引張応力度	2.0

(4) 制限値の試算結果

前項で想定した配合条件及び環境条件を基に,設計基準強度 40N/mm²のコンクリートの圧縮強度及び引張 強度の特性値を算出し,(3)の安全率から応力度の制限値を試算した結果を図-3.4.1及び図-3.4.2 に示す。

図-3.4.1 早強ポルトランドセメント σ ck=40N/mm² (W/C43%, 20°C)の場合の圧縮強度履歴

図-3.4.2 早強ポルトランドセメント σ ck=40N/mm² (W/C43%, 20℃)の場合の引張強度履歴

(5) その他の応力度の制限値

張出架設時における主桁の上縁のコンクリート曲げ引張応力度は、導入時のプレストレス力を用いて算出 する場合は、1N/mm²以下とする場合もある²⁸⁾。これは、上縁のひび割れによる剛性低下により架設時の変位 に計算値との差異が生じる可能性があること、上床版は輪荷重が載荷され他の部材に比べて耐久性が損なわ れやすいこと、連続ラーメン橋は完成時にコンクリートのクリープ、乾燥収縮及び温度変化の影響により主 桁に拘束引張力が作用することで上床版に架設時にひび割れ発生の可能性を少なくするために、張出架設時 にコンクリートの上縁引張応力度を制限するものである。

3章 参考文献

- 1) 猪股俊司:土木学会監修 プレストレストコンクリートの設計および施工,技報堂,pp. 42-44, pp. 569-572, 1957.11
- 2) 土木学会:昭和53年制定 プレストレストコンクリート標準示方書, pp. 27-29, 1979.1
- 3) 土木学会: プレストレストコンクリート設計施工指針, pp. 80-82, 1961.8
- 4) 日本道路協会 橋梁委員会 示方書小委員会コンクリート分科会:道路橋示方書コンクリート橋の詳説, 橋梁と基礎, Vol. 13 No. 4, pp. 33-99, 1979.4
- 5) 土木学会:昭和30年土木学会制定 プレストレストコンクリート設計施工指針, pp. 54-55, 1955.4
- 6) 吉田徳次郎:鉄筋コンクリート設計方法 第3次改著, p. 163, 養賢堂, 1958
- 7) 日本建築学会:鉄筋コンクリート構造計算規準・同解説, pp. 115-120, 2010.2
- 8) AASHTO LRFD Bridge Design Specifications, p. 5-35, 2012.
- A. W. Beeby, R. S. Narayanan : Designers' guide to Eurocode2, Design of concrete structures, p. 130, 2009.
- 10) B.P.Hughes: Limit state theory for reinforced concrete design, 1976.
- M. Taliano : The improved n-method for the calculation of stresses in service, Structural concrete, Vol. 10 No. 1, pp. 3-13, 2009.3
- 12) 土木学会(猪股俊司著):最近におけるプレストレストコンクリート 設計施工指針の改訂と PC 橋の現
 況, pp. 31-33, 1961.8
- 13) 土木学会:コンクリート標準示方書(昭和61年制定)改訂資料,コンクリート・ライブラリー第61号,
 p. 199 図L-1.3, p. 205 図-L-1.15, 1986.
- 14) 池田尚治,小柳洽,角田與史雄:土木学会編新体系土木工学 32 鉄筋コンクリートの力学,技報堂出版,
 pp. 186-189, 1982.11
- 15) 溝江実,青木圭一:道路橋示方書改訂 Ⅲ コンクリート橋編,橋梁と基礎, Vol. 36(7), pp. 18-21, 2002.7
- 16) 渡辺将之,福永靖雄,飯島基裕,高木康宏:第二東名高速道路天竜川橋の実物大模型試験結果報告その2,
 第10回プレストレストコンクリートの発展に関するシンポジウム論文集,pp. 231-236, 2000.10
- 17) 土木学会:コンクリート構造の限界状態設計法試案,コンクリート・ライブラリー第48号, pp. 100-102, 1981.4
- 18) 土木学会:コンクリート構造の限界状態設計法指針(案),コンクリート・ライブラリー第52号, pp. 263-284, 1984.2
- 19) 日本道路協会:道路橋の塩害対策指針(案)・同解説, 1984.2
- 20) 土木学会: 2017 年制定コンクリート標準示方書【設計編】, pp. 222-223, 2018.3
- 21) 土木学会:コンクリート構造の限界状態設計法指針(案),コンクリート・ライブラリー第52号, pp. 292-295, 1984.2

37

- 22) (財)鉄道総合技術研究所:鉄道構造物等設計標準・同解説 コンクリート構造物 , 丸善株式会社, p. 170,
 2004.4
- 23) 猪股俊司: 土木学会監修 プレストレストコンクリートの設計および施工, 技報堂出, pp. 27-32, 1957. 11
- ACI Committee 215 : Consideration for Design of Concrete Structures Subjected to Fatigue Loading, ACI Journal, Vol. 71 No. 3, pp. 97-121, 1974.
- 25) 公益社団法人日本コンクリート工学会:マスコンクリートのひび割れ制御指針 2016, pp. 43-48, 2016.
- 26) 国土交通省国土技術政策総合研究所,国立研究開発法人土木研究所,(一社)プレストレスト・コンク リート建設業協会:プレストレストコンクリート橋における初期変状の影響評価と対策に関する共同研 究書(その1),国総研資料第910号,共同研究報告書第468号,2016.3
- 27) 国土交通省国土技術政策総合研究所、国立研究開発法人土木研究所、(一社)プレストレスト・コンク リート建設業協会:プレストレストコンクリート橋における初期変状の影響評価と対策に関する共同研 究書(その2)、国総研資料第1046号、共同研究報告書第498号、2018.7
- 28) 東日本道路株式会社・中日本道路株式会社・西日本道路株式会社:設計要領第二集 橋梁建設編, pp. 8-58, 2016.8

耐荷性能に関する部材設計の照査式及び抵抗係数の調査 4章

4.1 照査式及び特性値

4.1.1 降伏曲げモーメントの特性値

鉄筋コンクリート構造の降伏曲げモーメントは、引張側の鉄筋に生じる引張応力度が降伏強度に達すると きの抵抗曲げモーメントであるが、降伏曲げモーメント算出時に鉄筋量が多い場合、引張鉄筋を降伏強度で 抑えると、コンクリートが圧縮ひずみの限界以上に達し可逆性が担保できない可能性がある。そのため、コ ンクリートの応力度も制御する必要がある。

例えば、釣合い鋼材量の上限である75%を配置した場合、鉄筋ひずみが降伏ひずみに達したときのコンク リートひずみが1次比例と想定すると、コンクリートのひずみが2000 μを超える可能性もある (ε.=3500 μ $\times 0.75 = 2650 \,\mu$)

そのため、曲げモーメントが生じる断面を構成するコンクリートの圧縮応力度に関しては、残留変位の影 響が小さくコンクリートの応力分布の非線形性を考えずに応力度の算出ができる設計基準強度の 2/3 以下 1) とすれば、部材全体が弾性挙動する範囲にあると考えられる。

図-4.1.1 コンクリートの応力度-ひずみ曲線

4.1.2 コンクリートが負担できるせん断力の特性値

(1) コンクリートが負担できる平均せん断応力度

コンクリートが負担できるせん断力の特性値は、はりのせん断耐力推定式の見直しとして土木研究所にお ける「土木研究所資料第4373号 コンクリートはりのせん断耐荷力に関する研究」²において整理している。 上記資料では、コンクリートの負担できる平均せん断応力度がH24 道示Ⅲ編とH24 道示Ⅴ編で異なっている ため、引張鉄筋比や有効高さを考慮できるH24 道示V編のせん断耐力推定式を基本として一般化したこと、 推定式の適用範囲の設定や推定式の確からしさを検証したことを記載している。

(2) コンクリートが負担できる最大せん断応力度

曲げひひ割れの生じていない領域において、ウェブ中央付近にせん断ひひ割れが発生する斜引張破壊が生

じないことを前提とするため、ウェブ幅を有効幅とした矩形断面を考え、その断面においてせん断応力が最 大となるウェブ中心に対し、主応力がコンクリートの引張強度を超えない必要がある。以下に示すコンクリ ートが負担できるせん断応力の最大値を超えない場合には、その条件を満足すると考えられる²。

BSI・CP110-1972(BS-2004)によれば、Spdを PC 鋼材が傾斜配置されているときの有効プレストレス力の鉛 直分力として、ウェブにせん断ひび割れが発生するせん断力Vcw-maxは次のとおりである。

式(4.1.2)を応力表記に変換し、Sndの効果を無視するとコンクリートが負担できる最大せん断応力度 τ_{cmax} は以下の通りとなる。

 $\tau_{cmax} = \frac{2}{3} \cdot \sqrt{\sigma_{ctd} \cdot (\sigma_{ctd} + \alpha \cdot \sigma_{cdm})} \qquad (4.1.3)$ ここに,

α = 0.8 (コンクリートの材料引張強度ばらつきに対する安全係数 1.5 の逆数の平方根相当√1/1.5 ≅ 0.8で平方根内の係数を同等相当)とし、コンクリート設計基準強度のck: 21, 24, 27, 30, 40, 50, 60(N/mm²) に対する σ_{ctd} と、 σ_{cdm} : 0.0、1.0、2.0、4.0、6.0、8.0(N/mm²)を式(4.1.3)にそれぞれ代入すると、 τ_{cmax} は表-4.1.1のとおりとなる。

部材全高さの1/2における有効プ	コンクリート設計基準199度(N/mm ²)								
レストレスによる軸方向圧縮応 力度(N/mm²)	21	24	27	30	40	50	60	70	80
0. 0	1.17	1.27	1.38	1.48	1. 79	2.08	2.34	屁	屁
1.0	-	١	_	1.72	2.04	2, 33	2.60	酝	屁
2.0	-	-	_	1.94	2.26	2.56	2, 83	酝	酝
4.0	_	-	_	2.31	2.65	2.96	3.24	同左	同左
6.0	-	-	_	2.63	2.99	3, 31	3.61	酝	屁
8.0	_	_	_	2.92	3. 30	3.63	3.94	酝	屁

表-4.1.1 コンクリートが負担できる最大せん断応力度 (N/mm²)

4.1.3 ウェブコンクリートの圧壊に対するせん断耐力の特性値

トラス理論の前提として、スターラップが降伏する前の圧縮ストランドの圧壊を照査する必要がある。参 考資料2)にスターラップが先行して降伏するための条件が整理されている。

照査では、圧縮ストランドの鉛直成分とせん断力のつり合いを考え、ストランドの圧縮応力を算出する。 そのため、照査式は理論式となり、圧縮ストランドの圧縮応力*σ*_cとせん断応力度τとの関係は理論的に以下 の式 (4.1.5) となる。

$$\tau = 0.4\sigma_c \quad (4.1.5)$$

一方, 圧壊となるコンクリートの限界値については, 圧縮強度の1/2 としている。これは, スターラップの引張力が作用した組み合わせ応力下での圧縮を考えることになるため, 通常の一軸圧縮強度よりも大幅に 強度が低下することを考慮している。式(4.1.6)の関係が CEB-FIB1990³³に示されている。

 $f'_{cd} = 0.6 \left(1 - \frac{f_{ck}}{250}\right) f_{cd} \qquad (4.1.6)$

式 (4.1.5) の σ_c に,式 (4.1.6) の f'_{cd} を代入すれば,式 (4.1.7) が得られ,これがウェブ圧壊に対する せん断応力度の上限値 τ_{max} となる。

$$\tau_{max} = 0.4 \cdot 0.6 \left(1 - \frac{f_{ck}}{250} \right) f_{ck} / \gamma_c$$

= 0.4 \cdot \sigma_{ck} / 1.5 \cdot 0.6 \left(1 - \frac{\sigma_{ck}}{250} \right) \cdot \cdot \cdot (1 - \frac{\sigma_{ck}}{250} \right) \cdot

ここに、 σ_{ck} はコンクリートの設計基準強度であり、設計基準強度 40N/mm² とした場合、 $0.6\left(1 - \frac{\sigma_{ck}}{250}\right) = 0.6(1 - 0.16) = 0.9 \times 0.84 = 0.50$ となるので、H24 道示III編ではコンクリートの平均せん断応力度の最大値は式 (4.1.8) より算出されている。

 $\tau_{max} = 0.4 \cdot \sigma_{ck} / 3 \le 6 \text{MPa}$ (4.1.8)

表-4.1.2 より,式(4.1.7)とH24 道示Ⅲの値(式(4.1.8)参照)を比較すると,H24 道示Ⅲの許容値は 若干安全側に設定されていたことがわかる。

コンクリート設計 基準99度 応力度の種類	21	24	27	30	40	50	60	70	80
(1) $0.4 \cdot \sigma_{ck} / 1.5 \cdot 0.6 \left(1 - \frac{\sigma_{ck}}{250} \right)$	3.08	3.47	3.85	4.22	5.38	6.4	7.30	8.06	8.70
(2)H24道示III編の許容応力度	2.8	3.2	3.6	4.0	5.3	6.0	6.0	6.0	6.0

表-4.1.2 コンクリートが負担できる平均せん断応力度の最大値 (N/mm²)

4.1.4 押抜きせん断力の特性値

昭和55年版コンクリート標準示方書⁴の66条(3)では、許容押抜きせん断応力度は棒部材の許容せん断応 力度に対して2倍の値とされている。これは棒部材ではせん断力が部材内に伝達するときの応力の広がりが 2方向であるのに対して、版部材の押抜きせん断では4方向に広がることからである。

ここで、昭和 55 年版コンクリート標準示方書の許容せん断応力度は、公称せん断応力度 $\tau = \frac{s}{b_w \cdot ja}$ での制限値で示されており、道路橋示方書では平均せん断応力度 $\tau_c = \frac{s}{b_w \cdot a}$ に対する制限値となっている。一方、押 抜きせん断応力度は、コンクリート標準示方書、道路橋示方書ともに部材に作用する平均応力となっており $\tau_p = \frac{P}{b_{P'd}}$ である。ここに、Sまたは P;作用せん断力、 b_w ;部材の幅、d;部材の有効高さ、jd;部材断面 の引張応力の合力と圧縮応力の合力の間の距離(jd = d/1.15), b_p ; 押抜きせん断応力度の算出に用いる 外周長さ(有効高の 1/2 離れた面に 45[°]の角度で投影した外周長さ)である。

整理すると、昭和55年版コンクリート標準示方書のせん断応力度の2倍の値が道路橋示方書の押抜きせん 断応力度の制限値であり、 $\tau = 1.15\tau_c$ となるため、道路橋示方書のせん断応力度の制限値 τ_c の1.15×2倍が 押抜きせん断応力度の制限値と考えられる。H24 道示III編のせん断応力度の許容値は、表-4.1.3のとおりと なっており、その下段に1.15×2倍の値を示している。

コンクリート設計基準的度		24	27	30	40	50	60
コンクリートが負担できる平均せん断応力度 て	0.36	0.39	0.42	0.45	0.55	0.65	0. 70
上記の 1.15×2倍 ⇔ 押抜きせん断応力度	0.83	0.90	0.97	1.04	1.27	1.50	1.61
0.19·√σ _{ck} ※1 (参考)	0.87	0.93	0.98	1.04	1.20	1.34	1.47

表-4.1.3 H24 道示Ⅲ編コンクリートが負担できる平均せん断応力度 (N/mm²)

なお、H24 道示III編のコンクリートが負担できる平均せん断応力度は、次に示す CEB-FIP1976 式⁵(スタ ーラップがある場合)が基本となり、安全率 $\gamma = 1.5 \times 1.7 = 2.55$ { $\Rightarrow 1/(\mu - 1.64\sigma) = 1/(1.040 - 1.64 \times 0.353) = 2.17$; 5%フラクタイル値} を考慮したものと整理される。

 $\tau_{cOIII} = 0.6 \times 0.2 \times \sigma_{ck}^{2/3}$ ・・・・・・・・・・・・・・・・・・・CEB-FIP1976 式 (平均式)

ここに、 τ_{com} : コンクリートが負担する平均せん断応力度、 σ_{ck} : コンクリートの設計基準強度

なお,この式はバイアス μ =1.040,標準偏差 σ =0.353,変動係数 ν =0.339, n=60 体である(表-4.1.4 参照)。

一方, せん断補強筋のない面部材に対して押抜きせん断実験から推定された押抜きせん断耐力式は昭和61 年コンクリート標準示方書およびその改訂資料⁶⁰に次のように示されている。

 $V_{pcd} = f_{pcd} \cdot u_p \cdot d / \gamma_b \qquad (4.1.9)$

この式はバイアスµ=1.033,変動係数v=0.159, n=132 体であることが S61 コンクリート標準示方書改

訂資料[®]に示されている。これより、安全率は $\gamma = 1/\{\mu (1-1.64\nu)\} = 1/\{1.033 \times (1-1.64 \times 0.159)\}$ =1.31 となり上記部材係数 γ_b と一致している。

参考までに,

$$\begin{split} d = &100 \text{cm}, \ p = &1.0\%, \ u \ / \ d = &2 \ \& \ \exists \ d = &1.0, \ \beta_p = &1.0, \ \beta_r = &1.67 \ \& \ \& \ \& \ \& \ b \in \ d \in \ d$$

となり、H24道示Ⅲ編に示されている押抜きせん断応力度の制限値とほぼ一致する(表-4.1.3参照)。

表-4.1.4 せん断補強筋のない棒部材のせん断実験と耐力推定式の対比2

4.1.5 ねじりモーメントによる補強鉄筋の応力度及び斜引張破壊に対するねじり耐力の特性値

(1) ねじり補強鉄筋量の算定式

ねじりモーメントを受ける鉄筋コンクリート部材において、横方向及び軸方向で構成された配筋を持つ部 材に純ねじりモーメントM_tが作用した場合、図-4.1.2及び図-4.1.3に示すような力の釣り合い関係¹⁴を持 ち、部材外周のらせん状に配置された斜め圧縮材によって抵抗する。斜圧縮力は軸方向鉄筋の引張力と直角 方向に配置されたスターラップ(横方向鉄筋)の引張力に分担され、横方向鉄筋及び軸方向鉄筋のどちらか 先に降伏に達した時点で斜め引張破壊となる。

参考文献15)に示される許容ねじりモーメントに対して誘導された提案式は、ねじりモーメントに対して、 横方向鉄筋の間隔、横方向1本の鉄筋断面積、軸方向全鉄筋断面積、環状鉄筋の短辺及び長辺の長さから成 り立っている。この関係式は、オーストラリアの1963年の鉄筋コンクリート部材の規定に採用されているも のと一致し(ねじりを受けるコンクリート部材に関する各国の設計基準¹⁶⁾に解説されている)、Cowan¹⁷⁾¹⁹ の研究を参考に定めたものと推測される(表-4.1.5 参照)。

図-4.1.2 ねじりひひ害れ発生後の鉄筋コンクリート

部材断面における力の釣り合い14

図-4.1.3 理想化したコンクリートと鉄筋の機能14

国 名	横方向鉄筋	軸方向鉄筋	備考
アメリカ (ACI)	$a_v = \frac{(\tau_u - \tau_c)S\sum db^2}{3\Omega d'b'\sigma_{sy}}$	$a_l = \frac{2a_v(b'+d')}{S}$	M _{tN} ; ねじり補強鉄筋の負担するねじり モーメント M. : 設計わじりエーメント
アメリカ (GSA)	$a_{v} = \frac{S_{t} \cdot S}{\sigma_{sa}}$ $S_{t} = \frac{b(\tau_{t} + \tau_{u} - \tau_{ca})}{4\tau_{t}}$	_	b'd'; コンクリート断面の芯の幅, 高さ Ω; b'd'による形状係数 Ω = [0.66 + 0.33(d' + b)] ≤ 1.5
オーストラリア	$a_v = \frac{M_{tN} \cdot S}{1.6b' d' \sigma_{sa}}$	$a_l = \frac{M_{tN}(b'+d')}{0.8b'd'\sigma_{sa}}$	S'; 軸方向鉄筋の間隔 $M_{tN} = M_t - M_{tc}$
ドイツ	$a_v = \frac{M_t \cdot S}{2b' d' \sigma_{sa}}$	$a_l = \frac{M_t \cdot S'}{2b'd'\sigma_{sa}}$	<i>M_{tc}</i> ;コンクリートの負担するねじり モーメント
フランス	$W_{t0} = \frac{0.4(b+d)}{d} \cdot \frac{\tau_c}{\sigma_{sa}}$	$W_0 = \frac{b+d}{3d} \cdot \frac{\tau_t}{\sigma_{sa}}$	W _{t0} , W ₀ は鉄筋比

表-4.1.5	長方向断面に関す	る各国のねじり	補強鉄筋算定式16)
---------	----------	---------	------------

(2) オーストラリアの 1963 年の鉄筋コンクリート部材の規定¹⁶⁾

i) 環状鉄筋断面積 (2本) として, 式(4.1.10)が規定されている。

$$A_{sv} = \frac{s \cdot M_t}{0.8x_1 y_1 \sigma_s} \tag{4.1.10}$$

式(4.1.10)を道示に合わせて記号の変換を行い、鉄筋1本あたりの断面積Awtに変更すると、

$$\sigma_{st} = \frac{M_t \cdot a}{1.6 \cdot b_t h_t A_{wt}} \quad (4.1.12)$$

ここに, *M*_t : 部材断面に作用するねじりモーメント (N・mm)

a: 横方向鉄筋の間隔(mm)

σ_{st}:ねじりモーメントに対する横方向鉄筋の応力度 (N/mm²)

ii) 軸方向鉄筋全断面積として,式(4.1.13)の関係が規定されている。

式(4.1.13)は、S53 道示III編解説(解2.6.1)と同じ内容であり、横方向鉄筋と軸方向鉄筋が同鉄筋量か、 その比率が0.7~1.3の範囲で適用できることが示されている。式(4.1.13)に式(4.1.10)を代入すると、

$$A_{s} = \frac{s \cdot M_{t}}{0.8x_{1}y_{1}\sigma_{s}} \frac{(x_{1}+y_{1})}{s}$$
$$= \frac{M_{t}(x_{1}+y_{1})}{0.8x_{1}y_{1}\sigma_{s}} \qquad (4.1.14)$$

式(4.1.14)を道示に合わせて記号の変換を行い、軸方向鉄筋の断面積Autに変更すると、

$$A_{lt} = \frac{M_t(b_t + h_t)}{0.8b_t h_t \sigma_{sl}} \dots (4.1.15)$$

$$\sigma_{sl} = \frac{M_t(b_t + h_t)}{0.8b_t h_t A_{lt}} \dots (4.1.16)$$

ここに、 σ_{sl} :ねじりモーメントに対する軸方向鉄筋の応力度 (N/mm²)

以上より,オーストラリアの1963年の鉄筋コンクリート部材の規定と道示に規定されている補強鉄筋の応 力度算定式は、同一であることがわかる。

(3) ねじり補強鉄筋量の算定式の根拠

ねじり補強鉄筋量の算定式は、参考文献 16)において既往の研究者によって提案された提案式をまとめて いる。その中で、S53 道示III編及びオーストラリアの 1963 年の鉄筋コンクリート部材の規定で採用されてい る提案式は、Cowan¹⁷⁾¹⁸⁾によって提案された理論式によることが解説されている。以下の式(4.1.17)が提案式 である。

ここに, M_{ts}:鉄筋によって負担されるねじりモーメント(N・mm)

 $M_{tc}: コンクリートによって負担されるねじりモーメント(N・mm) <math>\lambda: 係数=1.6$

 $A': A' = b_t h_t$ スターラップで囲まれた断面積(mm²)

 $a_v: a_v = A_{wt}$ スターラップ1本の断面積(mm²)

σ_{sa}:スターラップ(横方向鉄筋)の許容応力度

s:s=aスターラップの間隔(mm)

ねじりモーメントのコンクリートの効果は不明な点もあるため、M_{tc}を0とすると以下のとおりとなる。

以下,式(4.1.18)及び式(4.1.19)について,解説を行う。

鉄筋コンクリートにおけるねじり補強鉄筋量の算定式は、立体トラス理論を基本として軸方向鉄筋と横方 向鉄筋によって補強された組合せに対して有効であることになっている。部材にねじりが作用すると横方向 の斜め方向に鉄筋の引張力を受け、それと直角方向に斜め圧縮力が作用(両者は等しい)する。この引張力と 圧縮力が部材中心軸に関するねじりモーメントを算定することで式(4.1.18)及び式(4.1.19)を誘導している

横方向鉄筋は、らせん鉄筋と閉合したスターラップが考えられるが、らせん鉄筋は鉄筋の加工配置が複雑 であるので実用上は閉合スターラップが望ましいが、補強鉄筋量の算定式の誘導において、Cowan はらせん 鉄筋としての補強鉄筋量の算定式を導いた上で、閉合スターラップとして断面形状に関する係数で補正する ことで式(4.1.19)を導いている¹⁹。

4.1.6 コンクリートの支圧強度の特性値

昭和6年コンクリート標準示方書²⁰⁾から定まる土木学会式の支圧応力は、式(4.1.20)となり、支圧を受ける面積に対する補正は式(4.1.21)となる。

 $\sigma_{ca}' = \frac{\sigma_{ck}}{3.5} = 0.3 \sigma_{ck} \qquad (4. 1. 20)$ $\sigma_{ca}' = \frac{\sigma_{ck}}{3.5} \sqrt[3]{\frac{A}{A'}} = 0.3 \sqrt[3]{\frac{A}{A'}} \sigma_{ck} \qquad (4. 1. 21)$

ここに、A は支承の面積、A'は支圧を受ける面積である。基本的な考え方は、支圧面全面(柱状の構造物) に荷重を受ける場合よりも、局所的に荷重を受ける場合の方が横方向の拘束力が高まり圧縮強度が大きくな ることによる²¹⁾。

道路橋示方書では、S42年コンクリート標準示方書²⁰より提案された簡易式による標記が記載されている。

 $\sigma_{ca}' = (0.25 + 0.05 \frac{A}{4})\sigma_{ck} \qquad (4.1.22)$

ただし、 $\sigma'_{ca} \leq 0.5\sigma_{ck}$

この簡易式の適用範囲としては、

①A と A' は重複してはならず

②Aの幅と長さがそれぞれA'の幅と長さの5倍より小さい範囲

③許容値の上限(0.5σ_{ck})は、A/A'が5以下である。

 $\sigma_{ca}' = (0.25 + 0.05 \times 5)\sigma_{ck} = 0.5\sigma_{ck} \qquad (4.1.23)$

これは、コンクリート標準示方書で採用されてきた3乗根の式と簡易式が、A/A'が5以下で一致することで示されている。

図-4.1.4 コンクリート標準示方書の3乗根式と道路橋示方書の簡易式の比較

4.1.7 相反応力部材に対する照査

これまでの道示III編は、終局荷重は直接的に終局状態を照査するための荷重として、PC構造において設計 荷重以上の荷重が作用した時にひび割れ発生と同時にPC鋼材が降伏に至らないこと、コンクリートが圧壊し ないことを照査する目的で導入されていた。そして、PC構造では許容応力に抑えている状態と終局状態が比 例関係にないことから、破壊に対する安全率を鋼橋に合わせ1.7と設定し、1.7D+1.7Lの終局荷重が設定さ れて終局状態の照査を行っていた。

終局荷重作用時の荷重組合せとしては,他に1.3D+2.5L及び1.0D+2.5Lがあり,これらの式はLの不確 定性が大きいこと(将来増加する可能性)を鑑み,DとLが異符号となる場合の危険性を考慮して設定され ていた²³⁾²⁴。これらの式は破壊に対する安全率である1.7で除すると事実上,0.76D+1.47L及び0.58D+1.47L の荷重組合せを与えているのと同じことになる。コンクリート橋の場合,プレストレスにより死荷重を打ち 消していると考えれば,実質D≒0として,1.47Lに対して照査していたことになる。

鋼橋においては、これまでの道路橋示方書でも部材応力に占める活荷重応力の割合が大きい部材では、活 荷重の増大によって生じる部材応力が他の部材に比べて大きいことから、将来の活荷重の増大にも耐えるよ うに相反応力部材の照査が規定されていた。具体的には、活荷重を 30%増しとして設計することが行われて おり、D+1.3Lの照査をしており、これは前述の1.47L≒1.3L である。そのため、鋼橋とコンクリート橋にお いて、相反応力部材に対する安全余裕の考え方は同じであり、相反応力部材の規定 (D+1.3L の荷重組合せ を用いる)を導入することで、終局荷重 (1.3D+2.5L, 1.0D+2.5L)の組合せで達成しようとしていた安全 性が確保できると考えられる。

なお、D とL が均衡する、もしくはL がやや卓越する状況において、L と同符号の効果をD+L によって表現 する必要がある。そのため、敢えて D とは異符号となる D+L の状況を作り出している。たとえば、D=L のと き D+L の照査は 0 となり異符号にならないが、1.3L とすることで D とは異符号の照査をさせている。L が卓 越する状況(Lと比べてDが小さい状況:0.3L>D)では、D+LはDとは異符号となり、また過剰にLを1.3 倍することになるので、Dの効果(Lを減ずる作用)をみない代わりに、Lだけの照査としている。

ここで,D+L による曲げモーメントと,他の組合せ(1.3D+2.5L, 1.0D+2.5L)による曲げモーメントの比較を行う。試算の対象として,以下の2つの橋梁を選定した。

1) A 橋: PC10 径間連続箱桁橋(橋長 360.5m, 最大支間長 39.7m, 幅員 10.21m~9.68m)

図-4.1.5 A橋の側面図及び正面図

2) B橋: PC3径間連続ラーメン箱桁橋(橋長154.0m,最大支間長70.0m,幅員10.15m)

図-4.1.6 B橋の側面図及び正面図

図-4.1.7 から図-4.1.9 に A 橋及び B 橋の曲げモーメント図を示す。いずれの橋梁の場合にも、大部分の断面で 1.7 (D+L) による曲げモーメントが大きいことがわかるが、正負交番付近において 1.7 (D+L) 以外の荷 重組合せによる曲げモーメントが大きくなっていることがわかる。

図-4.1.8 A橋正負交番付近における曲げモーメント図

図-4.1.9 B橋全体における曲げモーメント図

4.2 抵抗係数

4.2.1 部材設計に関する抵抗係数

(1) 抵抗係数調査方法

抵抗側の不確実性として,耐荷力の評価に関わる材料強度のばらつき,施工品質,耐荷力推定式の精度等 のばらつきを考慮する。抵抗係数の設定に際しては,日本国内における技術水準や道路橋の部材として用い られ,標準的な材料,施工法,及び構造形式で作られることを前提として,既設橋の実績なども踏まえる。 整理すると次の通りとなる。

【前提となる統計量】

- a) 耐荷力推定式の推定誤差(実験式・理論式)
- b) 受け入れ材料のばらつき(前提とする材料強度)
- c) 製作・組立て(寸法・形状誤差)
- d) 打設・養生のばらつき(実構造物となった場合のばらつき:定量化困難)

【抵抗係数の設定方法】

(制約条件)

- a)従来の実質安全率を変えない(橋の緒元を大きく変えない)
- b)品質を確保(強度最低保証だけなく、均質性(品質信頼性)を確保)

(設定方法)

- a)標準的なばらつきを前提とするが、全てのばらつきを定量化することができないため、定量化できる 範囲を踏まえた上で、最終的な耐力として標準的なばらつき、すなわち公称ばらつきを設定する。そ の上で、抵抗係数により低減される耐力が非超過確率5%となるよう係数を定める。
- b) 耐力算定式によっては、定量化に対して信頼性の高いデータが不足しているため、標準的なばらつき を設定せず、従来安全率の逆数を抵抗係数として与える。
- c)特性値の計算には、設計基準強度および鋼材公称値を用いる。

(2) 抵抗係数の前提となる材料その他のばらつき

前提となる材料の品質や施工誤差のばらつきに関して、耐荷性能へ影響を与えると考えられる変動要因を 抽出し、各変動要因の確率統計量は既往の調査結果等を踏まえて総合的に勘案して設定する(2章参照)。 前提となる標準的な材料その他のばらつきを表-4.2.1に示す。

この材料の品質や施工誤差のばらつきを考慮して,FOSM 法を用いて耐荷力のばらつきを試算した結果を 「付録2 FOSM 法による材料変動による耐力の試算」に示している。試算では降伏曲げモーメント,破壊抵 抗曲げモーメント,及び斜引張破壊に対するせん断耐力のばらつきを評価しており,得られた変動係数を表 -4.2.2 に示す。

抵抗側 不確定要因	分	領等	基準值***	データ数	バイアス	変動係数	仮定する 確率分布形
コ オ料強度 鉄 PC	コンクリート圧縮強	度	JISの呼び強度	1, 175 (186*)	1.26	15%*	正規
	コンクリートヤング係数		道示	道示 241		10%	正規
	鉄筋降伏強度		JIS 規格下限值 16,544		1.14	4%	対数正規
	PC 鋼材 · 胰酸		JIS 規格下限値	9, 212	1.03	1%	対数正規
	コンクリートのク リープの影響	クリープ係数	共通編による	_	↓**	Ļ	正規
16/10/4-205/12	コンクリートの乾	プレ減少	20×10 ⁻⁵	310	1.0	17%	正規
初生委门口	燥収縮の影響	不静定力	15×10 ⁻⁵	310	1.0	17%	正規
	プレストレスカ ヤング係数比		15(RC), 個別 (PC)	-	-	-	確定値
部材寸法	有效高		設計値	_	1.0	± 10 mm	正規

表-4.2.1 道路橋示方書におけるコンクリート部材の前提となる標準的な材料特性

* コンクリート圧縮強度の変動係数は、標準養生供試体においては 6.99%であるが、既設橋等からのコアサンプルの圧縮試験強度の結果から 15%と設定している。

** クリープについては、有効なデータが存在しないため、乾燥収縮と同等のばらつきをもつと仮定している。

*** 平均値(基準値)・変動係数は、データに対してモーメント法により決定している(ノンパラメトリックの方法)

昭本百日	中色	変動係数			
肥且視日	争务	最大COV _M	平均		
曲げモーメント又は	降伏曲げモーメント	4.6%	2.4%		
軸方向力	破壊抵抗曲げモーメント	4.6%	2.0%		
せん断力	斜月1張破壊における せん場而け力(Sc+Ss)	3.4%	3.0%		

表-4.2.2 材料変動による耐荷力のばらつき (FOSM法)

(3) 耐荷力評価式のばらつき

抵抗係数の設定における前提として、耐荷力評価式のモデル化誤差、つまり理論式や実験式と実験結果の 乖離についても不確実性を考慮する。このモデル化誤差を考慮する上で、十分なデータが得られた降伏曲げ モーメント、破壊抵抗曲げモーメント、及び除引張破壊に対するせん断耐力について、確率統計量を整理し ている(表-4.2.3 参照)。降伏曲げモーメント及び破壊曲げモーメントのモデル化誤差の根拠については、 この資料の4.2.2に記載している。また、斜引張破壊に対するせん断耐力のモデル化誤差については、土木 研究所資料第4044号²⁵⁾で整理された既往実験219体の結果を用いて参考文献2)で整理している。

分類等	評価式	データ数	バイアス	変動係数 COV _E	仮定する 確率分布形
降伏曲げモーメント	理論式	258	1.00	9. 6%	正規分布
破壊抵抗曲げモーメント	理論式	105	1.01	10.7%	正規分布
斜月県破壊に対するせん断耐力 (Sc+Ss)	実験式	219	1. 30	20.8%	正規分布

表-4.2.3 耐荷力評価式のモデル化誤差によるばらつき

(4) 抵抗係数の調査

耐荷力のばらつきの支配的要因(材料変動+モデル化誤差)を考慮して、公称ばらつき及び分布形状が設定され、表-4.2.2及び表-4.2.3に示す確率統計量(バイアスbおよび変動係数 COV)に基づき、式(4.2.1) 及び式(4.2.2)により5%フラクタイル値を仮定した抵抗係数を試算する(「付録6 確率計算に関する留意 事項」参照)。また、バイアスについては基本的に抵抗係数Φ_Rに含めず特性値に含める。なお、抵抗係数の 試算は、地震時の影響を考慮しない作用の組合せに関して行い、公称ばらつきを設定できないものは、これ までの示方書で考慮していた安全率の逆数とする。

 $COV_R = \sqrt{COV_E^2 + COV_M^2} \quad (4.2.1)$

 $\Phi_R = 1 - 1.64 \times COV_R \quad (4.2.2)$

ここに、 COV_R: 耐荷力の公称ばらつきとしての変動係数
 COV_E: モデル化誤差による耐荷力の変動係数

COV_M: 材料変動による耐荷力の変動係数

 Φ_{R} :抵抗係数

耐荷性能に関する部材設計の照査項目ごとに抵抗係数を試算した結果を以下に示し、一覧表を表 4.2.4 に 示す。なお、抵抗の制限値 R_d は特性値Rと係数 ξ_1 、 ξ_2 及び抵抗係数 ϕ_R を用いて式(4.2.3)より得る。ここ に、 $\xi_1=0.9$ とする。

照査 項目	内容	照查式	Φ_{R}	備考
軸力と曲げ	降伏曲げモーメント	$M_{Yd} = \xi_1 \xi_2 \Phi_{RY} M_Y$	$\Phi_{RY} = 0.85$	公称ばらつき COV _R =10%, b=1.0
モーメント 破壊抵抗曲げモーメント		$M_{ud} = \xi_1 \xi_2 \Phi_{Ru} M_u$	$\Phi_{Ru} = 0.80$	公称ばらつき COV _R =12.5%, b=1.0
	ウェブ正博	Sucd	$\xi_2 \Phi_{ucw} = 0.70$	従来安全率の逆数(終局荷重)
せん断力		$=\xi_1\xi_2\varphi_{ucw}S_{ucW}+\xi_1\xi_2\varphi_{up}S_p$	$\xi_2 \Phi_{up} = 0.70$	従来安全率の逆数(終局荷重)
	斜引張破壊(Sc+Ss)	$S_{usd} = \xi_1 \xi_2 (\phi_{uc} S_c + \phi_{us} S_s)$	$\Phi_{uc} = 0.65$ $\Phi_{us} = 0.65$	Sc+Ss: Cov=20. 8% b=1. 3
	斜引張破壊 (Sp)	$+\xi_1\xi_2\Phi_{up}S_p$	$\xi_2 \Phi_{up} = 0.70$	従来安全率の逆数(終局荷重)
	押抜きせん断力	$P_{Pud} = \xi_1 \xi_2 \Phi_{Ps} P_{Pu}$	$\xi_2 \Phi_{Ps} = 0.85$	従来安全率の逆数(設計荷重)
ねじり	ウェブ or フランジの圧壊	$M_{tucd} = \xi_1 \xi_2 \Phi_{tuc} M_{tuc}$	$\xi_2 \Phi_{tuc} = 0.70$	従来安全率の逆数(終局荷重)
モーメント	部材の斜引張破壊	$M_{tusd} = \xi_1 \xi_2 \Phi_{tus} M_{tus}$	$\xi_2 \Phi_{tus} = 0.70$	従来安全率の逆数(終局荷重)
支王応力	支王応力度	$\sigma_{bad} = \xi_1 \xi_2 \Phi_{ba} \sigma_{ba}$	$\xi_2 \Phi_{ba} = 0.85$	従来安全率の逆数(設計荷重)

表-4.2.4部分抵抗係数の試算結果

1)曲げモーメント又は軸方向力を受ける部材の部分係数

降伏曲げモーメント及び破壊抵抗曲げモーメントにおいて、材料変動による耐荷力の変動係数 COV_M と モデル化誤差による耐荷力の変動係数 COV_E との平方二乗和から、部材耐力の公称ばらつきとして降伏曲 げモーメントの変動係数 COV_R =10.6%=10%、破壊抵抗曲げモーメントの変動係数が COV_R =11.6%=12.5 と なる。これより、降伏曲げモーメントの抵抗係数は Φ_{RY} =1-1.64×10%=0.85、破壊抵抗曲げモーメ ントの抵抗係数は Φ_{Ru} =1-1.64×12.5%=0.80 となる。

2) せん断力を受ける部材

せん断を受ける部材で斜引張破壊に対するせん断耐力は、せん断補強鉄筋を有する RC 矩形断面に対して、 修正トラス理論で S_c の下限式及び S_s の下限式を用いた式 $S_c + S_s$ による計算結果と、既往実験供試体での結 果を比較して耐力評価式のモデル化誤差を評価している。そのため、 $S_c + S_s$ の公称ばらつきを設定し、抵 抗係数を算出している。材料変動及びモデル化誤差を考慮した変動係数の平方二乗和より $S_c + S_s$ の公称ば らつきは COV_R =21%=20%となり、バイアスは1.3となる(図-4.2.1、図-4.2.2参照)。これより、 $S_c + S_s$ の抵抗係数は $\Phi_u = 1 - 1.64 \times 20\% \approx 0.65$ となる。バイアス 1.3 については、 S_c 及び S_s の特性値に補正 係数として導入する。

3) 従来安全率から設定される抵抗係数

部材設計における照査項目で信頼性評価に対してデータが不足する項目は、経験的に従来の安全率から逆算して、抵抗係数を試算する。

例えば、照査項目として押抜きせん断力や支圧応力では、これまでの道示では設計荷重作用時(D+L) における許容応力度が与えられていた。従来の終局荷重時相当の安全余裕を確保するため、特性値に補 正係数として1.7を考慮すると、従来の温度荷重時の安全余裕は1.7/1.15=1.44となる。ここで、温度 荷重時を想定するのは、キャリブレーション結果より影響の大きい荷重組合せであるためである。荷重 側の係数を1.05~1.2と仮定すると、抵抗係数は以下の通りとなる。

 $\xi_2 \cdot \phi_R = (在来安全率の逆数) × (荷重側の係数) / \xi_1 = 1/1.44 × (1.05~1.2) / 0.9 = 0.85$

表-4.2.4 に示す他の照査項目に関しては、これまでの道示では終局荷重作用時の照査で規定されていた項目であり、安全率は1.7 程度有している。そのため、荷重側の係数を1.05~1.2 と仮定すると、抵抗係数は以下の通りとなる。

 $\xi_2 \cdot \Phi_R = (在来安全率の逆数) × (荷重側の係数) / \xi_1 = 1/1.7×(1.05~1.2) / 0.9=0.70$

4.2.2 降伏曲げモーメント及び破壊抵抗曲げモーメントの評価式のばらつき

(1) 理論値と実験結果の比較

表-4.2.3 における降伏曲げモーメント及び破壊抵抗曲げモーメントの評価式に基づく変動係数は、建設省の総合プロジェクトの RC 短柱委員会の実験及び計算結果を整理した資料に基づいている²⁰¹²⁷⁾²⁸。RC 短柱委員会の実験では、水平力を受ける柱供試体で曲げ降伏を生じた 258 本の供試体の降伏耐力及び終局破壊に至った 105 本の終局耐力を求め、理論値との対比が行われ図-4.2.3 のように整理されている。この場合の変動係数は、降伏耐力が 9.6%、終局曲げ耐力は 10.7% となっている。

RC 短柱委員会は昭和48年付近に日本建築センターで実施しているものであるため、日本建築学会の規準に基づいている。そのため、図-4.2.3の結果を適用するにあたり、道示と日本建築学会の規準で理論式に相

図-4.2.3 水平加力柱の曲げ耐力27)

(2) RC 短柱委員会における理論式

RC 短柱委員会の降伏曲げモーメントM_y及び終局曲げモーメントM_uの理論式は,昭和52年10月の日本建築学会大会学術講演梗概集の「鉄筋コンクリート短柱の崩壊防止に関する総合研究(その51:部材の塑性率と帯鉄筋量の関係について)²⁷⁾」にて示されており、以下の通りである。

表-4.2.5 計算式と実験値の比較20

式	名	採	用	式	資料数n	実験値/計算値の範囲と平均m	標準偏差σ
降伏せ	ん断力	$Q_y = \{g_1 a_t \sigma_y D -$	+ <mark>0.5σ₀bD²(1 -</mark>	$-\sigma_0/F_c)$	258	0 68∼1 55, m=0 998	0 096
曲げ終	局耐力	$Q_{bu} = \{0.8a_t \sigma_y D$	$+ 0.5 \sigma_0 b D^2 (1 \cdot$	$-\sigma_0/F_c)$	105	0 72~1 29, m=1 012	0 108

表-4.2.5の曲げ終局耐力は,昭和46年鉄筋コンクリート構造計算規準・同解説(日本建築学会)²⁰⁾の柱の曲げ終局強度式(4.2.4)と同じであり,この場合の軸力Nは,設計基準強度の40%以下である必要があることが示されている。

 $N \leq 0.4 b D F_c O \geq \delta$,

表-4.2.5より,

- ここに、 $g_1: g \div D$ 圧縮鉄筋と引張鉄筋間の距離gを断面高さ寸法Dで割ったもの
 - $a_t: 引張鉄筋比$
 - σ_v :引張鉄筋の降伏強度(kgf/mm²)
 - D:断面高さ寸法(cm)
 - b:断面幅寸法(cm)

 σ_0 :軸方向圧縮応力度(kgf/cm²) 210/4, 210/8 F_c :コンクリート設計基準強度 210(kgf/cm²) h_0 :柱高 (cm)

降伏曲げモーメント My 及び終局曲げモーメント Mu は以下の通りと解釈できる。

 $Q_y = M_y \cdot 2/h_0$ (4.2.7) $Q_{bu} = M_u \cdot 2/h_0$ (4.2.8)

 $M_y = g_1 a_t \sigma_y D + 0.5 \sigma_0 b D^2 (1 - \sigma_0 / F_c) \cdots (4.2.9)$

$$M_u = 0.8a_t \sigma_y D + 0.5\sigma_0 b D^2 (1 - \sigma_0 / F_c) \cdots (4.2.10)$$

図-4.2.4 柱断面における鉄筋降伏時の応力度分布

 M_y 及び M_u の式(4.2.5)及び式(4.2.6)は、図-4.2.4 より1項が引張抵抗側、2項は圧縮抵抗側と考えられるため、H24 道示III編の破壊抵抗曲げモーメント M_u 式(4.2.11)と同等であると想定される。よって、式(4.2.11)とDの整合性を確認する。

ここに、C:コンクリート圧縮応力度の合力(N)

T:鋼材引張力の合力(N)

 $y_1, y_2: 断面図心よりC及びTまでの距離(mm)$

(3) RC 短柱委員会における理論式と道示式の整合性確認

1)曲げ降伏強度について

RC 短柱委員会の計算式

$M_y \mathcal{O} 1 \overline{\mathfrak{q}} : g_1 a_t \sigma_y D \cdots \cdots$	•••••••••••••••••••••••••••••••••••••••	(4. 2. 12)
M_{γ} の2項: $0.5\sigma_0 b D^2 (1 - \sigma_0/F_c)$		(4. 2. 13)

2)1項の整理

引張応力度は,	以下の関	系がある。			
$\sigma_s = M \div$	$(A_s \cdot jd)$		 	 	 (4. 2. 14)

 $M_{\nu} = \sigma_{s\nu} \cdot A_s \cdot jd \qquad (4.2.15)$

式(4.2.15)を建築用に記号変換($\sigma_{sy} = \sigma_y$, $A_s = a_t$, jd = g)を行い、 $g = g_1 D$ とすると式(4.2.12)となる。

$$M_y = \sigma_y \cdot a_t \cdot g = \sigma_y \cdot a_t \cdot g_1 D \cdots M_y \mathcal{O} 1 項である式(4.2.12) と一致する。$$

3)2項の整理

右図の圧縮ブロック面積に図心とブロック中心間の距離をかけると以下の通りとなり、式(4.2.11)の第2項であるT・y2とほぼ同様な式となる。

 $F_c \cdot x_n \cdot b(D/2 - x_n/2) = T \cdot y_2 \cdots (4.2.16)$

ここで、 $\sigma_0 = N \div (b \cdot D), F_c \cdot x_n \cdot b = N$ の関係から式(4.2.16)を展開する。

 $0.5F_c \cdot N/(F_c \cdot b) \cdot b(D - N/(F_c \cdot b))$

 $= 0.5N(D - N/(F_c \cdot b))$

 $= 0.5\sigma_0 bD^2(1-(\sigma_0 bD)/(F_c bD))$

以上より, RC 短柱委員会の式(4.2.9)と式(4.2.11)は同じ式であり,式(4.2.11)の根拠として, RC 短柱委員会の実験及び計算の資料を用いて問題ない。

4章 参考文献

- 池田尚治、小柳洽、角田與史雄:土木学会編 新体系土木工学 32 鉄筋コンクリートの力学、技報堂出版、 pp. 186-189, 1982.11
- 2) 国立研究開発法人土木研究所:コンクリートはりのせん断耐荷力に関する研究,土木研究所資料 第4373 号, 2018.5
- Comite Euro-international du Beton : CEB-FIP Model Code 1990 Design Code, Thomas Telford,
 6.2.2.2(pp. 148-149), 6.3.3.2(pp. 155-156), 1993.6
- 4) 土木学会:コンクリート標準示方書 昭和55年版,1980.4
- 5) 岡村甫: CEB モデルコードにおけるせん断規定(案),コンクリート工学, Vol. 14, No. 11, pp. 104-107, 1976.
- 6) 土木学会:コンクリート標準示方書(昭和 61 年制定)改訂資料,コンクリートライブラリー第 61 号, pp. 170-172, 1986.
- 7) 井畔瑞人,塩屋俊幸,野尻陽一,秋山暉:等分布荷重下における大型鉄筋コンクリートはりのせん断強度に 関する実験的研究,土木学会論文集,第348号, pp.175-184, 1984.8
- 8) 二羽淳一郎,山田一宇,横沢和夫,岡村甫:せん断補強鉄筋を用いないRCはりのせん断強度式の再評価, 土木学会論文集,第372号, pp. 167-176, 1986.8
- 9) 建設省土木研究所:鉄筋コンクリート部材のせん断実験データ集、土木研究所資料2045号,1984.3
- P. J. Taylar : Shear strength of large beams, Journal of Structural Devision, ASCE, 98 (11), pp. 2473-2490, 1972
- G.N. J. Kani : How safe are our large reinforced concrete beams?, Journal of ACI, Vol. 64, No. 3, pp. 128-141, March, 1967
- 12) 建設省土木研究所:大型RCはり供試体のせん断強度に関するデータ集,土木研究所資料第3426号,1996.1
- 13) 建設省土木研究所:高強度コンクリート部材の設計法に関する共同研究報告書-高強度コンクリートPCはり 部材の曲げせん断強度に関する調査-,共同研究報告書第122号,1995.3
- 14) 泉満明:ねじり補強鉄筋の機能と設計、コンクリート工学Vol.16, No.5, pp. 12-15, 1978.5
- 15) 泉満明:ねじりを受けるコンクリート部材の設計法,技報堂, 1972.9
- 16) 泉満明:ねじりを受けるコンクリート部材に関する各国の設計基準、コンクリートジャーナル Vol. 8, No. 12,
 pp. 75-86, 1970.12
- 17) Cowan, H. J. : An Elastic Theory for the Torsional Strength of Rectangular Reinforced Concrete Beams, Magazine of Concrete Research (London), Vol. 2, No. 4, pp. 3-8, 1950.7
- 18) Cowan, H. J. : The strength of Plain, Reinforced and Prestressed Concrete Under the Action of combined stresses, with Particular Reference to the Combined Bending and Torsion of Rectangular Sections, Magazine of Concrete Research (London), Vol. 5, No. 14, pp. 75-86, 1953. 12

- 19) Cowan, H. J. : Reinforced and Prestressed Concrete in Torsion, Edward Arnold Ltd., 1965.
- 20) 土木学会:昭和6年土木学会鉄筋コンクリート標準示方書解説, p. 62, 1931.10
- 21) 猪股俊司: プレストレストコンクリートの設計・施工, 技報堂出版, pp. 572-573, 1979.4
- 22) 土木学会:昭和42年版土木学会制定コンクリート標準示方書 鉄筋コンクリート標準示方書, p. 120, 1967.3
- 23) 示方書小委員会コンクリート橋分科会:コンクリート部材の破壊安全度の検討,道路, No. 423, pp. 68-73, 1976.
- 24) 猪俣俊司: PC 構造物の安全度について、プレストレストコンクリート、Vol. 3, No. 5, pp. 2-4, 1961.
- 25) 独立行政法人土木研究所:コンクリート構造物の設計に関する国際標準導入による影響とその対応,土 木研究所資料第4044 号,2007.2
- 26) 柴田拓二:鉄筋コンクリート部材の脆性破壊時耐力推算式の検討,コンクリート工学, Vol. 18, No. 1, pp. 26-37, 1980.1
- 27) 荒川卓,末永政悦:鉄筋コンクリート短柱の崩壊防止に関する総合研究(その51:部材の塑性率と帯筋 量の関係について),日本建築学会大会学術講演梗概集,構造系,Vol.52, pp.1513-1514, 1977.10
- 28) 日本建築センターRC 短柱委員会:鉄筋コンクリート柱の崩壊防止に関する総合研究の現況について、コンクリート工学, Vol. 13, No. 1, pp. 2–18, 1975.1
- 29) 日本建築学会:鉄筋コンクリート構造計算規準・同解説,1971.5

5章 接合部の設計の照査式及び抵抗係数の調査

5.1 照査式及び特性値

5.1.1 合成桁構造における桁と床版の接合部

(1) 限界状態の設定

合成桁の床版と桁の接合の設計において、H14 道示III編からH24 道示III編への改訂時に、H24 道示III編の式 (11.3.2)を欧米の基準¹⁾²⁾を参考に、曲げひび害れ発生後のせん断応力度算出式に改定されている。また、 桁と床版の接合は、構造細目で接合面積の0.2%のずれ止め鉄筋を配置するコンクリートの付着(せん断)強 度のみで抵抗する照査に改定されている³⁾⁴⁵⁵。この設計法は、いわゆる常時と呼ばれていた設計状況(頻繁 に起こりうる作用)に対して必要な安全余裕を確保するという観点に基づくものであり、ずれが発生したあ との挙動について明確な制御を行うものではなかった。

可逆性の範囲だけでなく、可逆性を有する範囲を超えた後の最大耐力までの部材性能を明確にすることが 基本とすると、合成桁構造における桁と床版の接合部についても弾性限界を超えた後の挙動を明確にし、適 切な安全余裕を確保する必要がある。部材挙動を明らかにするためには、以下の2点について照査すればよ いと考えられる。

- ① 可逆性の範囲内に留まることの照査として、H24 道示Ⅲ編と同様に桁と床版の接合面におけるコンク リートのせん断応力度を照査する。ただし、H24 道示Ⅲ編の設計法では、せん断応力度の算出時にお いて桁に曲げひび割れが生じた場合の照査式とされていたが、可逆性を有する範囲としてひび割れが 生じるまえの状態を想定することから、ひび割れ発生前の状態を仮定した応力算出を行う必要がある。
- ② 最大耐力を超えないことの照査として、接合面の付着力が失われたあとに、界面に生じるせん断応力 度が、ずれ止め鉄筋によるスタッド効果による抵抗力を超えないことを照査する。ただし、この場合 すでにずれが生じている状態を想定することから、応力算出にあたってはひび割れ発生時の状態を仮 定する必要がある。

(2) 桁と床版の付着係数

合成桁の桁と床版の接合面におけるせん断強度の特性値は、床版コンクリートの設計基準強度に付着係数 を掛けることで算定できる。付着強度は接合面の表面仕上げの影響を受けることが確認されており、表面仕 上げの異なる試験データから付着強度の影響は土木研究所における研究結果として整理している⁶⁷⁷。その研 究報告より、国内の道路橋に適用される PC 合成桁の接合面で一般的に用いられる洗い出し仕上げに関して、 付着強度を設計基準強度で除した値の平均値は 0.05 である(変動係数は 13.7%)。接合面を洗い出し仕上 げする場合、付着係数は 0.05 とすればよいと考えられる。

60

(3) 桁と床版のずれ止め鉄筋比

ひひ割れ発生後にスタッドが変形し、そのダウエル効果によって得られる抵抗力を考える。

図-5.1.1 弾性支承梁モデルの応力状態®

図-5.1.1 は接合鉄筋の弾性支承梁モデルの応力状態を示しており、この図に示すような終局荷重時のせん 断力と支圧強度の釣合いから、式(5.1.1)としてダウエル効果による鉄筋1本あたりのせん断耐力式が導か れている⁸。ただし、ダウエル効果による耐力が発揮される状態は変形が過大となるため、変形を制御する 目的から発生する応力を抑える場合、耐力をα倍すればよい(式(5.1.2)参照)。

 $Q_{\rm u} = 1.3 d^2 \sqrt{\sigma_{\rm c} \sigma_{\rm y}} \cdots (5.1.1)$ $Q'_{\rm u} = \alpha 1.3 d^2 \sqrt{\sigma_{\rm c} \sigma_{\rm y}} \cdots (5.1.2)$

ここに、 σ_c : コンクリートの圧縮強度、 σ_v : 接合鉄筋の降伏強度

いま,接合面のコンクリート面積を A_c とし,断面積 A_s の鉄筋径dの鉄筋がn本横断していることを想定すると,鉄筋比pは式(5.1.3)で与えられる。

一方,同耐荷機構であるスタッドの許容せん断耐力 Q_a は,「H24 道示II編 12.5 ずれ止め 12.5.5 許容せん断力」で式 (5.1.4)の通り規定され、必要とされる鉄筋比は以下のとおり算出できる。

$Q_a = 9.4 d^2 \sqrt{\sigma_{ck}} \cdots \qquad \cdots$	(5.1.4)
$\tau = nQ_a \div A_c \cdots \cdots$	(5.1.5)
$\tau A_c = 9.4 n d^2 \sqrt{\sigma_{ck}} \cdots $	(5.1.6)
$\tau = 9.4nd^2 \div A_c \cdot \sqrt{\sigma_{ck}} \cdots $	(5. 1. 7)
$\tau = 12 \cdot n \frac{3.14}{4} \cdot \frac{d^2}{A_c} \cdot \sqrt{\sigma_{ck}} \cdot \cdots \cdot$	(5.1.8)

ここに、 σ_{ck} : コンクリートの設計基準強度、 τ : 接合面に生じるコンクリートのせん断応力度 ダウエル効果による耐力を超えず、さらに変形に対しても十分な安全余裕を確保するための安全余裕の取 り方に定まったものはないが、一つの考え方として、せん断耐力がスタッドの耐力と同等とすればよいと考 えられる。よって、式(5.1.9)の鉄筋比相当となるよう α を定める。接合面にせん断応力が τ 作用している とき、せん断力は $Q = A_c \tau$ であり、このせん断力がn本の鉄筋が受け持つせん断力と等しいとすれば、 $nQ'_u = Q$ となる。

$$\left(\frac{nd^2}{A_c}\frac{3.14}{4}\right)\frac{4}{3.14}1.3\alpha\sqrt{\sigma_c\sigma_y} = \tau$$
(5.1.11)

$$p = \frac{\tau}{\frac{4}{3.14} \times 1.3\alpha \sqrt{\sigma_c \sigma_y}} \cdots (5.1.12)$$

つまり,式 (5.1.9) と式 (5.1.12) より,以下のとおりとなる。

$$\frac{4}{3.14} \times 1.3 \alpha \sqrt{\sigma_{\rm y}} = 12 \cdots (5.1, 13)$$

ここで、 $\sigma_y = 345$ N/mm²とすれば、 $\alpha = \frac{12}{\frac{4}{3.14} \times 1.3 \times 18.6} = 0.39 \Rightarrow 1/3$ となる。つまり、ダウエル効果によるせ

ん断耐力を 1/3 すれば、ほぼスタッド式と同等となる。式(5.1.12)にスタッド式相当とするためα=1/3= 0.33 とすると式 (5.1.14) が得られる。

5.1.2 ラーメン構造の端接合部

(1) 端接合部における応力状態の算出

端接合部ではコンクリートを弾性体と仮定し、端接合部が開く方向に荷重(内側引張)が作用した場合、 はり部分の内側の主鉄筋には引張力が作用し、外側のコンクリートには圧縮力が作用する。これらの引張力 及び圧縮力の合力はそれぞれはり部材軸に対して45°の傾きを持ち、その方向に引張力が発生し、コンクリ ート引張強度を超えた時点で割裂ひび割れが生じることとなる(図-5.1.2 参照)。このとき、図-5.1.3(b) の対角線上に発生する応力分布は放物線状となり、引張領域の長さは梁高さの0.75 倍となっている ⁹¹⁰。

次の仮定を設ければ、引張領域に作用する引張力の合計値Tは、応力による放物線の面積×奥行に等しい と考えられる。

①引張領域の長さLzを0.75hとする。

②引張応力の分布は二次放物線とする。

図-5.1.2 内側引張の曲げモーメントによる接合部のひひ割れ

(a) 節点部に生じる引張応力 (b) 対角線方向に生じる引張応力 図-5.1.3 内側引張の曲げモーメントが生じた場合の応力分布

引張応力の分布を二次放物線と仮定するため、二次放物線の数式を用いて引張応力度の最大値を算出する。 ここで、放物線 $\sigma = \alpha \left(x - \frac{L}{2}\right) \left(x + \frac{L}{2}\right)$ の面積 $S = \frac{\alpha L^3}{6}$ と頂点の最大値 $\sigma_{tmax} = \alpha \left(\frac{L}{2}\right)^2$ から、 $S = \frac{2}{3} L_z \sigma_{tmax}$ が得られ、部材幅Wをとすると式(5.1.15)の関係が与えられる。

 $T = S \times W = \frac{2}{3} L_z \sigma_{tmax} W \qquad (5.1.15)$

一方,鉄筋による引張力の合計値 T_H は,隅角部対角線上に作用する $T \ge T = \sqrt{2}T_H$ の関係があるため,式 (5.1.15) に代入すると,式 (5.1.16) が得られる。

$$\sigma_{tmax} = \frac{3T}{2WL_z} = \frac{3\sqrt{2}T_H}{2WL_z} \quad (5. 1. 16)$$

5.1.3 アンカーボルトによる連結

ここでは、アンカーボルトとして、先付けアンカーボルト(箱抜きアンカーボルトも含まれる)を対象と する。コンクリートに埋め込まれたアンカーボルトを連結した接合部は、アンカーボルトにせん断力及び軸 方向力を受ける場合の耐荷機構となり、アンカーボルトによる連結の破壊は、コンクリートに対してコーン 破壊、支圧破壊、付着破壊、アンカーボルト本体の降伏による破壊が考えられる。可逆限界を超えないと考 えられる状態や最大耐力を超えない状態にとどまるために必要な照査について、表 5.1.1 に整理した。可逆 限界については、コーン破壊、支圧破壊、付着破壊が生じないこと、さらに、アンカーボルトの降伏が生じ ないことを照査することで確認することができる。ただし、コーン破壊、支圧破壊、付着破壊については、 厳密にはコンクリートの最大耐力に相当する破壊である。しかし、これらの破壊モードに対して明確に可逆 限界点を定めることが困難であることから、照査点としては破壊点を想定し、その破壊点に対して十分な安 全余裕を想定することで可逆限界を超えないことを確認する。また、コーン破壊、支圧破壊が生じた場合で も、アンカーボルトが降伏に至らず、付着破壊が生じなければ、アンカーボルトによるダウエル抵抗が急激 に低下することがないことが確認されている。そのため、最大耐力を超えないことの照査にあたっては、付 着破壊を生じないこと、及びアンカーボルトが降伏に至らないことに対して確認する。

表-5.1.1 アンカーボルトの限界状態による区分

		アンカーザルト		
破壊形態	コーン破壊	支圧破壊	付着破壊	
可逆限界	0	0	0	0
最大耐力			0	0

(1) アンカーボルトの可逆限界

1) コーン破壊に対する軸方向引張力の制限値

コーン破壊はアンカーボルトに引張力が生じた時、コンクリートが円錐状に破壊される破壊形態を示し、 アンカーボルトの引抜力によりコンクリートの引張応力が引張強度を超えると破壊に至る。よって、コン クリートの引張強度*σ_{ct}*にコーン破壊面積*A_{cr}*を掛けたものが引張耐力の特性値*T_{cc}*となる。

 $T_{cc} = \sigma_{ct} A_{cr} \qquad (5.1.17)$

$$A_{cr} = 4\pi D^{2} \qquad d \ge 4D \\ A_{cr} = 4D(\pi D + (n-1)d)/n \qquad d < 4D \end{cases}$$
(5.1.18)

$$\sigma_{ct} = 0.23 \sigma_{ck}^{2/3} \quad (5.1.19)$$

ここに、D:アンカーボルト直径、d:アンカーボルト間隔、n:アンカーボルト列数

コンクリートの引張強度は式(5.1.19)により設定できるが、コーン破壊面積は破壊形態により変わるため、実験等による研究結果を用いている¹¹⁾¹²。以下にコーン破壊面積A_{cr}の設定方法を示す。

コーン破壊面積は、参考文献 11)をもとに、コンクリートに埋め込まれたアンカーボルトの頭部に水平 力を受けた場合の水平ズレ変形の実験結果から、コンクリート上面からアンカーボルト径の2倍の深さか ら引張・圧縮ひずみが大きくなり、それ以深のアンカーボルトはコンクリートに付着されていることを示した実験結果に基づいている(図-5.1.4参照)。そのため、コーン破壊面積はアンカーボルト径の2倍に相当する深さから45°の角度での破壊面を抵抗面積と考える。

図-5.1.4 アンカー筋のひずみ分布11)

コーン破壊面積は、アンカーボルトが2列の場合は、コーン破壊面積が一体化するため、1列の場合の コーン破壊面積と異なる。

①1 列の場合は、隣接するアンカーボルトの面積が重複しないようにアンカーボルト間隔は4D以上となる(図-5.1.5(a)参照)。

 $A_{cr} = 4\pi D^2$

(22 列以上の場合,複数列でアンカーボルト間隔が 4D未満となる場合は、面積が重なるため一体の面積となる。

$$A_{cr} = 4D\{\pi D + (n-1)d\} \div n$$

図-5.1.5 コーン破壊面積の適用範囲

なお、アンカーボルトのコーン破壊における破壊形状やアンカーボルトの群効果については、参考文献 12)を参考としている。また、日本建築学会における「各種合成構造設計指針・同解説 2010 改訂」¹³の アンカーボルトの設計においても、アンカーボルト長 4D 以上、端部 3D 以上の間隔が必要なことが記載さ れており、同様な内容となっている。

2) コンクリートの支圧破壊に対するせん断耐力

アンカーボルトが水平力を受けるとアンカーボルト周辺のコンクリートが支圧破壊を起こすことが知ら れており、ダウエル効果による鉄筋1本あたりのせん断耐力は式(5.1.1)により導かれる。支圧破壊によ るせん断耐力は式(5.1.1)の1/3相当であり(5.1.1(3)参照)、(1.30÷3)· $D^2\sqrt{\sigma_c\sigma_y}$ は σ_c に設計基準強 度 σ_{ck} を用いて許容応力度相当と考えられることから、限界状態1に対する特性値相当とすると、これを 1.5倍する。

 $\frac{1.30}{2} = 0.43 \rightarrow 0.45$

 $0.45 \times 1.5 = 0.675 \rightarrow 0.68$

以上より、ダウエル効果による鉄筋1本あたりのせん断耐力は式(5.1.20)となる。

 $S_{bc} = 0.68D^2 \sqrt{\sigma_{ck}\sigma_y} \quad (5.1.20)$

3) 引張とせん断の組合せ照査

式(5.1.21)は、アンカーボルトに引張力とせん断力が同時に作用した場合の組合せ応力に関する式である。鋼材の理論的な降伏局面から決まる関係式であり、日本建築学会における「各種合成構造設計指針・同解説 2010 改訂」¹³に示されている。

 $\left(\frac{p}{p_u}\right)^2 + \left(\frac{q}{q_u}\right)^2 = 1 \quad \dots \quad (5.1.21)$

ここに、p:引張耐力、q:せん断耐力、 $p_u:$ せん断力がかからない場合の引張耐力、 $q_u:$ 引張力がかからない場合のせん断耐力

式(5.1.21)を道示の記載に合わせて変換すると、

$$\left(\frac{\sigma_s}{\sigma_{yd}}\right)^2 + \left(\frac{\tau_s}{\tau_{yd}}\right)^2 \le 1 \quad \dots \quad (5.1.22)$$

ここに、 σ_s :アンカーボルト1本に生じる引張応力度、 τ_s :アンカーボルト1本に生じるせん断応力度、 σ_{yd} 、 τ_{yd} :アンカーボルトの降伏に対する引張応力度及びせん断応力度の制限値

(2) アンカーボルトの最大耐力

1)付着破壊に対する軸方向引張力の特性値

ここに、Tuc:付着破壊に対する軸方向引張耐力の特性値(N)

 $\tau_{0a}: コンクリートの付着強度の特性値(N/mm²)$

D:アンカーボルト1本の直径(mm)

L:アンカーボルトの有効埋込長(mm)

アンカーボルトの付着破壊は、アンカーボルト周辺のコンクリートの付着強度を超えたときに生じる 破壊である。アンカーボルトとコンクリートの付着強度の特性値は、これまでの道路橋示方書における コンクリートの許容付着応力度の1.7倍とする。

付着応力度の許容値は S53 道示III編から同じ値となっており、Orangun の提案式である式(5.1.24) ¹⁴を1.7 で除したものと概ね一致する。このことより、アンカーボルトとコンクリートの付着強度の特 性値方は、Orangun の付着強度をもとにしているものと判断できる。

 $\overline{f}_{0} = \left(1.2 + \frac{3c}{\phi} + \frac{50\phi}{l} + \frac{A_{t}f_{ty}}{35s\phi}\right) \sqrt{0.07f_{c}'} \cdots (5.1.24)$ ここに、 c:かぶり厚、 $\phi:$ 鉄筋径、 s:横方向鉄筋の中心間隔、 $f_{ty}:$ 横方向鉄筋の降伏強度 $l = 20 \phi:$ 定着長=20 ϕ (H24 道示III編 6.6.5(4) より重ね継手長の最小値 20 倍以上) $A_{t} = 0$: 横方向鉄筋の断面積を 0 (横方向鉄筋補強の効果を考慮しない) $f_{c}':$ ニコンクリートの圧縮強度

コンクリート 設計基準強度	240	300	400	$f_{ck}^{'} (= \sigma_{ck}) (\text{kgf}/\text{cm}^2)$				
S55 コン示 許容付着応力度	16	18	20	T_{oa} (kgf/cm ²)				
H24 道示Ⅲ編	16 (1. 6)	18 (1.8)	20 (2. 0)	()内は単位系 SI 単位系の値 (N/mm ²)				
\overline{f}_{0} (kgf/cm ²)	27.5	30. 7	35. 5	Orangun の式(6.7 $\sqrt{(0.07\sigma_{ck})}$)				
$\frac{\overline{f}_{o}}{(N/mm^{2})}$	2. 75	3. 07	3. 55	11				
$\overline{f}_0/1.7$	1.61	1.81	2.09	→付着応力度の許容値と概ね一致				
S61 コン示設計 付着強度	18	21	25	$f_{b0d=}0.6 \cdot f_{ck}^{'2/3}/\gamma c$, $\gamma c=1.3$ (コンクリートの材料係数)				

表-5.1.2 Orangun の提案式及び道路橋示方書一覧

5.1.4 プレキャストセグメントの接合部

プレキャストセグメントを連結した部材の耐荷力特性について、いわゆる外ケーブルと内ケーブルの比率 をパラメータにして検討が行われている¹⁵⁾¹⁶⁾。参考文献 16)によれば、内ケーブルの比率が高くなれば、部 材に生じる曲げひび割れが適切に分散することが明らかとなっている。また、内ケーブルの比率が低い場合、 ひび割れが集中しやすく、破壊も脆性的になる傾向が確認されている。表-5.1.3には、参考文献 16)におけ る実験結果を示す。また、図-5.1.6に荷重変位関係を示す。

供試体		ひび割れ 発生時	内ケーブル 降伏時	コンクリート 圧壊時	内ケーブル 破断時	外ケーブル 初降伏時	最大 荷重時	終局時	破壞性状
1	荷重(kN)	78.2	_	108.2	_	未	108.2	同左	コンクリート圧壊
(内0%)	変位(mm)	7.72	-	55.84	-	未	55.84	同左	
2	荷重(kN)	83.6	123.0	127.9	127.9	未	127.9	同左	内ケーブル降伏⇒コンクリート圧
(内12%)	変位(mm)	9.82	61.1	79.22	79.22	未	79.22	同左	壊 (内クーノル破断と同時)
3	荷重(kN)	82.4	120.0	133.0	118.4	127.4	133.0	118.4	コンクリート圧壊⇒外ケーブル初 際供→中た、ブル700%
(内33%)	変位(mm)	10.24	46.80	86.66	129.76	96.32	86.66	129.76	年 人→ 小// ― ノノル収め
4	荷重(kN)	79.4	124.2	147.5	138.7	144.0	147.5	138.7	コンクリート圧壊⇒外ケーブル初 際小いカート デルT##5
(内63%)	変位(mm)	10.98	37.98	97.88	135.88	107.20	97.88	135.88	降大争内クーノル破断
5	荷重(kN)	78.9	135.9	156.5	未	_	156.8	同左	内ケーブル降伏⇒コンクリート圧
(内100%)	変位(mm)	9.65	40.75	128.67	未	_	(173.74)	同左	碳

表-5.1.3 参考文献16)における実験結果

図-5.1.6 参考文献16) での載荷試験における荷重変位曲線

結果より、内ケーブル比率が33%の供試体では、最大荷重以降も十分なじん性が確保されていることがわ かる。そのため、この実験結果からは、部材挙動として内ケーブルと同等のじん性を確保する条件として、 内ケーブルの比率を30%程度確保するのがよいと考えられる。 5.2 抵抗係数

5.2.1 接合部の設計に関する抵抗係数

接合部の設計における抵抗係数の調査方法は部材設計と同様であり、4.2.1 に詳しく記載して いるため、ここでは接合部の設計に関することのみ記載する。耐荷力のばらつきの支配的要因(材 料変動+モデル化誤差)を考慮した公称ばらつきの設定、及び公称ばらつきが設定できない場合 は従来安全率の逆数から部分係数を試算する。

接合部の設計に関する照査項目ごとに抵抗係数を試算した結果を以下に示し、一覧表を表 -5.2.1 に示す。なお、抵抗の制限値 R_d は4.2.1 と同様に特性値Rと係数 ξ_1 、 ξ_2 及び抵抗係数 ϕ_R を 用いて式(4.2.3)より得る。

項目	内容	照査式	Φ_{R}	備考	
合成桁の桁と 床版の接合部	接合面のせん断応力度	$\tau_{bd} = \xi_1 \xi_2 \Phi_{bc} \tau_{bc}$	Ф _{bc} =0.65	公称ばらつき COV _R =20%, b=1.0	
ラーメン構造の	外側引張の曲げモーメント	$M_{rod} = \xi_1 \xi_2 \Phi_{ruc} M_{roc}$	Ф _{ruc} =0. 70	従业安全率の逆数(数目基金)	
端接合部	内側引張の曲げモーメント	$M_{rid} = \xi_1 \xi_2 \Phi_{ruc} M_{ric}$	Ф _{ruc} =0. 70	(此本女王平の) 逆剱(終同何里)	
	コーン破壊	$T_{cd} = \xi_1 \Phi_{tcc} T_{cc}$	Ф _{tcc} =0.85	従来安全率の逆数	
アンカーボルト	支圧破壊	$S_{bd} = \xi_1 \Phi_{bc} S_{bc}$		従来安全率の逆数	
	付着破壞	$T_{ud} = \xi_1 \xi_2 \Phi_{tuc} T_{uc}$	Φ _{tuc} =0.85	従来安全率の逆数	
プレキャフトセ	コンクリート製 多段接合キーのせん断強度	$P_{kid} = \xi_1 \xi_2 \Phi_{ki} S_{kic}$	Φ _{ki} =0. 50	公称ばらつき COV _R =30%, b=1.0	
グメント構造の 継目部	コンクリート製 台形接合キーのせん断強度	$P_{kid} = \xi_1 \xi_2 \Phi_{ki} S_{kic}$	Φ _{ki} =0. 65	公称ばらつき COV _R =20%, b=1.0	
	鋼製接合キーのせん断強度	$P_{kid} = \xi_1 \xi_2 \Phi_{ki} S_{kic}$	$\Phi_{ki} = 0.50$	公称ばらつき COV _R =30%, b=4.0	

表-5.2.1 部分抵抗係数の試算結果

(1) 合成桁構造における桁と床版の接合部

桁と床版の接合部におけるせん断強度の特性値は、床版コンクリートの設計基準強度に付着係数を掛けることで算出される ($\tau_{bc} = k_c \sigma_{ck}$)。そのため、接合面のせん断強度の材料変動によるばらつきは、表-4.2.1 に示すコンクリート圧縮強度の変動係数である 15%と考えられる。また、評価式のモデル化誤差としては、5.1.1(2)に示す研究結果 ⁶⁾⁷⁾より付着係数の変動係数は 13.7%である。そのため、公称ばらつきは平方二乗和より *COV_R*=20.3% ≒ 20%となり、抵抗係数は $\phi_{bc} = 1 - 1.64 \times 20\% = 0.65$ となる。

ここで、桁と床版の接合面に生じるせん断応力度は、H24 道示III編では欧米の基準¹⁾²⁾を参考とした式($\tau_b = \frac{S}{b \cdot d_v}$, S:桁断面に作用する設計せん断力、b:接合面の幅、 d_v :引張鋼材の図心から床版図心までの距離)であり、これは終局限界状態を想定した式で曲げひび割れの発生を考慮したせん断応力度の算定式である。しかし、桁と床版の接合面の付着力のみでせん断力を分担す

るのは、曲げひび割れの発生がない状態を想定しているため、せん断応力度の算出式としては $\tau_b = \frac{S \cdot Q}{b \cdot I}$ (Q:合成断面の図心軸に関する床版の断面一次モーメント、I:合成断面の図心軸に関する合成断面の断面二次モーメント)が相応しい。

(2) ラーメン構造の端接合部

ラーメン構造の端接合部に関しては信頼性評価に対してデータが不足するため,経験的に従来 の安全率から逆算して,抵抗係数を試算する。

従来の温度荷重時と同等の安全余裕を確保すると、温度荷重時の鉄筋の許容応力度は $\sigma_{sr} = 207N/mm^2$ であり、 $\sigma_y/\sigma_{sr} = 345/207 = 1.7$ となる。ここで、温度荷重時を想定するのは、キャリブレーション結果より影響の大きい荷重組合せであるためである。荷重側の係数を 1.05~1.2 と仮定すると、抵抗係数は以下の通りとなる。

 $\xi_2 \cdot \Phi_{ruc} = (在来安全率の逆数) × (荷重側の係数) / \xi_1 = 1/1.7 × (1.05~1.2) / 0.9 = 0.70$

(3) アンカーボルトによる連結

アンカーボルトに関しても信頼性評価に対してデータが不足するため,経験的に従来の安全率 から逆算して,抵抗係数を試算する。

従来の温度荷重時と同等の安全余裕を確保すると、従来の安全余裕は 1.7/1.15=1.44 となる。 荷重側の係数を 1.05~1.2 と仮定すると、抵抗係数は以下の通りとなる。

 $\xi_2 \cdot \phi_B = ($ 在来安全率の逆数) × (荷重側の係数) / $\xi_1 = 1/1.44 \times (1.05 \sim 1.2)$ /0.9=0.85

(4) プレキャストセグメントの接合部

1) 鋼製接合キーを用いた接合部

鋼製接合キーを用いた接合部にせん力が作用する場合の破壊に対する限界状態は、せん断力 により発生する埋込部コンクリートの支圧破壊の限界状態である。そのため、せん断強度は支 圧応力度を用いた算定式となり、せん断強度の材料変動によるばらつきは、表-4.2.1に示すコ ンクリート圧縮強度の変動係数である 15%と考えられる。また、評価式のばらつきは過去の実 験結果¹⁷⁾から算出する。評価式と対比する実験データは以下に従う。

①供試体は、鋼製接合キーの有無及び径、接着剤の状態、鋼製接合キーの設置位置、及びプ

レストレス量を考慮し,各要因の組合せで計 19体製作したもののうち,接合キー無しの供 試体を除いた計 15体とする。

②実験値は継目部にひび割れが発生後の収束値または変位が 4mm 付近のせん断力とする。 ③せん断強度に摩擦の影響を期待しないため、実験値からプレストレスによる摩擦効果を除 外する。

図-5.2.1 参考文献 17) における実験供試体の一例

実験結果は**表-5.2.2**及び**図-5.2.2**の通りであり,評価式のモデル化誤差を考慮した確率統計 量は変動係数 27.3%,バイアス 4.2 となる。これより,公称ばらつきとしての変動係数は平方 二乗和より COV_R =31.1%≒30%となり,抵抗係数は ϕ_{ki} = 1 – 1.64 × 30%≒0.5 となる。

		ウエブ幅	換算支圧幅	コン強度	キー埋込深	B∕T	実験値*	プレ摩擦分	骨材噛合分	キー耐力	f b	f b / f c k
番号	供試体呼称	Т	В	f ck	Le		Vn	Р	Ι	Vn'		
		(mm)	(mm)	(N/mm^2)	(mm)		(kN)	(kN)	(kN)	(kN)	(N/mm^2)	
1	₩-60-32-Н	200	55.2	48.3	55	0.28	344.0	78.4	49.0	216.6	214.0	4.43
2	₩-30-32-Н	200	55.2	48.3	55	0.28	294.0	39.2	49.0	205.8	203.4	4.21
3	₩-0-32-Н	200	55.2	48.3	55	0.28	280.3	0.0	49.0	231.3	228.5	4.73
4	W-60-32-W	200	55.2	48.3	55	0.28	294.0	78.4	0.0	215.6	213.0	4.41
5	W-30-32-W	200	55.2	48.3	55	0.28	225.4	39.2	0.0	186.2	184.0	3.81
6	W-0-32-W	200	55.2	48.3	55	0.28	217.6	0.0	0.0	217.6	215.0	4.45
7	W-60-50-H	200	75.6	48.3	79	0.38	414.5	78.4	49.0	287.1	144.2	2.99
8	W-0-50-H	200	75.6	48.3	79	0.38	293.0	0.0	49.0	244.0	122.6	2.54
9	W-60-28-H	200	46.4	48.3	59	0.23	272.4	78.4	49.0	145.0	158.9	3.29
10	W-0-28-H	200	46.4	48.3	59	0.23	253.8	0.0	49.0	204.8	224.5	4.65
13	W-60-32-S	200	55.2	48.3	55	0.28	236.2	78.4	0.0	157.8	155.9	3.23
14	W-30-32-S	200	55.2	48.3	55	0.28	178.4	39.2	0.0	139.2	137.5	2.85
17	F-60-30-H	400	55.2	48.3	55	0.14	558.6	130.3	81.3	346.9	342.8	7.10
18	F-30-32-H	400	55.2	48.3	55	0.14	432.2	65.4	81.3	285.5	282.1	5.84
19	F-0-32-H	400	55.2	48.3	55	0.14	298.9	0.0	81.3	217.6	215.0	4.45

表-5.2.2 鋼製キーの近傍におけるコンクリートの支圧応力と B/T の関係一覧¹⁷⁾

※変位4mm~

 $\begin{array}{c} Vn' = Vn - P - I \\ fb = Vn' \neq \{B \times (Le \neq 3)\} \end{array}$

図-5.2.2 支圧応力 fbと設計基準強度 fckの頻度分布

2) コンクリート製多段接合キーを用いた接合部

コンクリート製多段接合キーを用いた接合部のせん断強度はコンクリートが負担できるせん 断応力度を用いた算定式となる。コンクリートが負担できるせん断応力度がコンクリートの設 計基準強度によらず一定値と考えると、せん断強度の材料変動によるばらつきは考慮しない。 また、評価式のばらつきは過去の実験結果¹⁸⁾から算出する。評価式と対比する実験データは以 下に従う。

①供試体は,接合キーの形状,接着剤の状態,及びプレストレス量を考慮し,各要因の組合 せで計6体製作したもの。

②実験値は継目部に 0.1mm のずれが発生した際のせん断力とする。

③せん断強度に摩擦の影響を期待しないため,実験値からプレストレスによる摩擦効果を除 外する。

図-5.2.3 参考文献 18) における実験供試体の一例

ここで,接合面のずれ始め変位 0.1mm は,接着面のないコンクリート部材がひび割れ直後で ひび割れが大きく開口しない状態相当であり,ひび割れ縁での微細な凹凸がせん断ずれに有効 に働き、大きなせん断摩擦抵抗が発揮される状態と同じである。これは、接着剤の強度が接着 面周囲のコンクリートより大きく、まず接着剤と界面のモルタル層にひび割れが生じるためで あり、周囲のコンクリートのひび割れによるずれに起因するためである。

実験結果は表-5.2.3及び図-5.2.4の通りであり、せん断応力の平均値は4.3N/mm²、変動係数は 29.8%となる。これより、公称ばらつきとしての変動係数は $COV_R \rightleftharpoons 30\%$ となり、抵抗係数は $\Phi_{ki} = 1 - 1.64 \times 30\% \rightleftharpoons 0.5$ となる。また、実験結果の平均値からコンクリートが負担できるせん断応力度は一律4.0N/mm²と推定される。

		プレストレス量	継目部ズレ	レ始め荷重	接合面積	有効面積	0.1mmズレせん断応力
番号	供試体呼称	σр		A	В	B'	τ
		(N/mm^2)	(tf)	(kN)	(mm ²)	(mm ²)	(N/mm^2)
8	S-N-40-H	3. 92	135.30	1325.9	240000	171000	2.66
9	S-M3-40-H	3. 92	153.80	1507.2	240000	171000	3.72
10	S-M3-20-H	1.96	153.00	1499.4	240000	171000	6.22
11	S-M3-0-H	0.00	75.00	735.0	240000	171000	4.30
13	S-M5-40-H	3. 92	183.30	1796.3	240000	171000	5.41
14	S-W-40-H	3, 92	153.40	1503.3	240000	171000	3, 70

表-5.2.3 多段キーによりコンクリートが負担できるせん断応力度の結果一覧

図-5.2.4 多段キーによりコンクリートが負担できるせん断応力度の頻度分布

3) コンクリート製台形接合キーを用いた接合部

コンクリート製台形接合キーによるせん断強度は,道示では補強鉄筋量に応じて算出されて いるため,せん断強度の材料変動によるばらつきは,表-4.2.1に示す鉄筋降伏強度の変動係数 である4%と考えられる。また,評価式のばらつきは過去の実験結果¹⁸⁾から算出する。評価式と 対比する実験データは以下に従う。

①供試体は,接合キーの形状,接着剤の状態,及びプレストレス量を考慮し,各要因の組合 せで計6体製作したもの。

②実験値は継目部に 0.1mmのずれが発生した際のせん断力及び破壊時のせん断力とする。
③せん断強度に摩擦の影響を期待しないため、実験値からプレストレスによる摩擦効果を除

外する。

図-5.2.5 参考文献 18) における実験供試体の一例

実験結果は表-5.2.4及び図-5.2.6の通りであり、プレストレスの効果を控除した 0.1mm ずれ 発生時の安全余裕は平均値 1.6、変動係数 19.8%となる。これより、公称ばらつきとしての変動 係数は平方二乗和より COV_R =20.3%=20%となり、抵抗係数は Φ_{ki} =1-1.64×20%=0.65となる。 また、安全余裕の 1.6 は特性値に補正係数として導入できる。

		プレストレス量	0.1mmずれ	発生荷重	破壞	荷重	接合面積	プレ摩擦分	
番号 供試体呼称		σp	Ve	Vcr		'n	В	$P = \mu \cdot \sigma p \cdot B$	(Vn-P)/(Var-P)
		(N/mm^2)	(tf)	(kN)	(t)	(kN)	(mm^2)	(kN)	(()(1))
1	S-C45N-40-H	3.92	141.90	1390.6	228.0	2234.4	240000	282.2	1.76
2	S-C45N-20-H	1.96	150.40	1473.9	167.0	1636.6	240000	141.1	1.12
3	S-C45N-0-H	0.00	50.30	492.9	90.0	882.0	240000	0.0	1.79
5	S-C45L-40-H	3.92	123.80	1213.2	231.0	2263.8	240000	282.2	2.13
6	S-C45-40-H	3.92	137.40	1346.5	214.0	2097.2	240000	282.2	1.71
7	S-C60N-40-H	3.92	142.20	1393.6	203. 4	1993. 3	240000	282.2	1.54

表-5.2.4 台形キーによりコンクリートが負担できるせん断力の結果一覧

図-5.2.6 台形キーによりコンクリートが負担できるせん断応力度の頻度分布

5章 参考文献

- 1) AASHTO: LRFD Bridge Design Specifications, 4th ed., 2007
- CEN: Eurocode 2, Design of concrete structures Part1.1, General rules and rules for buildings (EN1992-1-1), 2004.
- 3) (独) 土木研究所,(社) プレストレスト・コンクリート建設業協会:橋梁用プレキャストPC部材の接合技術に 関する共同研究報告書(I),共同研究報告書第362号,2007.2
- 4) (独) 土木研究所,(社) プレストレスト・コンクリート建設業協会:橋梁用プレキャストPC部材の接合技術に 関する共同研究報告書(Ⅱ)ーずれ止め鉄筋およびスタッドの挙動ー,共同研究報告書第370号,2008.3
- 5) (独) 土木研究所,(社) プレストレスト・コンクリート建設業協会:橋梁用プレキャストPC部材の接合技術に 関する共同研究報告書(III) - PC 合成げたのせん断伝達に関する検討-,共同研究報告書第383号,2008.3
- 6) 村越潤,田中良樹,横田勉,大山博明:PC 合成桁のせん断伝達機構に関する検討,プレストレストコンクリ ート Vol. 50, No. 3, pp. 69-77, 2008. 3
- 7) 建設省土木研究所,(社)プレストレスト・コンクリート建設業協会:コンクリート橋の設計・施工の省力化 に関する共同研究報告書(II) -PC 合成げた橋 (PC 合成床版タイプ)に関する研究-,共同研究報告書第215 号,1998.12
- 8) 津田和明:接合鉄筋およびスタッドによるせん断伝達挙動に関する研究、コンクリート工学年次論文集、
 Vol. 30, No. 3, pp. 583-588, 2008
- 9) 建設省土木研究所:L型鉄筋コンクリート隅角部の設計方法に関する検討,土木研究所資料第3636号,1999.3
- 10) 渡辺博志, 河野広隆:L型RC隅角部の設計方法に関する検討, 土木技術資料 Vol. 40, No. 10, pp. 36-41, 1998. 10
- 11) 安藤祐太郎, 中野克彦, 松崎育弘, 杉山智昭: 接着系あと施工アンカーのせん断耐力に及ぼすへりあき効果の影響に関する実験的研究, コンクリート工学年次論文集, Vol. 31, No. 2, pp. 679-684, 2009
- 12) 尾坂芳夫,大塚浩司,満木泰郎,小林茂敏:マッシブなコンクリートに埋め込まれた異形鉄筋の定着破壊性 状と群効果に関する研究,土木学会論文集第420号, V-13, pp. 153-161, 1990.8
- 13) 日本建築学会: 各種合成構造設計指針・同解説, 2010.11
- 14) 池田尚治, 小柳洽, 角田與史雄:土木学会編 新体系土木工学 32 鉄筋コンクリートの力学, p. 150, 1982. 11
- 15) 小林和夫: 外ケーブル PC 構造に関する研究の現状, 土木学会論文集, No. 550 V-33, pp. 1~12, 1996. 11
- 16) 日柴喜剛啓:プレストレストコンクリート構造におけるプレキャストセグメントと超高強度コンクリートの 適用に関する研究,京都大学博士論文,2005.
- 17) 建設省土木研究所,(社)プレストレスト・コンクリート建設業協会:プレキャストブロック橋の設計法に関する共同研究報告書(I),共同研究報告書第69号,1992.3
- 18) 建設省土木研究所、(社)プレストレスト・コンクリート建設業協会:プレキャストブロック橋の設計法に関する共同研究報告書(Ⅱ),共同研究報告書第82号,1993.3

6章 構造の設計の検討及び構造細目

6.1 構造の設計

6.1.1 下フランジの腹圧力を考慮した設計

桁高が変化する箱桁橋の下フランジにPC 鋼材が配置されている場合,腹圧力が作用する。そのため,腹圧 カに対して下床版厚を確保し,必要な鉄筋等で補強する必要がある。このことは、H14 道示III編以降に規定 されていたが、具体的な鉄筋補強等の方法は規定されておらず、構造細目にしたがった配筋を行うことで運 用されてきた。しかし、近年進められている橋梁点検結果を分析すると腹圧力の影響により下床版にひび割 れが生じている事例があり、その要因は設計基準の不明確さにあることが確認されている¹⁾。

下フランジの腹圧力を考慮した設計に関しては、参考文献 1) で主桁下面の橋軸方向ひび割れが多く発生 していたポステン箱桁に対して、その要因および変状発生リスクを抑制させる方策について初回点検結果を 基に検討され、以下の方策が有効と考えられている。

①腹圧力を低減する対策として、桁高変化がある箱桁断面の下床版に PC 鋼材を配置する場合は、できるだけウェブ近傍に配置し、下床版支間中央部には配置しない。また、下床版に PC 鋼材を配置する場合には、

PC 鋼材の本数はできるだけ少なくする。

②ひび害れの発生を抑制する対策として,鉄筋応力度を140N/mm²程度(部分係数設計法では160N/mm²程 度)に制限する。また,鉄筋の配置間隔を125 mmにするなど配置間隔を小さくする。

6.1.2 格子桁理論と版理論

(1) はじめに

設計では、荷重による効果を部材単位の応答として評価する。そして、部材単位での応答と耐力との関係 を照査し、その設計の妥当性を確認する。すなわち、構造物の立体的な構造は、応答算出の際に考慮される ことになる。そのため、実際には複雑な形状である構造物をいかに適切に応答モデルに置き換えるかが、設 計の信頼性を大きく左右することになる。

土木構造物の応答解析では、格子解析(=平面骨組み解析)による応答算出が基本とされている。これま での設計では、電算が十分に発達していなかったこともあり、応答算出にあたって古典的な理論に頼らざる を得なかった。そのため、桁構造は格子桁理論、版構造は版理論に置き換えられるように、応答算出上置き 換えるとともに、その置き換えが妥当となる範囲で、寸法や断面が定められていた。また、基本的には橋を 一本の棒としてモデル化することでモーメント等を算出し、構造物の3次元的な効果はそのモーメント等を 配分するなどして表現することが行われてきた。一方、電算が発達した現在では、多くの場合格子解析によ って応答算出が行われている。しかし、床版橋においては、いまだに版理論による応答算出が行われている のが実態である。これは、版部材の応答を格子解析(=平面骨組み解析)により行うことの難しさの表れで もあり、設計者のモデル選択によって応答結果に差が生じるところでもある。床版橋の解析方法については、 これまでも検討がされている 2334。

格子桁理論及び版理論による課題は次の事項が考えられる(図-6.1.1参照)。

- ①版理論で算出する場合には、一つのはり断面に換算して鉄筋配置をしている。活荷重に対して断面力が最も厳しくなるように載荷することになるが、一つのはり断面に換算することになるので、実質的に断面力を低減することになっている。
- ②格子桁理論で算出する場合には、それぞれの仮想桁の断面力が最大となる値を断面力として採用する ことになるので、断面力としては大きくなる。

図-6.1.1 格子桁理論及び版理論による応答算出方法

格子解析では、主桁と横桁をどのようにモデル化するかが重要となる。以下に、格子解析におけるモデル 化の留意点を示す。

1) 橋軸方向部材(主桁)の剛性

橋軸方向部材(主桁)の剛性(軸、曲げ及びねじり剛性)は、その総合計が橋全体の断面の剛性と一致するように決定する。

断面が片持ちスラブを持つ場合、片持ちスラブを剛性の小さな主桁として評価するか、単に主桁に荷重 を伝達する役割の部材とするかについては、片持ちスラブと他の部分との剛性比等を考慮して判断する必 要がある。また、主桁合成は、橋軸に対して直角な断面の形状を用いて計算する。

2) 橋軸直角方向部材(横桁)の剛性

橋軸直角方向部材(横桁)の剛性の評価については、定まった方法がない。中実断面の床版橋の場合は、 橋軸直角方向の断面においても平面保持則が成立しているとの仮定に基づいて、全断面有効として求めた 分割要素個々について計算した剛性を用いることが多い。中空床版橋や箱桁橋の場合には、設計者による ばらつきが多い。横桁の剛性は、以下の点について留意して判断されている。

- i)横桁,隔壁の配置されている上下フランジ有効幅の評価
- ii) 横桁, 隔壁間のフランジの剛性の評価
- iii) 主桁と横桁断面の図心軸の差についての評価

(2) 版理論による応答算出

これまで、版構造を格子桁として扱う場合には、いわゆる Guyon-Massonet(ギヨンマソネ)の方法が用いられている。Guyon-Massonetの方法では、版理論によるねじり剛性成分を、格子桁に置き換えている。すなわち、連続体である版部材の支配方程式(微小区間のつり合い方程式)と格子桁の支配方程式を比較し、それらが等価となるよう係数を定めている。

各軸方向で剛性が異なる異方性版理論に従えば、単位長(*dx, dy*)におけるたわみ方程式は以下のようになる。

ここに、B_x:x軸方向の単位長あたりの曲げ剛性、B_v:y軸方向の単位長あたりの曲げ剛性、W:たわみ、

p(x, y): x, yの関数としての分布荷重の強度

連続体を前提としたこの方程式と、棒部材が結合した格子桁におけるつり合い式を比較する。主桁及び横桁に曲げ剛性及びねじり剛性がある場合、格子桁の一つの断面には3つの断面力(曲げモーメント、せん断力、ねじりモーメント)が存在する。格子桁の一つの格点では、4つの曲げモーメント、4つのねじりモーメント及び4つのせん断力が、外力とつり合いを保っている。図-6.1.1のように、単位長(*dx, dy*)をとり、ここに生じる断面力を想定する。

図-6.1.1 格子桁の格点に生じる単位長あたりの断面力

このとき, 鉛直方向のつりあいは

$$\frac{1}{\alpha} \cdot \frac{\partial Q_x}{\partial x} + \frac{1}{\lambda} \cdot \frac{\partial Q_y}{\partial y} + p = 0 \quad (6.1.2)$$

x軸回りのモーメントのつり合いは

y軸回りのモーメントのつり合いは

$$\frac{1}{\alpha} \cdot \frac{\partial M_x}{\partial x} + \frac{1}{\lambda} \cdot \frac{\partial M_{Ty}}{\partial y} - \frac{1}{\alpha} Q_x = 0 \quad (6.1.4)$$

したがって、式(6.1.2)から式(6.1.4)より式(6.1.5)を得る。

一方、桁のたわみと主桁及び横桁の曲げモーメントとの間には、式(6.1.6)の関係がある。

主桁及び横桁のねじりモーメント $M_{Tx}M_{Ty}$ と、桁のねじり角 $\theta_x \theta_y$ との間には、式(6.1.7)の関係がある。

また、主桁及び横桁の曲げによるたわみ角は、式(6.1.8)として定義できる。

これらを式(6.1.5)に代入すれば格子桁の版としての微分方程式,式(6.1.10)が得られる。

式(6.1.10)を式(6.1.1)と比較すれば、以下となる。

$$B_{\chi} = \frac{EJ}{\alpha}, \quad B_{y} = \frac{EJ_{Q}}{\lambda}, \quad 2H = G\left(\frac{J_{T}}{\alpha} + \frac{J_{TQ}}{\lambda}\right)$$

いま, $H = \gamma \sqrt{B_x \cdot B_y}$ とおけば,式(6.1.11)となり,この γ を剛度係数と呼んでいる。

すなわち、Guyon-Massonetの方法とは、版理論で得られる連続体を対象とした微分方程式に基づき応答を 出すものの、その係数を格子桁理論から等価に置き換えて定める方法といえる。

(3) 分配係数

横方向の荷重分配について、版理論を用いて分配の割合を定めることができる。いま、たわみwに関する

支配方程式が(1)で表される直交異方性版を想定する。

図-6.1.2 直交異方性版のたわみ曲線

このとき、支間長a、幅2bとして、x軸の中心より偏心量eの位置に正弦分布する線荷重 $p(x) = p_1 \sin \frac{x}{a}$ が作用した場合、式(6.1.1)よりたわみ曲線の一般式は、式(6.1.12)となる。

$$w(x,y) = W(y)\sin\frac{\pi x}{a} \qquad (6.1.12)$$

一方,線荷重p(x)が幅方向(長さ2b)に一様に分布するとしたとき,単位長さあたりの荷重p(x)/2bによるたわみ量 $w_0(x)$ は以下で表せる。

このwo(x)に対するw(x,y)の比, すなわち, 式(6.1.14)を荷重の横分配係数と呼んでいる。

この係数K(y)を用いれば、各桁位置 y_i でのたわみ $w(x, y_i)$ や曲げモーメント $M_x(x, y_i)$ は、式(6.1.15)及 び式(6.1.16)のようにあらわすことができる。

 $w(x, y_i) = K(y_i)w_0(x)$ (6.1.15)

 $M_x(x, y_i) = K(y_i)M_{0x}(x)$ (6.1.16)

ここで、 $w_0(x)$ や $M_{0x}(x)$ は、単位長さあたりの荷重p(x)/2bによるたわみ及び曲げモーメントであり、単純梁を想定すれば容易に算出できる。

また、横分配係数Kは、以下の要素に左右される。

- i) 横桁に関するパラメータの値
- ii) 剛度係数yの値

iii)線荷重の相対偏心距離e/bの値

iv)構造物の注目する点の横方向の相対座標y/bの値

なお、横桁に関するパラメータのは式 (6.1.17) となる。

$$\theta = \frac{b}{a} \sqrt[4]{\frac{B_z}{B_y}} = \frac{b}{a} \sqrt[4]{\frac{J \cdot \lambda}{J_Q \cdot \alpha}} \qquad (6.1.17)$$

上記より、横分配係数Kは主として、γの値に左右されるが、複雑な関係式からγの各々の値に対するK_γを 別々に計算しなくてもよいように、以下の式 (6.1.18) が与えられている。

ここに、横分配係数 $K_0 \ge K_1$ は、極値 $\gamma = 0$ 、 $\gamma = 1$ に対する値である。 K_γ を求めるためには、 γ のほかに θ 、 e/b、y/bの値がわかればよい。「付録5 直交異方性版理論における横方向分配係数の表」に θ 、e/b、y/bの 値ごとの横分配係数 $K_0 \ge K_1$ の値を求める表を示している。

6.2 構造細目

6.2.1 鉄筋の継手

(1) 重ね継手長算定式の根拠

重ね継手長1の算定式は、以下のとおりで導かれる⁵。 鉄筋の引張応力度につり合う付着応力が必要となるため

鉄筋の周長 $u = \pi \Phi$,鉄筋の断面積 $A_s = \pi/4 \cdot \Phi^2$ となることから、上式は以下のとおりとなる。

この式を変形すると以下の式となる。

鉄筋の応力度が降伏強度に達したとき、鉄筋が引抜けるか割裂破壊するときの定着長 l_a を想定する。この 場合、鉄筋の応力度 σ_s は降伏強度とし、付着応力 τ_0 は付着強度とすればよい。これまでの基準では、それぞ れの強度に対して、安全余裕を考慮して許容応力度が用いられている。すなわち、 $l=l_a$ 、 $\sigma_s = \sigma_{sa}$ 、 $\tau_0 = \tau_{0a}$ とすると、式(6.2.4)となる。

(2) 重ね継手長算定式におけるコンクリート付着応力度の基本値

付着応力度の基本値は、S53 道示III編以降は同じ値となっており、Orangunの提案式を1.7 で除したものと 概ね一致する。付着応力度の基本値については、5.1.3(2)に記載している。

(3) 重ね継手長算定式における鉄筋の引張応力度の基本値

重ね継手長又は定着長算定時の基本値は、これまで鉄筋の許容応力度とされていた。衝突時及び地震時の 荷重組合せ時の基本値と同じ値として定められていたもので、鉄筋の降伏点に対して安全率1.7とした値で ある。

・SD345の場合 345÷1.7=203⇒200 N/mm²

- ・SD390 の場合 390÷1.7=229⇒230 N/mm²
- ・SD490 の場合 490÷1.7=288⇒290 N/mm²

(4) 引張鉄筋に重ね継手を用いる場合の横方向鉄筋の配置量

引張鉄筋に重ね継手を用いる場合、継手される鉄筋の引張力によって引張鉄筋に沿って割裂ひび割れを生

じさせる引張力が鉄筋に直交する方向に生じる⁶。引張鉄筋による引抜き力が集中荷重として重ね継手の領域に作用したと仮定すれば、このときその領域には、作用軸に対して直交する方向に作用力の0.3倍に相当する引張力が働く⁷⁷。そのため、これに抵抗するよう継手をする鉄筋に直交する方向に引張鉄筋1本の断面積の0.3倍以上を配置する必要がある。また、参考文献8)では、引張鉄筋1本あたり横方向鉄筋を1/3以上配置して補強すると解説されており、同様の応力状態を想定していると考えられる。

H24 道示III編及び平成6年コンクリート道路橋設計便覧では、継手部のD13mm以上を2本以上(2,3本)配置すればよいとされていた。試算すると鉄筋1本あたり0.3倍の鉄筋量を配置すれば、D13を2,3本配置の 規定を満足する(表-6.2.1参照)。

設計基準	コンクリートの母差広力度	重ね継手長(mm)		D13本数	D13鉄筋		横方向必要鉄筋量 0.3As(mm ²)	
)珉/支 (N/mm ²)	(N/mm ²)	D13	D32	(本)	和四月日月 (mm)		引張鉄筋 D13の場合	引張鉄筋 D32の場合
21	1.4	464	1143	3	380.1	>	38.0	238.3
24	1.6	406	1000	3	380.1	>	38.0	238.3
27	1.7	382	941	3	380.1	>	38.0	238.3
30	1.8	361	889	2	253.4	>	38.0	238.3
40	2.0	325	800	2	253.4	>	38.0	238.3
50	2.0	325	800	2	253.4	>	38.0	238.3
60	2.0	325	800	2	253.4	>	38.0	238.3

表-6.2.1 横方向の必要鉄筋量の試算結果

試算結果より、いずれのコンクリート設計基準強度のおいても、引張鉄筋を最小D13、最大D32と想定した場合、横方向にD13を2本又は3本配置すれば、横方向鉄筋量は引張鉄筋の0.3倍以上を満足する。これより、従来基準も同様の応力状態を想定したものであったと考えられる。

6.2.2 軸方向カ又は曲げモーメントに対する棒部材・版部材の軸方向鉄筋の最小・最大鉄筋量

(1) 0.005bw・d の根拠及び試算結果

1) 鉄筋降伏とコンクリート引張強度に達する時点において必要となる鉄筋量

最小鉄筋量0.005*b_w*・*d*(断面積の最小鉄筋量 0.5%と同意)は、ひび割れと同時に引張鉄筋が降伏し 急激な耐荷力が損失することとならないよう配置する鉄筋量である。よって、鉄筋とコンクリートの引 張応力度の関係において、鉄筋とコンクリートの引張応力度が鉄筋降伏とコンクリート引張強度に達す る時点において必要となる鉄筋量と考えることができる。

引張鉄筋の配置の関係式

 $\sigma_{ct} \epsilon \sigma_{ctr}, \sigma_{smax} \epsilon \sigma_{sy}$ に置き換え、鉄筋比 p_t として表現すると。

式(6.2.7)に対して,鉄筋材質,コンクリート設計基準強度を替えて試算を行った結果を図-6.2.1 に 示す。試算結果より,SD345以上は最小鉄筋量を0.5%とすることで条件を満足する。

図-6.2.1 軸方向引張鉄筋の最小鉄筋量の試算結果

2) 引張応力度が曲げひひ割れ強度に達する時点において必要となる鉄筋量

鉄筋コンクリート部材に曲げモーメントが作用すると曲げひび割れ(支間中央)が発生し、それまで は弾性挙動すると考えられる。曲げひび割れを制限する考え方から、曲げひび割れ発生を制限する鉄筋 量を最小鉄筋量と考えることができる。

鉄筋コンクリート部材に曲げモーメントが作用し、引張縁の応力度が、曲げひひ割れ強度⁹に達した ときに、鉄筋が同時に降伏しないような鉄筋量として以下のとおり試算する。

矩形断面の縁応力度 obt から算出される曲げモーメント

鉄筋の引張応力度 osy から算出される曲げモーメント

両者が等しいため,

 $p_t = \sigma_{bt} / \sigma_{sv} \cdot 8/7 \div 6 = 0.19 \cdot \sigma_{bt} / \sigma_{sv} \cdots (6.2.10)$

図-6.2.2の検討結果より、SD345以上の鉄筋では、必要鉄筋量は0.3%程度となり0.5%配筋すれば満足する。

図-6.2.2 軸方向引張鉄筋の最小鉄筋量の試算結果

1) 及び2) の検討より、ひび割れと同時に引張鉄筋が降伏しないようにするためには有効断面積に対して0.5%の鉄筋量を配筋することで満足する。

(2) 釣合い鋼材量と破壊形態

コンクリートの終局ひずみと鉄筋の降伏ひずみが同時に生じる時の鉄筋量を釣り合い鉄筋比という。釣合 い鉄筋比は、鉄筋コンクリート部材の破壊モードをコントロールするための指標となる。鉄筋が降伏してか らコンクリートの圧縮破壊が生じる破壊モード(=曲げ引張破壊)が生じるようにするためには、鉄筋比を 釣合い鉄筋比以下にして部材を設計しなければならない。

通常の鉄筋とコンクリートであれば、鉄筋の降伏ひずみ $\varepsilon_y = 1750\mu$ 、コンクリートの圧縮破壊ひずみ $\varepsilon'u = 3500\mu$ 、鉄筋の降伏強度 $\sigma_y = 345$ N/mm²、コンクリートの圧縮強度 $\sigma_{ck}=24\sim60$ N/mm²程度であるので、 鉄筋コンクリートはりの釣合い鉄筋比は $p_b=2\sim6\%$ 程度となる。なお、この釣り合い鉄筋比は、曲げモーメン トのみを受ける鉄筋コンクリート部材(はりや桁が相当する)について求めたものである。曲げモーメント と軸力を同時に受ける場合には、その組み合わせによって釣合い鉄筋比(釣合い破壊の生じる鉄筋比)が変 わるため注意が必要である。又、H24 道示IV編の軸方向鉄筋量の最大は、部材全断面積の6%であり、過密配 筋に対してコンクリート打設等の施工性も考慮して決まられており、概ね釣り合い鉄筋比と同程度となって いる。

曲げ破壊モードには、多少注意が必要である。「曲げ引張破壊」といっても、上部コンクリートの「圧縮 破壊」が生じるのである。図-6.2.3は鉄筋コンクリート はりの曲げ破壊モードと M- φ (モーメントー曲 率)関係を示している。図中、鉄筋が降伏する前にコンクリートが圧壊する破壊モードを「曲げ圧縮破壊」 としている。

85

図-6.2.3 RCはりの曲げ破壊モードとM- φ関係

破壊モードが曲げ引張破壊となるはりは、終局状態までに大きな変形を遂げる。ねばりのある破壊、靱性 的な破壊と形容されることもある。M- φ 曲線下の面積は、終局状態までに部材が吸収するエネルギーを表す ので、曲げ引張破壊の場合は、エネルギー吸収が大きいといえる。このことは、地震等の大きなエネルギー が作用した場合に、急激に崩壊することなく、外力のエネルギーを吸収することを意味しており、構造物に 好ましい性質である。したがって、通常の鉄筋コンクリート部材は、破壊モードがこの曲げ引張破壊となる ように、鉄筋比等の諸元が設定される。

ただし、この破壊モードの制御は必ずしもすべての部材に適用されるものではない。例えば、床版などは せん断耐力を確保する目的から、曲げモーメントに対しては曲げ圧縮破壊となるような鉄筋比となっている。 原理的には、曲げモーメントに対して靱性的な挙動となるよう制御すべきであるが、例えば集中荷重に対す る床版部材としての破壊モードは、曲げ破壊ではなく押抜きせん断破壊となるため、曲げモーメントに対し て靱性を確保することに意味がなくなる。そのため、版部材などは、部材挙動として十分な安全性を確保す る目的から、釣合い鉄筋比を超える鉄筋を配置している。

なお、「75%以下とする」ことに対しては、過去の実験データ¹⁰から、つり合い鉄筋比程度としても種々のばらつきにより曲げ圧縮破壊する可能性が高く、釣合い鉄筋比の75%とすることで全数の30%が曲げ圧縮破壊を呈したという事実があることから、非超過確率30%程度の安全余裕を確保するものとして経験的に定められたものと考えられる。

(参考)釣り合い鉄筋比の試算

軸力が作用しない矩形単鉄筋断面として試算する。コンクリート標準示方書より、釣合い鉄筋比を式 (6.2.11)に示す。釣合い鉄筋比の75%以下とした場合の、鉄筋比の目安を図-6.2.4に示す。

釣合い鉄筋比

 $p_{tb} = 0.68 \cdot \frac{\varepsilon_{cu}}{\varepsilon_{cu} + \varepsilon_{sy}} \cdot \frac{\sigma_{ck}}{\sigma_{sy}} \cdots (6.2.11)$ $\sigma_{ck} \leq 50 \quad : \varepsilon_{cu} = 3500 \,\mu$ $\sigma_{ck} \geq 60 \quad : \varepsilon_{cu} = 2500 \,\mu$

86

図-6.2.4 軸方向引張鉄筋の最大鉄筋量の試算結果

3) 部材断面 0.15% 配置に対する過去の経緯と解説

昭和43年プレストレストコンクリート道路橋示方書においてひび害れ防止の観点から㎡当たり30kg 相当を配置する考えが示されていたが、定量的に評価しにくいため、S53道示Ⅲ編において部材断面の 0.15%を配置することに変更となった。この経緯について、参考文献11)に解説されており、以下のとお りである。

6.2.3 版部材の軸方向鉄筋量

CEB モデルコード 1976 年5 月案¹²⁾において, 斜引張鉄筋を配置しない場合の終局荷重作用時の許容せん断応力度は次の通りとされている。

ここに,

 au_a :許容せん断応力度 (kgf/cm²)

ε:板厚による補正係数 (≥ 1.0)

 $p:引張鉄筋比 (p = \frac{A_s}{bd})$

 σ_{ck} : コンクリートの設計基準強度 (kgf/cm²)

H24 道示III編に示される許容せん断応力度の値は、上記の式において $\varepsilon = 1.0, p = 1.0\%$ とした値の 1/1.7 程度である。

設計荷重時にこの値を満足すれば、終局荷重時も満足できている。そのため、CEB モデルコードによる許 容せん断応力度に基づけば、版部材の引張鉄筋比は少なくとも1%以上配置する必要がある。

6章 参考文献

- 国土交通省国土技術政策総合研究所、国立研究開発法人土木研究所、(一社)プレストレスト・コンクリート建設業協会:プレストレストコンクリート橋における初期変状の影響評価と対策に関する共同研究報告書 (その2)、国総研資料第1046号、共同研究報告書第498号、2018.7
- 2) 金性七,藤井学,幸佐賢二,高西昇二,樋上登志夫:場所打ち中空床版橋の解析手法に関する検討,プレストレストコンクリート, Vol. 37 No. 3, pp. 66-72, 1995.5
- 3) 今村晃久: PC 中空床版橋の設計合理化とスプライス PC 構造の実用化に関する研究,北海道大学博士論文, 2001.
- 4) 原田健彦,水田崇志,横田剛,白戸真大:PC 道路橋を対象にした一定せん断流パネルを用いた設計モデルに
 関する検討,第27回プレストレストコンクリートの発展に関するシンポジウム論文集, pp. 453-456, 2018. 11
- 5) 池田尚治,小柳洽,角田與史雄:土木学会編 新体系土木工学 32 鉄筋コンクリートの力学,技報堂出版, pp. 143-151, 1982. 11
- 6) 谷川恭雄他:鉄筋コンクリート構造-理論と設計-(第3版), p. 32, 森北出版, 2009.3
- 7) F・レオンハルト, E・メニッヒ:レオンハルトのコンクリート講座2 続鉄筋コンクリートの設計, 鹿島出版
 会, p64, 1984.7
- 8) 青木重雄,和田克哉,青木一二三:土木学会編新体系土木工学 44 橋梁下部構造,技報堂出版, p. 124, 1985.3
- 9) 土木学会: 2017 年制定コンクリート標準示方書【設計編】, pp. 38-40, 2018.3
- 10) 柴田拓二:鉄筋コンクリート部材の脆性破壊時耐力推算式の検討,コンクリート工学, Vol. 18, No. 1, pp. 26-37,
 1980.1
- 日本道路協会 橋梁委員会 示方書小委員会コンクリート橋分科会:道路橋示方書コンクリート橋の詳説, 橋梁と基礎, Vol. 13, No. 4, pp. 33-99, 1979.4
- 12) 岡村甫: CEB モデルコードにおけるせん断規定(案),コンクリート工学, Vol. 14, No. 11, pp. 104-107, 1976.

7章 まとめ

本研究では、コンクリート道路橋の上部構造に関して、性能評価や部分係数設計法の導入に向け、材料強度の特性値やばらつき、部材耐力等のばらつき、及びその前提条件について、従来の規定の背景や既往研究等に基づき調査や試算を行い、さらに、抵抗係数や制限値について検討を行った。本研究により、以下の結果を得た。

(1) 使用材料の調査結果

使用材料の特性について、特性値やばらつきを評価するために既往文献や実績の調査を行った。調査 において、コンクリートの圧縮強度やヤング係数、鉄筋の降伏強度、PC 鋼材の引張強度は十分なデータ 数があり、確率統計量として特性値及びばらつきが得られた。一方、コンクリートのクリープ係数や乾 燥収縮度については、現状でばらつきを議論できるだけのデータが揃っていないため、特性値はH24 道 示 I 編に示される値とし、ばらつきは過去のデータから取り得る最大値とした。

(2) 応力度制限値に対する調査結果

- 1) 設計の前提条件としての応力度制限値を調査し、プレストレストコンクリート部材においては持続荷 重下でH24 道示の死荷重時の許容値以下とすれば、コンクリートのクリープ係数・乾燥収縮の特性値の 前提条件を満足できることを確認した。また、クリープ・乾燥収縮に対する鉄筋拘束の影響や引張鉄筋 に負担させる引張応力度を210N/mm²とするのがよいことを試算により確認した。鉄筋コンクリート部材 においては、応力算出時にクリープの影響を考慮するために従来からヤング係数比15 とし、実態に対し て安全側の設定となっているが、ヤング係数比を変化させても大きな差異が見られない試算結果もあり、 ヤング係数比は従来通りとした。
- 2) 耐荷性能の照査に対する応力度制限値を調査し、プレストレストコンクリート部材において、部材全体が弾性挙動する限界(可逆限界)の状態としての応力度制限値を検証した。
- 3) 耐久性能の照査に対する応力度制限値を調査し、持続荷重に対して鉄筋の引張応力度を 100N/mm² 以下とすれば、コンクリート表面のひび割れ幅が 0.2mm 以下となり、初期に発生するひび割れが抑制できると考えられていることを確認した。また、コンクリート圧縮応力や鉄筋引張応力に対する疲労強度は土木学会式に準じて算出すると、H24 道示の疲労に対する許容値より大きくなるため、コンクリート部材はH24 道示の許容値を超えなければ疲労の影響が生じにくいことを確認した。
- 4) 施工時の若材齢時の応力度制限値を調査し、材齢に応じた発現強度の5%フラクタイル値かつ設計基準強度以下を圧縮強度の特性値とし、これまでの道示の許容値が確保していた安全率から応力度制限値 を検証した。

(3) 耐荷性能に関する部材設計の照査式及び抵抗係数の調査結果

1) 部材設計における耐力照査式や特性値の設定の背景を調査し、鉄筋コンクリート部材の降伏曲げモー

メントの特性値算出時には、コンクリートの圧縮応力は設計基準強度の2/3以下とするのがよいとした。 押抜きせん断力の特性値については、S61 コンクリート標準示方書に示されている押抜きせん断に関す る照査式に対して、実験データにおける統計量から照査式の妥当性を検証した結果、従来の値と同程度 であることを確認した。また、現在一般的に使用されているねじりモーメントを受ける部材に関する補 強鉄筋の応力度や耐力の特性値に対して、オーストラリアの基準が参考になっていることがわかった。 相反応力部材に対しては、これまでの終局荷重の組合せである1.3D+2.5L及び1.0D+2.5Lが相反応力を 照査していた荷重組合せであり、これらの組合せにより最大断面力が生じる場合があることを試設計に より確認した。

2) 2章で調査した特性値やばらつきから耐荷力に影響を及ぼす材料特性のばらつきを整理し, FOSM 法により材料変動による耐荷力のばらつきを試算した。また、過去の実験結果と理論式や実験式との関係から耐荷力評価式のばらつきを調査し、材料変動による耐荷力のばらつき及び耐荷力評価式のばらつきから公称ばらつきを設定し、部材設計に関する抵抗係数を試算した。定量化に対して信頼性の高いデータが不足している場合には、公称ばらつきを設定せず、従来安全率の逆数として抵抗係数を試算した。

(4) 接合部の設計の照査式及び抵抗係数の調査結果

- 接合部の設計における耐力照査式や特性値の設定の背景を調査した。合成桁構造における桁と床版の 接合部においては、可逆性の範囲はコンクリートの付着で受け持てる範囲とし、付着係数(=付着強度/ 設計基準強度)の特性値は0.05を想定した。最大耐力はずれ止め鉄筋のダウエル効果による耐力とし、 ずれ止め鉄筋として必要な鉄筋量を検証した。また、アンカーボルトによる連結においては、破壊形態 ごとに調査し、以下の内容を確認した。
 - コンクリートのコーン破壊に対して、破壊面の算定方法を検証し、破壊面はアンカーボルト径の2
 倍に相当する深さから45°とするのがよい。
 - ② コンクリートの支圧破壊に対して、支圧破壊におけるせん断耐力の特性値はスタッド相当のダウエ ル効果によるせん断耐力を想定する。
 - ③ コンクリートの付着破壊に対して、従来の規定はOrangunの付着強度を基にしており、付着強度の 特性値はH24 道示の許容値の1.7 倍とするのがよい。

さらに、プレキャストセグメントの接合部においては、既往の実験結果より、内ケーブルの必要鋼材 量が 30%程度以上あればコンクリートが圧壊後も急激に耐力が失われず、じん性が確保されることを確 認した。

2) 過去の実験結果と理論式や実験式との関係から耐荷力評価式のばらつきを調査した。そして、2章で 整理した材料特性のばらつきと耐荷力評価式のばらつきから公称ばらつきを設定し、接合部の設計に関 する抵抗係数を試算した。定量化に対して信頼性の高いデータが不足している場合には、公称ばらつき を設定せず、従来安全率の逆数として抵抗係数を試算した。

(5) 構造の設計の検討及び構造細目の調査結果

- 1) 床版橋の設計について、格子桁理論と版理論による構造解析方法があり、どちらの方法を適用することが正しいかは現状としては示すに至っていないが、モデル化を判断する参考として、格子桁理論を適用する場合の留意事項や、版理論で適用するギョンマソネによる応答算出の概念と横方向分配係数の算出方法について記載した。
- 2) 重ね継手の直角方向に配筋する横方向鉄筋の必要鉄筋量について調査し、D13を2~3本配置すれば、 引張鉄筋1本の断面積の0.3倍以上となることを確認した。また、H24道示で規定されている最小・最 大鉄筋量の根拠を確認した。

【付録】

- 付録1. コンクリート橋の構造諸元に関する資料
- 付録2. FOSM 法による材料変動による耐力の試算
- 付録3.鉄筋拘束の影響の試算
- 付録4. 引張鉄筋の応力度制限値の試算
- 付録 5. 直交異方性版理論における横方向分配係数の表
- 付録6. 確率計算に関する留意事項

付録1 コンクリート橋の構造諸元に関する資料

1.1 調査目的

コンクリート橋の部分係数を算出する際に,対象とする構造諸元の選定をするため,コンクリート橋の建 設実績を調査した。

1.2 データ概要

一般社団法人プレストレスト・コンクリート建設業協会よりご提供頂いた, プレストレストコンクリート 道路橋の建設実績のデータベースを参考とした。

調査は、完工年度を平成18~20年度までの3年間分のプレストレストコンクリート道路橋(総橋梁数2647橋)を対象とした。また、上部工の形式は多種多様に渡っているため、大分類、中分類、小分類の順に整理することとした。大分類は主桁断面形状、中分類は施工方式や架設方法と橋梁形式、小分類は支間長である。

1.3 調査結果

1.3.1 大分類

主桁断面形状別の内訳を付図-1.3.1 に示す。中空床版が最も多く45.2%を占め、続いてT桁、箱桁、合成桁の順の割合であった。

付図-1.3.1 主桁断面形状別内訳(2647橋)

1.3.2 中分類

付図-1.3.1 に示す主桁断面形状の割合が高い中空床版, T桁, 箱桁に対し, 施工方式, 架設方法, 橋梁形 式別に分類を行った。中空床版の分類を付図-1.3.2 に, T桁の分類を付図-1.3.3 に, 箱桁の分類を付図-1.3.4 にそれぞれ示す。中空床版は、プレテンション方式-単純橋が 70.2%と圧倒的に占め, 続いて, プレテンショ ン方式-連結橋, ポストテンション方式-単純橋の順であった。T桁は, ポストテンション方式-単純橋が 33.2% を占め, 続いて, ポストテンション方式-連結橋, プレテンション方式の単純橋の順であった。箱桁橋は, 張

出架設工法-連続ラーメン橋が39.0%を占め、張出架設工法-連続桁、固定支保工-連続桁の順であった。

1.3.3 小分類

1.3.2 で分類した代表的な橋梁形式において、さらに支間長別に分類を行った。

中空床版の代表的な4つの形式の支間長割合を,付図-1.3.5~付図-1.3.8 に示した。プレテンション形式 では支間長 20m 以下の場合に多く用いられ,ポストテンション形式では,支間長 20m 以上の場合に多く用い られる傾向にある。

T桁の代表的な4つの形式の支間長割合を、付図-1.3.9~付図-1.3.12に示した。プレテンション形式では支間長30m以下の場合に多く用いられ、ポストテンション形式では、支間長30m以上の場合に多く用いられる傾向にある。

2.1 検討概要

2.1.1 検討内容

H24 道示III編に従って設計されたコンクリート橋の主方向を対象に試算を行った。本検討は橋梁形式及び 支間長を変えた標準的な橋梁25橋を対象とし、材料・施工のばらつきを考慮して耐力の評価を行った。本検 討で取り扱った照査項目は、道示IIIにおける曲げモーメント又は軸方向力が作用する部材の終局荷重作用時 における破壊抵抗曲げモーメントの照査(以下、曲げ耐力)及びせん断力が作用する部材の終局荷重作用時 における斜引張破壊に対する照査(以下、斜引張破壊に対する耐力)とし、照査部位は断面力が卓越する箇 所(支間中央、支点部、1/4 支間等)とした。抵抗側の設定において曲げ耐力については、ほぼ理論的に算 出可能であるため、材料・施工のばらつきを考慮した。一方、斜引張破壊に対する耐力は、過去の実験値か ら式のばらつきを評価し取り入れるとともに、併せて材料・施工のばらつきも考慮した。耐力のばらつきの 評価には、曲げ耐力及び斜引張破壊ともにFOSM法を用いた。

2.1.2 検討対象

(1) 検討対象橋梁

付表-2.1.1 に検討の対象とした橋梁形式の一覧表を, 付図-2.1.1 に対象橋梁の断面図を示す。橋梁形式は, 「付録1 コンクリート橋の構造諸元に関する資料」に示す通り, 近年のプレストレストコンクリート橋の建 設実績から,上位の割合を占める桁形状を選定し,それに見合う支間長を設定した。なお,幅員構成は全て 同一としている。

中空床版橋では、構造形式による影響を把握するために、RC構造(a20)、PRC構造(b20)、PC構造(c20)と 変えたケースを設定した。支間長は、RC構造の限界と思われる一律20mとしたため、PC構造においては、付 録1の平均の支間長よりやや小さい値となっている。

T桁橋では、中空床版橋との比較用に単純桁の支間長 20m(d20)を設定し、さらに連続橋による支間の影響 を把握するために、PC連結ポステン橋の支間長を 20m(e20)、30m(e30)、40m(e40)を変化させたケースを設定 した。支間長は、付録1の平均の支間長を考慮して決定した。

箱桁橋では、支点条件の影響が懸念されるため、連続橋と連続ラーメン橋を分けて設定し、連続箱桁橋で は、最大支間長を 40m(f40),80m(f80),120m(f120)と変えたケースを、連続ラーメン橋では、最大支間長を 80m(g80),120m(g120)と変えたケースを設定した。なお、いずれも径間数は3径間、施工方法は、張出架設工 法とした。最大支間長は、付録1に示す建設実績より、平均的な最大支間長 80m を設定し、全体を網羅でき るように連続橋では 80±40m を、ラーメン橋では 80+40m を設定した。また、側径間長は、最大支間長を目 安に個別に設定した。

また、線形条件は、全ての橋梁において直橋(斜角90度)とした。

98
中央経間の		0	19	20	24	20	40	45	80	120	
構造	形式		9	10	20	24	50	40	40	00	120
RC			-	-	a20	-	-	-	-	-	-
PRC	単純	中空床版	-	-	b20	-	-	-	-	-	-
			-	-	c20	-	-	-	-	-	-
	単純	キュリングセル	-	-	d20	-	-	-	-	-	-
	連結	4\ ∧7√ I 111T	-	-	e20 ^{%1}	-	e30 ^{%1}	e40 ^{%1}	-	-	-
	連続 <u>-</u> ->	箱桁	-	-	-	-	-	f40 ^{%2}	-	f80 ³⁶⁸	f120 ³⁸⁴
		テージ箱桁	-	-	-	-	-	-	-	g80 ^{₩8}	g120 ³⁸⁴
	単純	- Public - Contract	h9	-	-	h24	-	-	-	-	-
PC	連結) VIVINIX	-	-	-	i24 ^{%1}	-	-	-	-	-
	単純	プレモンアドロ	-	-	j18	j24	-	-	-	-	-
	連結	/ V7√ I 1¶J	-	-	k18 ^{₩1}	k24 ^{**1}	-	-	-	-	-
	単純	パルプ T 松志海	-	-	-	-	-	-	145	-	-
	連結		-	-	-	-	-	-	m45 ^{≫1}	-	-
	単純	さん。先前の	_	-	-	_	n30	-	n45	_	_
	連結	コンホ 桁丁※5	-	-	-	-	o30 ^{%1}	-	o45 ^{%1}	-	-

付表-2.1.1 検討ケース

※1:連結桁は、中央径間と側径間を等径間として3径間とする。

※2:支間割は3@40mとする。

※3:支間割は40m+80m+40mとする。

※4:支間割は80m+120m+80mとする。

※5:セグメント方式とする。

中空床版橋(a20, b20, c20)

連結PC ポステンT 桁橋(e20)

連結 PC ポステン T 桁橋(e30)

PC連続箱桁橋(f40) 付図-2.1.1 対象橋梁断面図

PC連続箱桁橋, PC連続ラーメン橋(f80,g80)

PC連続箱桁橋, PC連続ラーメン橋(f120,g120)

単純PC プレテンスラブ桁橋(h9)

単純PCプレテンホロー桁橋(h24)

付図-2.1.1 対象橋梁断面図

付図-2.1.1 対象橋梁断面図

(2) 照査部位及び照査項目

照査対象部位は、それぞれの橋種において各断面力が卓越する箇所とし、付表-2.1.2にそれぞれ示す。

構造形式	記号	照查部位	照查項目
中空床版	a20,b20,c20	支間中央	破壊抵抗曲げモーメントの照査
		端支点※1	斜め引張破壊に対する耐力の照査
単純ポステンT桁	d20	支間中央	破壊抵抗曲げモーメントの照査
		端支点※1	斜め引張破壊に対する耐力の照査
連結ポステンT桁	e20,e30,e40	側径間(断面力最大箇所)	
		中間支点 ^{約2}	破壊抵抗曲げモーメントの照査
		中央径間支間中央	
		端支点※1	斜め引起時度に対する面打の昭本
		中間支点	
連続箱桁	f40,f80,f120	側径間(断面力最大箇所)	
		中間支点※2	破壊抵抗曲げモーメントの照査
		中央径間支間中央	
		端支点※1	
		側径間 1/4 点**3	斜め引張破壊に対する耐力の照査
National Action of the Action	00.100	中間支点中央後間側響	
連続アシン箱桁	g80,g120	側径間(断面力最大箇所)	
		中間文点 ²²	破壊抵抗曲けモーメントの照査
		中央径間文間中央	
			かいようになかったよう スエレー かのま
		11/4 只参加 1/4 日本	新初5h 最收暖に対する 両力の 照査
単体プレーシン中国	10194	中间又尽中失怪的则。	な 価格 は ゆう デー イント の 昭本
甲和ノレノン休放	n9,n24	又间中天	1100000000000000000000000000000000000
海妹プレテンは旧	:94	加汉即(昭云九县十公司)	赤キベンケーガズHX2装(ニメ) 9 る1111/JVン県に自.
理和ノレノン小加	124	他的时间/J取入固约/ 山間支占 ² 2	破壊折ち曲げエーメントの昭本
		中山又示一	
		1 八山山入间 1 八 端支占※1	
		中間支点	斜め引張破壊に対する耐力の照査
単純プレテンT桁	j18,j24	支間中央	破壊抵抗曲げモーメントの照査
		端支点**1	斜め引張破壊に対する耐力の照査
連結プレテンT桁	k18,k24	側径間(断面力最大箇所)	
		中間支点※2	破壊抵抗曲げモーメントの照査
		中央径間支間中央	
		端支点 ^{%1}	対め引渡破壊に対けてありの昭本
		中間支点	新やりり100000000000000000000000000000000000
単純バルブT桁	145	支間中央	破壊抵抗曲げモーメントの照査
		端支点**1	斜め引張破壊に対する耐力の照査
連結バルブT桁	m45	側径間(断面力最大箇所)	
		中間支点※2	破壊抵抗曲げモーメントの照査
		中央径間支間中央	
		端支点和	斜め引張破壊に対する耐力の照査
1)/// h = 10/-5		中間支点	
単純コンボ橋	n30,n45	文間中央	破壊抵抗曲げモーメントの照査
24044 x 201-5			斜め引張破壊に対する耐力の照査
連結コンホ橋	030,045	(則)全前)(即)(面))(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1	
		中间文只 [∞] 由由 須 開 士 明 由 中	破壊成九曲にモーメントの照査
		中大住间又间中天	
		师又尽""	斜め引張破壊に対する耐力の照査
1	1	丁间入示	

付表-2.1.2 照査部位および照査項目

※1 支点部から支間側~h/20h 桁高)移動させた位置

※2 中間支点部において橋脚面における断面力が卓越する側

※3 中間支点から側径間側へ側径間部の1/4の長さ移動させた位置

※4 中間支点から中央径間側へh/2(h:桁高)移動させた位置(以下,中支中と呼ぶ)

2.2 許容応力度法に基づく断面決定

2.2.1 使用材料及び荷重条件

使用材料は、既往の実績に倣って付表-2.2.1に示す通りとした。

構造・橋種		コンクリートの 設計基準強度 (N/mm ²)	鉄筋 (JIS G 3536)	PC 鋼材 (JIS G 3112)
RC 構造	a20 e20,e30,e40 の連 結部	24 30	SD345	-
PC 構造	場所打ち桁	40	SD345	SWPR7 SWPR19
	プレキャスト桁	50 (横桁・間詰め・床版 30)	SD345	SWPR7

付表-2.2.1 使用材料

許容応力度法における荷重条件は、H24 道示Ⅲ編の終局荷重作用時の組合せによるものとし、死荷重(D)、活荷重(L)、衝撃(I)、プレストレス力(PS)、コンクリートのクリープの影響(CR)、コンクリートの乾燥収縮の影響(SH)を考慮して、次の荷重組合せとした。

(1)1. 3D+2. 5 (L+I) +1. 0 (PS+CR+SH)

(2)1. 0D+2. 5 (L+I) +1. 0 (PS+CR+SH)

(3)1.7(D+L+I)+1.0(PS+CR+SH)

なお,部材の斜め引張破壊に対する耐力の照査では,必要最小ウェブ厚決定のために道示Ⅲの設計荷重時 組合せ(D, D+L, D+L+T)も使用している。

2.2.2 設計方法

試設計では、(1)、(2)に示す手順にしたがい、曲げ耐力および降伏曲げモーメントの照査用モデルと斜引 張破壊に対する耐力照査用モデルの設計を行い、断面決定をした。

(1)曲げ耐力および降伏曲げモーメントの照査用モデルの作成

曲げ耐力の照査用モデルは、H24 道示III編4.2.4 における曲げ耐力のみの耐力変動を把握するために、曲 げ耐力が終局荷重による断面力相当になるように鋼材やその配置を決定した。詳細は以下の手順による。

- 1) 既往の実績から設定した各断面形状から、解析モデルを作成する。
- 2) 鋼材の配置を仮定する。
- 3) 死荷重,活荷重,衝撃の影響によって生じる断面力を算出する。併せて,2.2.1 に示した H24 道示III編の終局荷重作用時の荷重組合せにおける断面力を算出する。
- 4) H24 道示Ⅲ編の終局荷重作用時の荷重組合せで最大(最小)となる断面力に対して、部材の曲げ耐力が同等程度になることを確認する。乖離がある場合は2)へ戻り、鋼材を変更する。

ただし、b20(単純PRC 中空床版橋)については、下縁側鉄筋をD22@125 として、終局荷重作用時を満足す る最小PC 鋼材量を配置した。f シリーズ(連続箱桁橋),g シリーズ(連続ラーメン箱桁橋)は、架設時に必要 な内ケーブル本数を配置し、終局荷重作用時を満足する外ケーブルの最小鋼材量を配置した。また、内・外 ケーブル配置については、主方向について限定しているため、横方向の配置等は考慮していない。

降伏曲げモーメントに関しては、H24 道示III編で照査項目としていないため、照査用モデルの作成ではこの指標の照査を行っていない。

(2) せん断力が作用する部材の斜引張破壊に対する耐力の照査

斜引張破壊に対する耐力の照査用モデルは、H24 道示Ⅲ編4.3.4(3)における部材の斜引張破壊に対する耐 カのみの耐力変動を把握するため、(1)で作成した曲げ耐力の照査用モデルにおいて、設計荷重時における斜 引張応力度照査を行ってウェブ厚を最小化し、斜引張破壊に対する耐力が終局荷重による断面力相当になる ようにせん断補強鉄筋量を決定した。詳細は以下の手順による。

- 1)(1)で設定した断面および鋼材配置を設定した解析モデルにおいて、せん断力が卓越する箇所で、H24 道示Ⅲ編の設計荷重時の照査(PC構造:斜引張応力度の照査,RC構造:せん断補強鉄筋の照査)およ びH24道示Ⅲ編の6章の構造細目(最小ウエブ厚を除く)を遵守できる範囲内で、できるだけウェブ 厚を小さく設定する。
- 2) 死荷重,活荷重,衝撃の影響によって生じる断面力を算出する。併せて,2.2.1 に示した道示IIIの終 局荷重作用時の荷重組合せにおける断面力を算出する。
- 3) H24 道示Ⅲ編の終局荷重作用時の荷重組合せで最大(最小)となる断面力に対して,部材の斜引張破壊 に対する耐力が上回るために必要な最小限のせん断補強鉄筋量を算出し,鉄筋配置を決定する。

2.2.3 設計結果

付表-2.1.1に示した各検討ケースについて、2.2.2の設計方法に基づいて設計した結果をまとめる。

(1)曲げ耐力および降伏曲げモーメント照査用モデル

1) 単純 RC 中空床版橋(a20)

付図-2.2.1に上部工図を、付表-2.2.2に断面計算結果を示す。

(a) 照查断面図(支間中央)

(b) 側面図

付図-2.2.1 上部工図

	圧	縮強度	۴.	N/mm ²	24 0
	ŧ	アング係数		N/mm ²	2 50×10 ⁴
計	ク	リープ係券	—	2 60	
算	プレオ	咸少 乾燥収斜	—	200×10-6	
諸	不静	定 乾燥収縮	宦度	—	150×10 ⁻⁶
兀	有効高	鉄筋	鋼材1	mm	1035
	PC	鋼材引張強度	N/mm ²	-	
	鋢	转降伏耐力	N/mm ²	345	
	PC: 鈔	新格尔最强度	N/mm ² N/mm ²	- 34	

付表-2.2.2 断面計算結果

-					
		主桁自重	M _{d1}	kN•m	8133 57
	死荷重	橋面荷重	M _{d3}	kN•m	1407 27
		計	M _d	kN•m	9540 84
ſΈ		活荷重最大	M _{lmax}	kN•m	4125 00
崩	活荷重	活荷重最小	M _{lmin}	kN•m	0 00
断		採用値	Mı	kN•m	4125 00
面		活荷重最大	M _{imax}	kN•m	721 88
Л	衝撃	活荷重最小	M _{imin}	kN•m	0 00
		採用値	Mi	kN•m	721 88
	ク	リープ	M _{CR}	kN•m	0 00
	乾	燥収縮	M _{SH}	kN•m	0 00
laka	0##	1.3D 2.5(L I) 1.0	(PS CR SH)	kN•m	24520 29
於	「同何里 「田吐」kr	1.0D 2.5(L I) 1.0	(PS CR SH)	kN•m	21658 04
111	·用時町 	1.7(D L I) 1.0(F	PS CR SH)	kN•m	24459 12
	面刀	採用値	Mu	kN•m	24520 29
QH-		径		-	D32
対	下縁側	本数	(本	100
肋		総断面	i積	mm ²	79420 0
7.1+1			中立軸	mm	161
和皮质	要抵抗田(M _r	kN•m	25841 98	
	曲げ破れ	M _r /M _u	-	1 054	

2) 単純 PRC 中空床版橋(b20)

付図-2.2.2に上部工図を、付表-2.2.3に断面計算結果を示す。

(b) 側面図

付図-2.2.2 上部工図

付表-2.2.3	断面計算結果
1112 2.2.0	

	圧	縮強度	N/mm ²	40 0	
	ヤ	ング係数	N/mm ²	3 10×10 ⁴	
	ク	リープ係数	-	2 60	
計	プレ源	載少 乾燥収締	Ι	200×10 ⁻⁶	
异諸	不静知	宦 乾燥収縮	-	150×10 ⁻⁶	
完	右州直	鋼材	PC鋼材	mm	980
		図心位置	鉄筋	mm	1035
	PC鋼材引張強度			N/mm ²	1700
	鉄	筋降伏耐力	N/mm ²	345	

		断面力			M(kN·m)	N(kN)	
		主桁自重	M _{d1}	kN•m	8133 57	0 00	
	死荷重	橋面荷重	M _{d2}	kN•m	1407 27	0 00	
		計	M _d	kN•m	9540 84	0 00	
作		活荷重最大	M _{lmax}	kN•m	4125 75	0 00	
崩	活荷重	活荷重最小	M _{lmin}	kN•m	0 00	0 00	
断		採用値	M ₁	kN•m	4125 75	0 00	
面		活荷重最大	M _{imax}	kN•m	915 92	0 00	
カ	衝撃	活荷重最小	M _{imin}	kN•m	0 00	0 00	
		採用値	Mi	kN•m	915 92	0 00	
	鉄筋	拘束力	M _{Rb}	kN•m	406 47	-834 55	
	クリ	クリープ		kN•m	0 00	0 00	
	乾燌	與収縮	M _{SH}	kN•m	0 00	0 00	
	1.3D 2.5(L I) 1.0(PS			kN∙m	25413 74	-834 55	
Å	終局荷重	1.0D 2.5(L I) 1.0	(PS CR SH)	kN•m	22551 49	-834 55	
作り	目時断面力	1.7(D L I) 1.0(F	'S CR SH)	kN•m	25196 74	-834 55	
		採用値	Mu	kN•m	25413 74	-834 55	
	初期引張成	示力度	σ_{pi}	N/mm ²	1250		
ブレ	直後プレフ	、トレス	σ_{pt}	N/mm ²	1159		
7	有効プレフ	、トレス	σ_{pe}	N/mm ²	11	04	
ĥ		使用鋼材	種別		7S12 4(SV	WPR7AL)	
Ĺ	DC细壮县	鋼材本	:数	_	18		
ス	rU-興村 里	1本当り幽	斤面積	mm ²	650) 3	
		総断面	積	mm ²	1170)5 4	
<i>A</i> #+-		鉄筋征	圣 	-	D	22	
ず か	下縁側	本数		本	6	6	
月力		総断面	積	mm ²	2554	48 6	
石山	神神伝作曲げているとし			mm	9	0	
H/X	\$\$\$15x1/L 四 V)		Mr	kN•m	25820 94		
	曲げ破壊	安全度	M_r/M_u	—	10	16	

3) 単純PC 中空床版橋 (c20)

付図-2.2.3に上部工図を、付表-2.2.4に断面計算結果を示す。

(a) 照查断面図(支間中央)

(b) 側面図

付図--2.2.3 上部工図

付表-2.2.4 断面計算結果

-				
	圧	E 縮 強 度	N/mm ²	40 0
		ヤング係数	N/mm ²	3 10×10 ⁴
計	ク	リープ係数	—	2 60
算	プレ	減少 乾燥収縮度	-	200×10-6
諸	不静	定 乾燥収縮度	-	150×10-6
兀	有効高	PC鋼材図心位置	mm	980
	PO	C鋼材引張強度	N/mm ²	1700
	4	跌筋降伏耐力	N/mm ²	345

		王桁目重	M _{d1}	kN•m	8133 57
	死荷重	橋面荷重	M _{d2}	kN∙m	1407 27
		計	M _d	kN∙m	9540 84
作		活荷重最大	M _{lmax}	kN∙m	4125 75
崩	活荷重	活荷重最小	M _{lmin}	kN∙m	0 00
断		採用値	M ₁	kN•m	4125 75
面		活荷重最大	M _{imax}	kN•m	915 92
J	衝撃	活荷重最小	M _{imin}	kN•m	0 00
		採用値	Mi	kN•m	915 92
	クリ	ープ	M _{CR}	kN•m	0 00
	乾燌	刺収縮	M _{SH}	kN•m	0 00
	1.3D 2.5(L I) 1.0(PS			kN•m	25007 27
ň	終局荷重	1.0D 2.5(L I) 1.0	(PS CR SH)	kN∙m	22145 02
作月	甲時断面力	1.7(D L I) 1.0(F	'S CR SH)	kN•m	24790 27
		採用値	Mu	kN•m	25007 27
	初期引張応	5力度	σ_{pi}	N/mm ²	1250
プ	直後プレフ	ストレス	σ_{pt}	N/mm ²	1152
$\boldsymbol{\nu}$	有効プレス	ストレス	σ_{pe}	N/mm ²	1058
ス		使用鋼材	·看別	_	7S12 4
1		12/11/11/1	132.0 0		(SWPR7AL)
	PC鋼材量	鋼材本	:数	—	26 00
		1本当り関	所面積	mm ²	650 30
		総断面	積	mm ²	16907 80
破	破壊抵抗曲げモーメント			mm	91
N/X ·	収扱抵抗曲のモニメント			kN∙m	25187 56
	曲げ破壊安全度			—	1 01

4) 単純ポステンT桁橋(d20)

付図-2.2.4に上部工図を、付表-2.2.5に断面計算結果を示す。

(b) 側面図

付表 2.2.5 断面計算結果

	圧 縮 強 度			N/mm ²	40 0
	ヤ	ング係券	N/mm ²	3 10×10 ⁴	
計	ク	リープ係	—	2 60	
算	プレ源	載少 乾燥収	—	200×10-6	
諸	不静知	宦 乾燥収	—	150×10-6	
兀	有効高	PC鋼材	鋼材1	mm	1225
		図心位置	鋼材2	mm	1320
	PC	鋼材引張強	N/mm ²	1700	

-					
		主桁自重	M _{d1}	kN•m	903 21
	死荷重	場所打ち自重	M _{d2}	kN•m	130 31
		橋面荷重	M _{d3}	kN•m	311 50
		計	M _d	kN∙m	1345 02
作		活荷重最大	M _{lmax}	kN•m	1080 13
用版	活荷重	活荷重最小	M _{lmin}	kN•m	-79 82
副		採用値	M _l	kN•m	1080 13
力		活荷重最大	M _{imax}	kN•m	240 76
	衝撃	活荷重最小	M _{imin}	kN•m	-17 79
		採用値	Mi	kN•m	240 76
	ク	リープ	M _{CR}	kN•m	0 00
	乾;	燥収縮	M _{SH}	kN•m	0 00
	1.3D 2.5(L I) 1.0(P			kN∙m	5050 75
ź	终局荷重	1.0D 2.5(L I) 1.0(P	S CR SH)	kN∙m	4647 25
作月	目時断面力	1.7(D L I) 1.0(PS	CR SH)	kN•m	4532 05
		採用値	Mu	kN∙m	5050 75
	初期引張応	ぶ力度	σ_{pi}	N/mm ²	1240
プ	直後プレフ	、トレス	σ_{pt}	N/mm ²	1059
$\boldsymbol{\nu}$	有効プレフ	、トレス	σ _{pe}	N/mm ²	887
ス		信田綱材 おんちょう しんしょう しんしょ しんしょ	運用	_	78124
1		12/13444911	重加可		(SWPR7A)
V	PC鋼材量	鋼材本教	敗	_	4
ス		1本当り断	面積	mm ²	650 3
		総断面利	漬	mm ²	2601 2
70	破壊抵抗曲げモーメント			m	0 1010
140				kN•m	5060 76
	曲げ破壊安全度			—	1 002

5)連結ポステンT桁橋 (e20)

付図-2.2.5 に上部工図を、付表-2.2.6 に断面計算結果を示す。

付図--2.2.5 上部工図

		照査部	位.		側径間	中間支点	中央		
	圧	縮強	度	N/mm ²	40 0	30 0	40 0		
	4	アング係	数	N/mm ²	3 10×10 ⁴				
	ク	リープ係	《数	-	2 60				
計	プレ	减少 乾燥4	又縮度	-	200×10 ⁻⁶				
异 祛	不静	定 乾燥心	Z縮度	-	150×10 ⁻⁶				
完	右洲直	図心位置	PC鋼材	mm	1278	-	1278		
-	有劝回	凶心心見	鉄筋	mm	-	93	-		
	PC	鋼材引張強	鱼度	N/mm ²	1850				
	£	快筋降伏耐	力	N/mm ²	345				

付表-2.2.6 断面計算結果

		照査部位			側径間	中間支点	中央
		主桁自重	M _{d1}	kN∙m	901 38	0 00	903 21
	元志手	場所打ち自重	M _{d2}	kN•m	129 54	0 00	130 31
	グL111 里	橋面荷重	M _{d3}	kN•m	202 18	-275 12	92 27
		計	M _d	kN∙m	1233 10	-275 12	1125 79
作		活荷重最大	M _{lmax}	kN∙m	819 27	143 36	661 61
用版	活荷重	活荷重最小	M _{lmin}	kN∙m	-199 96	-664 26	-245 11
面		採用値	M	kN∙m	819 27	-664 26	661 61
力		活荷重最大	M _{imax}	kN•m	181 88	31 83	146 88
	衝撃	活荷重最小	M _{imin}	kN∙m	-44 39	-147 46	-54 41
		採用値	Mi	kN∙m	181 88	-147 46	146 88
	ク	リープ	M _{CR}	kN•m	699 78	1292 86	1246 41
	乾	燥収縮	M _{SH}	kN∙m	0 00	0 00	0 00
		1.3D 2.5(L I) 1.0(I	S CR SH)	kN•m	4805 69	-1094 10	4731 16
ň	終局荷重 1.0D 2.5(L I) 1.0(PS CR SH)				4435 76	-1011 56	4393 43
作户	目時断面力	1.7(D L I) 1.0(PS	CR SH)	kN•m	4498 01	-554 77	4534 69
		採用値	Mu	kN∙m	4805 69	-1094 10	4731 16
	初期引	張応力度	σ_{pi}	N/mm ²	1380	-	1380
プ	直後プ	レストレス	σ_{pt}	N/mm ²	1193	-	1196
$\boldsymbol{\nu}$	有効プ	レストレス	σ_{pe}	N/mm ²	1002	-	997
ス		使用鋼材	锺別	_	8S12 7	_	8S12 7
		head a second			(SWPR7BL		(SWPR7BL
2	PC鋼材量	鋼材本	<u>敗</u>	本	3	-	3
		1本当り断	面積	mm ²	789 7	_	789 7
		漬	mm ²	2369 0	—	2369 0	
AH-	鉄筋径			—	_	D13	-
业大 合字	(x) 上縁側 本数			本	-	20	-
ЪŊ		総断面	漬	mm ²	-	2534 0	-
Ζ'n	かゆかいた 中立軸				100	64	100
R	破壊抵抗曲りモーメント M _r			kN•m	5041 06	-1119 56	5041 06
					1 049	1 023	1 066

6)連結ポステンT桁橋 (e30)

付図-2.2.6に上部工図を、付表-2.2.7に断面計算結果を示す。

(b)側面図 付図-2.2.6 上部工図

		照査部	位		側径間	中間支点	中央		
	圧	縮 強	度	N/mm ²	40 0	30 0	40 0		
	+	アング係	数	N/mm ²	3.10×10^4				
- 1	ク	リープ係	《数	-	2 60				
計	プレi	减少 乾燥山	又縮度	-	200×10 ⁻⁶				
异 諸	不静	定 乾燥心	Z縮度	-	150×10 ⁻⁶				
一元	右动宣	团心位墨	PC鋼材	mm	1678	-	1678		
	伯劝同	因心心里	鉄筋	mm	-	94	-		
	PC	鋼材引張強	鱼度	N/mm ²	1850				
	£	扶筋降伏耐	力	N/mm ²	345				

付表-2.2.7 断面計算結果

					側径間	中間支点	中央
		主桁自重	M _{d1}	kN•m	2405 59	0 00	2405 72
	灰荷香	場所打ち自重	M _{d2}	kN∙m	287 58	0 00	287 63
	2619 里	橋面荷重	M _{d3}	kN∙m	444 51	-586 27	182 73
		計	M _d	kN∙m	3137 68	-586 27	2876 08
作		活荷重最大	M _{lmax}	kN∙m	1580 21	296 23	1282 70
用	活荷重	活荷重最小	M _{lmin}	kN∙m	-392 62	-1314 12	-501 12
面面		採用値	M ₁	kN∙m	1580 21	-1314 12	1282 70
力		活荷重最大	M _{imax}	kN•m	287 60	53 91	233 45
	衝撃	活荷重最小	M _{imin}	kN∙m	-71 46	-239 17	-91 20
		Mi	kN∙m	287 60	-239 17	233 45	
	ク	リープ	M _{CR}	kN•m	724 94	1411 37	1361 95
	乾	燥収縮	M _{SH}	kN•m	0 00	0 00	0 00
		1.3D 2.5(L I) 1.0(P	S CR SH)	kN•m	9473 45	-3234 01	8891 23
Á	終局荷重 1.0D 2.5(L I) 1.0(PS CR SH)				8532 15	-3058 13	8028 41
作り	作用時断面力 1.7(D L I) 1.0(PS CR S			kN•m	9234 27	-2225 88	8828 74
		採用値	Mu	kN•m	9473 45	-3234 01	8891 23
	初期引	張応力度	σ_{pi}	N/mm ²	1380	-	1380
プ	直後プ	レストレス	σ_{pt}	N/mm ²	1236	-	1236
$\boldsymbol{\nu}$	有効プ	レストレス	σ_{pe}	N/mm ²	1045	-	1034
ス		信田綱材) 新聞	_	12812 7	_	128127
F		100 PT	重加1		(SWPR7BL)		(SWPR7BL)
	PC鋼材量	鋼材本刻	敗	本	3	_	3
	ス 1本当り断i		面積	mm ²	1184 5	-	1184 5
	総断面積		漬	mm ²	3553 6	-	3553 6
全生	鉄筋径			-	-	D19	-
公	新 広 上縁側 本数		(本	-	20	—
нл	総断面積			mm ²	—	5730 0	_
Fi	神徳抵持曲ば エレント 中立軸			mm	149	144	149
14	www.mmneexyr Mr			kN∙m	9880 47	-3254 52	9880 47
	曲げ破壊安全度 M _r /M _u			-	1 043	1 006	1 1 1 1 1

7)連結ポステンT桁橋 (e40)

付図-2.2.7 に上部工図を, 付表-2.2.8 に断面計算結果を示す。

(b)側面図 付図-2.2.7 上部工図

							付表-2	. 2.	8	断面計算	算結果
					側径間	中間支点	中央				
	圧	縮 強	度	N/mm ²	40 0	40 0 30 0 40 0					主桁
	4	アング係	数	N/mm ²	3 10×10 ⁴					死荷重	場所打
- 1	クリープ係数			—	2 60					2010 里	橋面
計	プレ減少 乾燥収縮度			—		200×10 ⁻⁶					Ē
异 法	不静	不静定 乾燥収縮度			150×10 ⁻⁶				作		活荷
元	右洲直	図心位置	PC鋼材	mm	2160		2160		用断	活荷重	活荷
	(H 2010)	四心心直	鉄筋	mm	-	94 —			面		採月
	PC	PC鋼材引張強度		N/mm ²		1850			力		活荷
	載	鉄筋降伏耐力 N/n			345					衝撃	活荷

					側径間	甲間文点	甲央
		主桁自重	M _{d1}	kN∙m	5557 51	0 00	5559 57
	亚带重	場所打ち自重	M _{d2}	kN∙m	308 67	0 00	303 04
	四间里	橋面荷重	M _{d3}	kN∙m	792 26	-1035 42	309 93
		計	M _d	kN∙m	6658 44	-1035 42	6172 54
作		活荷重最大	M _{lmax}	kN•m	2490 06	483 35	2022 35
用版	活荷重	活荷重最小	M _{lmin}	kN•m	-628 98	-2107 93	-841 79
面		採用値	M ₁	kN•m	2490 06	-2107 93	2022 35
力		活荷重最大	M _{imax}	kN∙m	383 47	74 44	311 44
	衝撃	活荷重最小	M _{imin}	kN•m	-96 86	-324 62	-129 63
		採用値	Mi	kN•m	383 47	-324 62	311 44
	ク	M _{CR}	kN•m	843 18	1672 84	1626 25	
	乾燥収縮		M _{SH}	kN∙m	0 00	0 00	0 00
		1.3D 2.5(L I) 1.0(P	S CR SH)	kN∙m	16682 98	-5754 58	15485 03
糸	終局荷重 1.0D 2.5(L I) 1.0(PS 0			kN∙m	14685 45	-5443 96	13633 27
作月	目時断面力	1.7(D L I) 1.0(PS	CR SH)	kN•m	17047 53	-4222 71	16087 01
		採用値	Mu	kN∙m	17047 53	-5754 58	16087 01
	初期引	張応力度	σ_{pi}	N/mm ²	1330	-	1330
プ	直後プ	レストレス	σ_{pt}	N/mm ²	1175	-	1174
V	有効プ	レストレス	σ_{pe}	N/mm ²	1038	-	1025
ス		使日 綱 材 利) 新聞	_	12S12 7	_	12812 7
1		【文/1] 到时代1 1	至10.1		(SWPR7BL)		(SWPR7BL)
	PC鋼材量	鋼材本数	敗	本	4	_	4
X		1本当り断	面積	mm ²	1184 5	-	1184 5
		総断面和	漬	mm ²	4738 1	_	4738 1
尘生		鉄筋径		-	—	D22	_
☆ 上縁側		本数		本	_	21	_
历力	筋 総断面利		漬	mm ²	_	8129 1	_
Æd	破壊抵抗曲ばエーメント 中立軸			mm	170	196	170
HØ	被殺払抗曲りモニメント M			kN∙m	17029 00	-5958 14	17029 00
	曲げ破壊安全度			-	0 999	1 035	1 059

8)PC連続箱桁橋(f40)

付図-2.2.8 に上部工図を, 付表-2.2.9 に断面計算結果を示す。

付表-2.2.9 断面計算結果

					側径間	中間支点	中央	
	圧	縮強度	H L	N/mm ²	40 0			
	キ	アング係数		N/mm ²	3 10×10 ⁴			
	ク	リープ係券	攵	-	2 60			
- 1	プレ	咸少 乾燥収約	宦度	—	200×10 ⁻⁶			
計算	不静	定 乾燥収締	腹	-	150×10 ⁻⁶			
异 法	PC鋼材 図心位置	内ケーブル	上縁側	mm	-	200	-	
元		r37 776	下縁側	mm	2150	-	2150	
-		外ケーブル		mm	1900 500 190			
	PC鋼材	内ケーブル		N/mm ²		1700		
	引張強度	張強度 外ケーブル			1850			
	鉄筋降伏耐力				345			

		照査部位			側径間		中間支点		中央	
		断面力			M(kN·m)	N(kN)	M(kN·m)	N(kN)	M(kN·m)	N(kN)
		主桁自重	M _{d1}	kN•m	17794 43	0 00	-36816 68	0 00	-3736 99	0 00
	死荷重	橋面荷重	M _{d2}	kN•m	3530 23	0 00	-4248 00	0 00	999 55	0 00
		計	M _d	kN∙m	21324 67	0 00	-41064 68	0 00	-2737 45	0 00
		活荷重最大	M _{lmax}	kN∙m	9415 66	0 00	1555 12	0 00	7403 21	0 00
	活荷重	活荷重最小	M _{lmin}	kN∙m	-1954 27	0 00	-8153 58	0 00	-3298 40	0 00
		採用値	M ₁	kN∙m	9415 66	0 00	-8153 58	0 00	7403 21	0 00
作		活荷重最大	M _{imax}	kN•m	1448 56	0 00	239 25	0 00	1138 96	0 00
用	衝撃	活荷重最小	M _{imin}	kN•m	-300 66	0 00	-1254 40	0 00	-507 45	0 00
断		採用値	Mi	kN∙m	1448 56	0 00	-1254 40	0 00	1138 96	0 00
面		内ケーブル	M _{PS1}	kN•m	3240 54	-38 20	7536 14	-57 31	7536 14	-57 31
カ	プレ2次	外ケーブル	M _{PS2}	kN∙m	2912 92	-49 09	6774 24	-98 74	6774 24	-98 74
		計	M _{PS}	kN∙m	6153 46	-87 29	14310 38	-156 06	14310 38	-156 06
		死荷重	M _{CR1}	kN∙m	3977 49	0 00	9177 71	0 00	9249 98	0 00
	クリープ	プレ2次	M _{CR2}	kN∙m	-4825 94	-310 47	-11223 12	-655 97	-11223 12	-655 97
		計	M _{CR}	kN•m	-848 45	-310 47	-2045 41	-655 97	-1973 15	-655 97
	乾燥	収縮	M _{SH}	kN∙m	0 00	-134 04	0 00	-289 82	0 00	-289 82
	泪由	亦ル	M _T	kN•m	0 00	178 72	0 00	386 42	0 00	386 42
	(血)反次化		M _{T-}	kN∙m	0 00	-178 72	0 00	-386 42	0 00	-386 42
	1.3D 2.5(L I) 1.0			kN∙m	60187 63	-531 80	-64639 07	-1101 85	30133 97	-1101 85
彩	《局荷重	1.0D 2.5(L I) 1.0	(PS CR SH)	kN•m	53790 23	-531 80	-52319 67	-1101 85	30955 20	-1101 85
作用	时时面刀	1.7(D L I) 1.0(I	PS CR SH)	kN•m	60026 12	-531 80	-/3538 56	-1101 85	22205 26	-1101 85
		採用値 	Mu	kN•m	6018763	-531.80	-/353856	-1101 85	30955 20	-1101 85
	緊張端緊	"贵心刀度	σ_{pi}	N/mm ²	12	1250		1250		50
レ内	直後プレ	ストレス	σ_{pt}	N/mm ²	10	56	1082		1043	
テケー	有効プレ	ストレス	σ_{pe}	N/mm ²	96	53	98	8	95	51
トブ		使用鋼材	種別	-			12S12 4A(SWPR7AL)		
レル	PC鋼材量	鋼材本	一一	-	1	2	2	0		5
		1本当り国	们面積	mm ²	111	48	111	48	111	48
	antes caret dada antes	総附面	槓	mm ²	133	// 6	2229	96.0	668	88
-2	緊張端緊	张心刀度	σ_{pi}	N/mm ²	12	00	12	00	12	00
レ外	直後プレ	ストレス	σ_{pt}	N/mm ²	11	73	10	65	93	,9
スケ	有効プレ	ベトレス	σ_{pe}	N/mm ²	10	77	97	0	85	51
トブ		使用鋼材	*種別	-		_	7S15 2B(S	WPR7BL)	1	_
ZIV	PC鋼材量		数	- 2	0.7	9)	0.5	<u>}</u>
		1本当り国	竹田禎	mm ²	9/0	09	9/0	0.1	9/	<u> </u>
		総断面	していたね	mm ²	873	08.1	8/3	81	873	81
破場	裏抵抗曲 げモ	ーメント	中立 m M	mm kN•m	6159	02	-8369	58 30 34	35458.76	
	曲げ破壊安	全度	M_/M	—	1 (023	-0500	38	1 145	
-						-			· · ·	-

9)PC連続箱桁橋(f80)

付図-2.2.9に上部工図を, 付表-2.2.10に断面計算結果を示す。

(b)側面図 付図-2.2.9 上部工図(2)

付表-2.2.10 断面計算結果

		照査部位			側径間	中間支点	中央	
	圧	縮強度	Ē	N/mm ²	40 0			
	+	アング係数		N/mm ²	3 10×10 ⁴			
	ク	リープ係券	女	-	2 60			
	プレi	咸少 乾燥収絲	宿度	-	200×10 ⁻⁶			
計	不静	定 乾燥収縮	腹	-	150×10 ⁻⁶			
戸諸	DC细壮	肉ケーブル	上縁側	mm	200	200	-	
一一	FC 興府 図 と 侍里	1997-576	下縁側	mm	2720	-	2675	
1	凶心业匪	外ケーブル		mm	1100 1200		2350	
	PC鋼材	内ケーブル		N/mm ²		1850		
	引張強度 外ケーブル			N/mm ²	1850			
	Ê	扶筋降伏耐力		N/mm ²	345			

		照査部位			側征	至間	中間	支点	中	央
		断面力			M(kN·m)	N(kN)	M(kN·m)	N(kN)	M(kN·m)	N(kN)
		主桁自重	M _{d1}	kN•m	-19367 79	0 00	-160409 53	0 00	5152 64	0 00
	死荷重	橋面荷重	M _{d2}	kN∙m	-500 60	0 00	-14902 36	0 00	6299 94	0 00
		計	M _d	kN∙m	-19868 39	0 00	-175311 89	0 00	11452 58	0 00
	***	活荷重最大	M _{lmax}	kN∙m	9258 49	0 00	2724 45	0 00	13600 67	0 00
	 估何里	活荷重最小	M _{lmin}	kN∙m	-7595 59	0 00	-24784 86	0 00	-2130 66	0 00
		採用値	M ₁	kN∙m	9258 49	0 00	-24784 86	0 00	13600 67	0 00
作		活荷重最大	M _{imax}	kN∙m	1424 38	0 00	419 15	0 00	1295 30	0 00
崩	衝撃	活荷重最小	M _{imin}	kN∙m	-723 39	0 00	-2518 04	0 00	-327 79	0 00
断		採用値	Mi	kN•m	1424 38	0 00	-2518 04	0 00	1295 30	0 00
面		内ケーブル	M _{PS1}	kN•m	1968 68	-21 79	5727 07	-41 21	5729 06	-41 21
)]	プレ2次	外ケーブル	M _{PS2}	kN•m	4879 52	-80 29	14194 97	-302 80	14194 98	-302 80
		計	M _{PS}	kN•m	6848 20	-102 08	19922 04	-344 01	19924 04	-344 01
		死荷重	M _{CR1}	kN∙m	9985 40	0 00	28583 74	0 00	29048 42	0 00
	クリープ	プレ2次	M _{CR2}	kN•m	-9493 68	-473 98	-27617 98	-1467 94	-27617 38	-1467 94
		計	M _{CR}	kN•m	491 72	-473 98	965 76	-1467 94	1431 04	-1467 94
	乾燥	収縮	M _{SH}	kN•m	0 00	-178 21	0 00	-488 69	0 00	-488 69
	温度変化		M _T	kN•m	0 00	237 61	0 00	651 59	0 00	651 59
			M _{T-}	kN•m	0 00	-237 61	0 00	-651 59	0 00	-651 59
		1.3D 2.5(L I) 1.0	(PS CR SH)	kN∙m	8218 20	-754 27	-275274 91	-2300 64	73483 36	-2300 64
終	局荷重	1.0D 2.5(L I) 1.0	(PS CR SH)	kN•m	14178 72	-754 27	-222681 34	-2300 64	70047 58	-2300 64
作用	時断面刀	1.7(D L I) 1.0(PS CR SH)	kN•m	-8275 46	-754 27	-32355734	-2300 64	66147 62	-2300 64
	ate and till ate	<u> 採用値</u>	Mu	kN·m	1417872	-/54.27	-32355734	-2300 64	73483 36	-2300 64
-1	緊張 骗緊	"張心刀度	σ _{pi}	N/mm ²	12:	50	1250		1250	
レ内レク	直後プレ	ベトレス	σ _{pt}	N/mm ²	112	22	1102		1115	
スゲ	有効プレ	ストレス	σ _{pe}	N/mm ²	10	63	997		970	
トブ		使用鋼材	植別	-			7S12 7B(S	WPR7BL)		0
マル	PC鋼材量	1+1+10	いあま	- 2	(0)	2	6	2	(0	8
~		14390	川山1月		129	20	428	12.0	69	10
	麻诓端麻	心明日		mm ⁻	130	2.0	420-	+2 0 00	12	00
プム	赤派帰来		σ	N/mm	11	27	11	12	11	56
レケ	直接ノレ	7117	O _{pt}	N/mm	10	76	10	+2	10	40
ス í	有効ノレ		O _{pe}	N/mm ⁻	10	/0	10015 20(9		10	48
トブ		1 2 円 列 1	1 1 1 1 加 、米ケ	_)	19815 2B(3	SWPR/BL)		e
スル	PC鋼材量	1本当り	~ <u>奶</u> 所面積	mm ²	263	53	263	, 5 3	263	53
		総断面	諸	mm ²	527	0.6	2108	32.4	210	82.4
		ם ועראשקי	中立軸	mm	1	18	555		108	
破壞	破壊抵抗曲げモーメント 中立軸 III Mr kN kN			kN•m	2159	9 14	-431579 19		79786 58	
	曲げ破壊安全度 1			_	15	23	13	34	1 086	

10)PC 連続箱桁橋(f120)

付図-2.2.10に上部工図を、付表-2.2.11に断面計算結果を示す。

(b) 側面図 付図-2.2.10 上部工図(2)

付表-2.2.11 断面計算結果

		照査部位			側径間	中間支点	中央	
	圧	縮強度	۲ د	N/mm ²	40 0			
	+	アング係数		N/mm ²	3 10×10 ⁴			
	ク	リープ係券	女	-	2 60			
=1	プレi	咸少 乾燥収約	宿度	-	200×10 ⁻⁶			
計算	不静	定 乾燥収約	腹	—	150×10 ⁻⁶			
丹諸	DC细壮	内ケーブル	上縁側	mm	200	200	200	
二	FC 卿羽 図心 位墨	1997-276	下縁側	mm	3428	-	3375	
<i></i>	国心心直	外ケーブル		mm	2563	2563 1320		
	PC鋼材	内ケーブル		N/mm ²	1850			
	引張強度 外ケーブル			N/mm ²	1850			
	£	转降伏耐力		N/mm ²	345			

		照査部位			側征	圣間	中間	支点	中	央
		断面力			M(kN·m)	N(kN)	M(kN·m)	N(kN)	M(kN·m)	N(kN)
		主桁自重	M _{d1}	kN•m	42257 35	0 00	-431645 85	0 00	9363 42	0 00
	死荷重	橋面荷重	M _{d2}	kN•m	6540 13	0 00	-37493 13	0 00	10323 23	0 00
		計	M _d	kN•m	48797 48	0 00	-469138 99	0 00	19686 66	0 00
	×r ++ ===	活荷重最大	M _{lmax}	kN•m	21255 56	0 00	9662 32	0 00	23872 44	0 00
	沽何里	活荷重最小	M _{lmin}	kN•m	-8719 32	0 00	-53059 76	0 00	-8153 86	0 00
		採用値	M ₁	kN•m	21255 56	0 00	-53059 76	0 00	23872 44	0 00
VE		活荷重最大	M _{imax}	kN•m	2024 34	0 00	920 22	0 00	1646 38	0 00
用	衝撃	活荷重最小	M _{imin}	kN•m	-601 33	0 00	-3990 92	0 00	-776 56	0 00
断		採用値	Mi	kN•m	2024 34	0 00	-3990 92	0 00	1646 38	0 00
面		内ケーブル	M _{PS1}	kN•m	-679 81	-81 99	-3152 74	-148 46	-3152 74	-148 46
力	プレ2次	外ケーブル	M _{PS2}	kN•m	9977 50	-261 20	46272 47	-797 77	46094 11	-797 77
		計	M _{PS}	kN•m	9297 69	-343 19	43119 73	-946 23	42941 38	-946 23
		死荷重	M _{CR1}	kN•m	23564 72	0 00	108090 27	0 00	109282 15	0 00
	クリープ	プレ2次	M _{CR2}	kN•m	-21010 21	-1509 38	-97438 66	-4096 55	-97382 39	-4096 55
		計	M _{CR}	kN•m	2554 50	-1509 38	10651 61	-4096 55	11899 76	-4096 55
	乾燥	収縮	M _{SH}	kN•m	0 00	-311 07	0 00	-774 73	0 00	-774 73
	温度変化		M _T	kN•m	0 00	414 76	0 00	1032 97	0 00	1032 97
			M _{T-}	kN•m	0 00	-414 76	0 00	-1032 97	0 00	-1032 97
		1.3D 2.5(L I) 1.0	(PS CR SH)	kN•m	133488 66	-2163 64	-698736 02	-5817 51	144230 83	-5817 51
彩	医荷重	1.0D 2.5(L I) 1.0	(PS CR SH)	kN•m	118849 42	-2163 64	-557994 32	-5817 51	138324 83	-5817 51
作用	1時断面力	1.7(D L I) 1.0(I	PS CR SH)	kN•m	134383 73	-2163 64	-840751 07	-5817 51	131690 44	-5817 51
		採用値	M _u	kN∙m	134383 73	-2163 64	-840751 07	-5817 51	144230 83	-5817 51
	緊張端緊	張応力度	σ_{pi}	N/mm ²	12	1250		1250		50
プ内	直後プレ	ストレス	σ_{pt}	N/mm ²	11	17	1047		1068	
シケ	有効プレ	ストレス	σ_{pe}	N/mm ²	98	36	805		88	31
トブ		使用鋼材	種別	—			12S15 2B(SWPR7BL)		
レル	PC鋼材量	鋼材本	数	-	1	0	7	2	4	4
~	1 0 2 1 1 1 1 1	1本当り関 (1本当り)	加積	mm ²	166	44	166	4 4	166	44
		総断面	は	mm ²	1664	44 0	1198	36 8	665	76
-r	緊張端緊	張応力度	σ_{pi}	N/mm ²	12	00	12	00	12	00
レ外	直後プレ	ストレス	σ_{pt}	N/mm ²	11	40	11	38	11	61
スケ	有効プレ	ストレス	σ_{pe}	N/mm ²	10	23	94	18	10	22
トブ		使用鋼材	種別	-			37S15 2B(SWPR7BL)		
LIV	PC鋼材量	鋼材本	数	-	4	1		8		8
^		1本当り関	加有	mm ²	513	29	513	29	513	29
		総断疽	1禎	mm ²	205	51.6	410	12	410	55 2
破場	破壊抵抗曲げモーメント 中立軸 n			mm kN+m	1460	95 78 04	-1526	13	201	
	曲げ破壊安	全度	M/M		1400)87	-13202	315	1072	
	mill masky	×.	1 r r r u		1		10		1	

11)PC連続箱桁橋(g80)

付図-2.2.11 に上部工図を, 付表-2.2.12 に断面計算結果を示す。

付表-2.2.12 断面計算結果

		照査部位			側径間	中間支点	中央	
	圧	縮強度	ff t	N/mm ²	40 0			
	+	アング係数		N/mm ²	3 10×10 ⁴			
	ク	リープ係券	女	-	2 60			
⇒ı	プレ	咸少 乾燥収約	宿度	-	200×10 ⁻⁶			
計省	不静	定 乾燥収縮	宦度	-	150×10 ⁻⁶			
异諸	PC鋼材 図心位置	内ケーブル	上縁側	mm	200	200	-	
二		P37 276	下縁側	mm	2675	-	2675	
/0		外ケーブル		mm	1734	1682	2300	
	PC鋼材	内ケーブル	内ケーブル			1850		
	引張強度 外ケーブル			N/mm ²		1850		
	豑	K筋降伏耐力		N/mm ²		345		

照査部位					側径間		中間支点		中央	
		断面力			M(kN·m)	N(kN)	M(kN·m)	N(kN)	M(kN·m)	N(kN)
		主桁自重	M _{d1}	kN∙m	5513 09	25 37	-151312 24	231 68	4116 33	231 68
	死荷重	橋面荷重	M _{d2}	kN∙m	1639 25	-0 84	-15301 20	323 22	4777 93	323 22
		計	M _d	kN∙m	7152 35	24 53	-166613 44	554 90	8894 25	554 90
	Y - 44 - 54	活荷重最大	M _{lmax}	kN∙m	6216 47	19 00	2543 18	-253 92	9775 64	856 06
	沽何重	活荷重最小	M _{lmin}	kN∙m	-1700 94	-20 94	-24419 33	713 95	-555 37	-378 46
		採用値	M	kN•m	6216 47	19 00	-24419 33	713 95	9775 64	856 06
		活荷重最大	M _{imax}	kN•m	954 82	2 72	390 05	-39 17	931 01	81 53
作	衝撃	活荷重最小	Mimin	kN•m	-168 78	-2 45	-2417 53	60 81	-85 44	-58 22
用		採用値	Mi	kN∙m	954 82	2 72	-2417 53	60 81	931 01	81 53
断		内ケーブル	M _{PS1}	kN∙m	982 38	-39 10	4155 71	-194 37	4155 71	-194 37
面	プレ2次	外ケーブル	M _{PS2}	kN∙m	139 52	-65 64	10359 65	-763 61	10359 65	-763 61
力		計	M _{PS}	kN•m	1121 90	-104 74	14515 36	-957 98	14515 36	-957 98
		死荷重	M _{CR1}	kN∙m	9103 34	-7 54	24997 57	500 64	24997 57	500 64
	クリープ	プレ2次	M _{CR2}	kN∙m	-11980 53	-368 58	-17370 48	-2864 41	-17370 48	-2864 41
		計	M _{CR}	kN•m	-2877 19	-376 12	7627 08	-2363 77	7627 08	-2363 77
	乾煩	製収縮	M _{SH}	kN∙m	-1907 86	-172 98	1746 28	-1001 46	1746 28	-1001 46
	油味	モオドノレ	MT	kN•m	2543 82	230 64	-2328 38	1335 28	-2328 38	1335 28
	温度変化 M		M _{T-}	kN∙m	-2543 82	-230 64	2328 38	-1335 28	2328 38	-1335 28
	地震時荷重 1		$M_{EQ \rightarrow}$	kN∙m	-9340 22	50 82	42181 67	-2041 46	0 00	0 00
			M _{EQ←}	kN•m	9340 22	-50 82	-42181 67	2041 46	0 00	0 00
		1.3D 2.5(L I) 1.0	(PS CR SH)	kN∙m	23563 12	-567 67	-259800 88	-1664 94	62217 88	-1257 86
終	局荷重	1.0D 2.5(L I) 1.0	(PS CR SH)	kN∙m	21417 41	-575 03	-209816 85	-1831 41	59549 60	-1424 33
作用	時断面力	1.7(D L I) 1.0(I	PS CR SH)	kN∙m	20687 03	-575 23	-304976 77	-2062 79	57210 26	-1785 98
	採用値		Mu	kN•m	23563 12	-567.67	-30497677	-2062 79	6221788	-1257 86
	緊張端緊	《張応力度	σ_{pi}	N/mm ²	1250		1250		1250	
シ内	直後プレ	~ストレス	σ_{pt}	N/mm ²	11	12	1102		1114	
・ケ	有効プレ	バストレス	σ_{pe}	N/mm ²	10:	55	1060		973	
トブ		使用鋼材	種別	—			7S12 7B(S	WPR7BL)		
レル	PC鋼材量	鋼材本	数	-	(5	5	4	(6
~	1 0 241 (1) 112	1本当り関	新面積 ***	mm ²	69	0	69	10	69	10
	and the second second	総断面	1項	mm ²	414	60	3/3	140	414	60
	緊張端緊	《張応力度	σ_{pi}	N/mm ²	120	00	12	00	12	00
フ外	直後プレ	-ストレス	σ_{pt}	N/mm ²	110	06	10	71	11	27
・ケース	有効プレ	バストレス	σ_{pe}	N/mm ²	10:	52	10	33	10	24
トブ		使用鋼材	「種別	—			12S15 2B(SWPR7BL)		
レル	PC鋼材量	鋼材本	数	-	2	2		2	1	2
~		1本当り関 (1本当り)	近面積 11年	mm ²	166	40	166	40	166	40
		総断面	1槓	mm ²	332	80	332	80	19968 0	
破壞	抵抗曲げモ	ーメント	中立軸	mm	6	4	2700	02 40	89	
		へ広	M/M	KIN•m	23/8	1 23	-5/88	95 40	0385	0.62
	曲け破壊安	王度	$1VI_r/1VI_u$	_	10	94	12	42	10	120

12)PC 連続箱桁橋(g120)

(b)側面図 **付図-2.2.12**上部工図(2)

付表-2.2.13 断面計算結果

		照査部位			側径間	中間支点	中央	
	圧	縮強度	Ē	N/mm ²	40 0			
	+	アング係数		N/mm ²	3 10×10 ⁴			
	ク	リープ係券	女	-	2 60			
=1	プレi	咸少 乾燥収約	宿度	-	200×10 ⁻⁶			
計	不静	定 乾燥収縮	腹	-	150×10 ⁻⁶			
弁 諸	DC/钢++	内ケーブル	上縁側	mm	200	200	-	
一一	FC 卿羽 図心 位墨		下縁側	mm	3428	-	3375	
<i></i>	凶心怔直	外ケーブル		mm	2943	1476	3050	
	PC鋼材	内ケーブル		N/mm ²		1850		
	引張強度	外ケーブル		N/mm ²		1850		
	£	k筋降伏耐力		N/mm ²		345		

照査部位				側径	E間	中間	支点	中	中央	
断面力					M(kN·m)	N(kN)	M(kN·m)	N(kN)	M(kN·m)	N(kN)
		主桁自重	M _{d1}	kN•m	-1221 51	28 80	-608132 81	28 80	6191 03	300 03
	死荷重	橋面荷重	M _{d2}	kN•m	7524 73	-0 64	-31597 20	-0 64	8742 10	196 77
		計	M _d	kN∙m	6303 22	28 16	-639730 00	28 16	14933 12	496 80
		活荷重最大	M _{lmax}	kN∙m	16395 46	56 43	587 02	18 37	16749 31	1349 26
	沽何重	活荷重最小	M _{lmin}	kN∙m	-2797 52	-56 88	-41704 75	9 36	-1824 45	-1009 77
		採用値	M ₁	kN∙m	16395 46	56 43	-41704 75	9 36	16749 31	1349 26
		活荷重最大	M _{imax}	kN∙m	1560 11	5 14	41 38	1 27	1155 13	93 05
作	衝撃	活荷重最小	M _{imin}	kN∙m	-202 56	-4 76	-3785 72	1 21	-173 76	-96 17
用		採用値	Mi	kN∙m	1560 11	5 14	-3785 72	1 21	1155 13	93 05
断		内ケーブル	M _{PS1}	kN∙m	2591 00	-111 06	11603 18	-111 06	8776 15	-309 43
面	プレ2次	外ケーブル	M _{PS2}	kN∙m	5244 95	-143 09	23488 24	-143 09	13970 31	-17 22
力		計	M _{PS}	kN∙m	7835 95	-254 15	35091 43	-254 15	22746 46	-326 65
		死荷重	M _{CR1}	kN∙m	58672 84	-63 58	262752 26	-63 58	62410 59	6508 39
	クリープ	プレ2次	M _{CR2}	kN∙m	-40247 29	-1141 27	-180237 87	-1141 27	-68745 78	-6708 54
		計	M _{CR}	kN∙m	18425 55	-1204 86	82514 40	-1204 86	-6335 19	-200 15
	乾燥	収縮	M _{SH}	kN∙m	-2335 10	-305 55	-10457 19	-305 55	2667 40	-1194 96
	泪座	ホル	M _T	kN•m	3113 47	407 40	13942 93	407 40	-3556 53	1593 28
	温度変化 M _{T-}		M _{T-}	kN•m	-3113 47	-407 40	-13942 93	-407 40	3556 53	-1593 28
	地震時荷重 M _{E0}		$M_{EQ \rightarrow}$	kN∙m	-19055 09	-351 43	-85333 68	3783 01	0 00	0 00
			M _{EQ←}	kN•m	19055 09	351 43	85333 68	-3783 01	0 00	0 00
		1.3D 2.5(L I) 1.0	(PS CR SH)	kN∙m	77009 48	-1574 01	-838226 55	-1701 54	83252 82	2529 86
終	局荷重	1.0D 2.5(L I) 1.0	(PS CR SH)	kN∙m	75118 52	-1582 46	-646307 55	-1709 99	78772 88	2380 82
作用	時断面力	1.7(D L I) 1.0(F	PS CR SH)	kN•m	65166 32	-1612 01	-1057726 17	-1698 73	74902 52	1574 74
	採用値		Mu	kN•m	77009 48	-15/4 01	-105//261/	-1698 73	83252 82	2529 86
	緊張端緊	張応力度	σ_{pi}	N/mm ²	125	50	1250		1250	
ア内	直後プレ	ストレス	σ_{pt}	N/mm ²	112	23	1064		1071	
マケー	有効プレ	ストレス	σ_{pe}	N/mm ²	102	25	990		964	
トブ		使用鋼材	種別	-			12S15 2B(S	SWPR7BL)		
レル	PC鋼材量	鋼材本	数	-	4		7	2	4	4
~	1041111	<u>1本当り</u> 関	加積	mm ²	1664	44	166	4 4	166	44
		総断面	槓	mm ²	665	76	1198	36 8	665	76
	緊張端緊	張応力度	σ_{pi}	N/mm ²	120	00	120	00	12	00
ブ外	直後プレ	ストレス	σ_{pt}	N/mm ²	115	51	11:	57	11	49
レスケ	有効プレ	ストレス	σ_{pe}	N/mm ²	106	56	109	99	10	68
トブ		使用鋼材	種別	—			19S15 2B(S	SWPR7BL)		
LIV	PC鋼材量	鋼材本	数	-	6	5	6	5	(5
~	I Carry III	1本当り関	血積	mm ²	263	5 3	263	5 3	263	53
		総断面	槓	mm ²	1581	18	1581	18	15811 8	
破壞	長抵抗曲げモー	ーメント	中立軸	mm	13	6	19	24	105	
		A m ²	Mr	KN•m	86870	0 3 3	-14236	68 24	9240	10
	曲け破壊安:	至度	M_r/M_u	-	11	28	13	46	11	10

13) 単純PC プレテンスラブ桁橋(h9)

付図-2.2.13に上部工図を、付表-2.2.14に断面計算結果を示す。

(a) 照查断面図(支間中央)

(b) 側面図

付図--2.2.13 上部工図

付表-2.2.14 断面計算結果

			側径間	中間支点	中央径間		
	Į	王縮強感	E	N/mm^2	50.0	-	-
	-	ヤング係数	k	N/mm^2	3 30x10 ⁴	-	-
	クリープ係数			-	2.60	-	-
計	プレ	レ滅少 乾燥収線	宿度	-	200x10 ⁻⁶	-	-
异谜	不	铮定 乾燥収網	度	-	150x10 ⁻⁶	-	-
元	ちかさ	网入片黑	PC鋼材	mm	321	-	-
	1月 X/1 回	因心过度	鉄筋	mm	-	-	-
	F	PC鋼材引張強度			1850	-	-
	鉄筋降伏耐力			N/mm^2	345	1	-

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	72. 71	-	-
	元 恭 禾	場所打ち自重	M d2	kN∙m	9. 52	-	-
	961可里	橋面荷重	Md3	kN∙m	24.48	-	-
VE		計	Md	kN∙m	106.72	-	-
崩	迁益禾	活荷重最大	Mlmax	kN∙m	116.90	-	-
断	/ 1 1 里	活荷重最小	Mlmin	kN∙m	0.00	-	-
面	(#L #Q	活荷重最大	Mimax	kN∙m	39.63	-	-
71	12) 12	活荷重最小	Mimin	kN∙m	0.00	-	-
	プレ	ストレス2次	MPS	kN m	0.00	-	-
		クリープ	MCR	kN∙m	0.00	-	-
	1	乾燥収縮	M SH	kN∙m	0.00	-	-
		1.3D+2.5(L+1)+1.0(P	kN∙m	530.06	-	-	
終	局荷重	1.0D+2.5(L+1)+1.0(P	'S+CR+SH)	kN∙m	498.05	-	-
作用	時断面力	1.7(D+L+I)+1.0(PS	S+CR+SH)	kN∙m	447.53	-	-
		採用値	Mu	kN∙m	530.06	-	-
	初期	初期緊張応力度		N/mm ²	1250	-	-
_	直後プレストレス		σρο	N/mm ²	1213	-	-
	有効	プレストレス	σ _{Pe}	N/mm^2	1090	-	-
スト		使用鋼材種別		-	1 \$12.7 (SWPR7B)	-	-
	PC鋼材量	鋼材本数		本	11	-	-
		1本当り断面	面積	mm ²	98.71	-	-
		総断面積		mm ²	1085.81	-	-
A#		鉄筋径		—	-	-	-
鉄筋	上縁側	本数		本	-	_	-
LUN LUN		総断面積		mm ²	-	_	-
Ţ	* ** ** ** **	u#=	中立軸	mm	256	-	_
2	反坡抵抗囲	10-2-225	Mr	kN∙m	537.37	_	-
	曲げ破	壊安全度	Mr/Mu	_	1.014	-	-

14) 単純PC プレテンスラブ桁橋(h24)

付図-2.2.14に上部工図を、付表-2.2.15に断面計算結果を示す。

(a)照查断面図(支間中央)

(b) 側面図

付図-2.2.14 上部工図

付表-2.2.15 断面計算結果

					側径間	中間支点	中央径間
	J	王縮強感	E	N/mm^2	50.0	-	-
	-	ヤング係数	t	N/mm^2	3.30x10 ⁴	-	-
	ク	リープ係	数	-	2.60	-	-
計	プレ減少 乾燥収縮度				200x10 ⁻⁶	-	-
异谜	不静定 乾燥収縮度				150x10 ⁻⁶	-	-
元	ちかさ	网心传来	PC鋼材	mm	706	-	-
	1月 X/1 回	因心过度	鉄筋	mm	-	-	-
	PC鋼材引張強度				1850	-	_
		鉄筋降伏耐力		N/mm^2	345	-	-

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	744. 28	-	-
	元 英禾	場所打ち自重	M d2	kN∙m	167.92	-	-
	901可里	橋面荷重	M d3	kN∙m	181.37	-	-
<i>μ</i> _		計	Md	kN∙m	1093. 57	-	-
崩	迁益禾	活荷重最大	Mlmax	kN∙m	403. 42	-	-
断	伯何里	活荷重最小	Mlmin	kN∙m	0.00	-	-
面	(HL 80)	活荷重最大	Mimax	kN∙m	82.30	-	-
7	121 12	活荷重最小	Mimin	kN∙m	0.00	-	-
	プレ	ストレス2次	MPS	kN m	0.00	-	-
		クリープ	MCR	kN∙m	0.00	-	-
	1	乾燥収縮	MSH	kN∙m	0.00	-	-
		1.3D+2.5(L+1)+1.0(P	S+CR+SH)	kN∙m	2635.94	-	-
終	局荷重	1.0D+2.5(L+1)+1.0(P	2.5(L+I)+1.0(PS+CR+SH)		2307.87	-	-
作用	時断面力	1.7(D+L+I)+1.0(PS	+CR+SH)	kN∙m	2684.79	-	-
		採用値	Mu	kN∙m	2684. 79	-	-
	初期	緊張応力度	σ _{Pi}	N/mm ²	1350	-	-
-	直後プレストレス		σ _{Po}	N/mm ²	1296	-	-
	有効	プレストレス	σ_{Pe}	N/mm ²	1161	-	-
スト		使用鋼材種	Ι	1 \$15.2 (SWPR7B)	-	-	
V	PC鋼材量	鋼材本数		本	17	-	-
		1本当り断面	ī積	mm ²	138.7	-	-
		総断面積		mm ²	2357.9	-	-
~		鉄筋径		-	-	-	-
鉄筋	上縁側	本数		本	-	-	-
נעת		総断面積		mm ²	-	-	-
T	电体点作手	リポエ メ ヽ. ト	中立軸	mm	169	-	-
9	ww. スカント ₩			kN∙m	2755. 35	_	-
	曲げ破壊安全度 M			_	1.026	-	-

15) 単純 PC プレテンスラブ桁橋(i24)

付図-2.2.15 に上部工図を, 付表-2.2.16 に断面計算結果を示す。

(a) 照查断面図(支間中央)

(b) 側面図

付図-2.2.15 上部工図

				側径間	中間支点	中央径間		
	L	医 縮 強 鹰	E	N/mm ²	50.0	30.0	50.0	
		ヤング係数	ά	N/mm^2	3. 30x10 ⁴			
	ク	リープ係	数	-	2.60			
計	プリ	レ減少 乾燥収線	宿度	-		200x10 ⁻⁶		
异迷	不	静定 乾燥収網	度	-		150x10 ⁻⁶		
元	有効支	网人片黑	PC鋼材	mm	794	-	782	
	有双向	四心位置	鉄筋	mm	-	88	-	
	PC鋼材引張強度			N/mm^2	1850			
	鉄筋降伏耐力					345		

付表-2.2.16	断面計算結果
1124	на н

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	739, 73	0,00	744.28
		場所打ち自重	M d2	kN∙m	166.84	0,00	167.92
	化何里	橋面荷重	M d3	kN∙m	115, 13	-135, 93	52, 38
11-		計	Md	kN∙m	1021.70	-135.93	964.58
11月	·· +	活荷重最大	Mlmax	kN∙m	318.69	37.62	254.89
断	沽倚重	活荷重最小	Mlmin	kN∙m	-55. 22	-241.98	-77.30
面	(#: #D)	活荷重最大	Mimax	kN∙m	64.38	7.60	51.49
л	倒筆	活荷重最小	Mimin	kN∙m	-11.16	-48.88	-15.61
	プレ	ストレス2次	MPS	kN m	219.98	448.84	448.84
		クリープ	MCR	kN∙m	-254.82	-529.33	-534.10
	1	乾燥収縮	MSH	kN∙m	0.00	0.00	0.00
	1. 3D+2. 5 (L+1) +1. 0 (PS+			kN∙m	2251.05	-984.35	1934.64
終	局荷重	1.0D+2.5(L+1)+1.0(P	S+CR+SH)	kN∙m	1944. 54	-943.57	1645.27
作用	時断面力	1.7(D+L+I)+1.0(PS	+CR+SH)	kN∙m	2353. 27	-806. 03	2075.37
		採用値	Mu	kN∙m	2353. 27	-984. 35	2075.37
	初期緊張応力度		σ _{Pi}	N/mm ²	1350	-	1350
	直後プレストレス		σ _{Po}	N/mm ²	1274	-	1280
Ń	有効	プレストレス	σ_{Pe}	N/mm^2	1155	-	1168
スト		使用鋼材種	別	-	1 \$15.2 (SWPR7B)	-	1 \$15.2 (SWPR7B)
	PC鋼材量	鋼材本数		本	14	-	13
		1本当り断面	ī積	mm ²	138.7	-	138.7
		総断面積		mm ²	1941.8	-	1803.1
44		鉄筋径		-	1	D22-6本	-
鉄筋	上縁側	本数		本	1	D16-6本	-
		総断面積		mm ²	-	3514.2	-
7	* * * * * *	ufz_ < \ \	中立軸	mm	138	-	127
8	以极形的曲		Mr	kN∙m	2454. 27	-1052.94	2249.08
	曲げ破壊安全度 Mr/Mu				1.043	1.070	1.084

16) 単純PC プレテンT桁橋(j18)

付図-2.2.16に上部工図を, 付表-2.2.17に断面計算結果を示す。

(a) 照查断面図(支間中央)

(b) 側面図

付図--2.2.16 上部工図

付表-2.2.17 断面計算結果

					側径間	中間支点	中央径間
	J	王縮強感	E	N/mm ²	50.0	-	-
	-	ヤング係数	k	N/mm ²	3 30x10 ⁴	-	-
	ク	リープ係	-	2.60	-	-	
計	プリ	レ滅少 乾燥収線	-	200x10 ⁻⁶	-	-	
异谜	자	铮定 乾燥収網	-	150x10 ⁻⁶	-	-	
元	ちかさ	回入片黑	PC鋼材	mm	885	-	-
	1月 X/1 回	凶心位置 鉄筋		mm	-	-	-
	F	PC鋼材引張強度			1850	-	-
		鉄筋降伏耐力		N/mm ²	345	-	_

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	384. 15	-	-
	五英香	場所打ち自重	M d2	kN∙m	39. 28	-	-
	961可里	橋面荷重	M d3	kN∙m	131.82	-	-
μe		計	Md	kN∙m	555. 25	-	-
崩	迁益禾	活荷重最大	Mlmax	kN∙m	489.74	-	-
断	伯何里	活荷重最小	Mlmin	kN∙m	0.00	-	-
面	(他) 第9	活荷重最大	Mimax	kN∙m	143.98	-	-
71	1(1) 1(1)	活荷重最小	Mimin	kN∙m	0.00	-	-
	プレストレス2次		MPS	kN m	0.00	-	-
	クリープ		MCR	kN∙m	0.00	-	-
	乾燥収縮 MSI			kN∙m	0.00	-	-
	1. 3D+2. 5 (L+1) +1. 0 (PS+CR+SH)				2306.13	-	-
終局荷重 1.00+2.5(L+1)+1.0(PS+CR+SH)			kN∙m	2139.55	-	-	
作用	作用時断面力 1.7(D+L+I)+1.0(PS+CR+SH)		S+CR+SH)	kN∙m	2021.25	-	-
		採用値	Mu	kN∙m	2306. 13	-	-
	初期]緊張応力度	σ _{Pi}	N/mm ²	1350	-	-
-	直後	プレストレス	σ _{Po}	N/mm ²	1257	-	-
	有効	プレストレス	σ _{Pe}	N/mm ²	1066	-	-
スト		使用鋼材種別		-	1 S15.2 (SWPR7B)	-	-
	PC鋼材量	鋼材本数		本	12	-	-
		1本当り断面	面積	mm ²	138.7	-	-
				mm ²	1664.4	-	-
~		鉄筋径		_	-	-	-
鉄筋	上縁側	本数	本数		-	-	-
- LUR		総断面積		mm ²	-	-	-
T	*****	リポエー メン・ト	中立軸	mm	106	_	-
9	以核找机曲	10-2-225	Mr	kN∙m	2407.19	_	-
曲げ破壊安全度 Mr/Mu		_	1.044	-	-		

17) 単純 PC プレテン T 桁橋(j 24)

付図-2.2.17に上部工図を, 付表-2.2.18に断面計算結果を示す。

(b) 側面図

付図--2.2.17 上部工図

17177-7.2.10 四回日月	「面計算結果」
-------------------	---------

					側径間	中間支点	中央径間
		医 縮 強 唐	E	N/mm^2	50.0	-	-
		ヤング係数	k	N/mm^2	3.30x10 ⁴	-	-
	ク	リープ係	数	-	2.60	-	-
計	プリ	レ減少 乾燥収線	宿度	-	200x10 ⁻⁶	-	-
异	不	静定 乾燥収網	-	150x10 ⁻⁶	-	-	
元	古林古	回心法署	PC鋼材	mm	1166	-	-
	有劝商	凶心位置 鉄筋		mm	-	-	-
	PC鋼材引張強度			N/mm^2	1850	-	-
		鉄筋降伏耐力		N/mm ²	345	-	-

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	841.69	-	-
	死荷重	場所打ち自重	M d2	kN∙m	70.63	-	-
		橋面荷重	M d3	kN∙m	223. 02	-	-
ut-		計	Md	kN∙m	1135.34	-	-
1F 用	活井子	活荷重最大	Mlmax	kN∙m	698.61	-	-
断	/口19] 王	活荷重最小	Mlmin	kN∙m	-71.80	-	-
面	衝撃	活荷重最大	Mimax	kN∙m	188.63	-	-
л		活荷重最小	Mimin	kN∙m	-19.38	-	-
	プレ	ストレス2次	MPS	kN m	0.00	-	-
	クリープ			kN∙m	0.00	-	-
	1	乾燥収縮	MSH	kN∙m	0.00	-	-
	1. 3D+2. 5 (L+1) +1. 0 (PS+CR+SH)				3694.04	-	-
終	終局荷重 1.0D+2.5(L+1)+1.0(PS+CR		S+CR+SH)	kN∙m	3353.44	-	-
作用	時断面力	1.7(D+L+I)+1.0(PS	+CR+SH)	kN∙m	3438.39	-	-
		採用値	Mu	kN∙m	3694.04	-	-
	初期	緊張応力度	σ _{Pi}	N/mm ²	1350	-	-
_	直後	プレストレス	σ _{Po}	N/mm ²	1276	-	-
	有効	プレストレス	σ _{Pe}	N/mm ²	1118	-	-
z		使用鋼材種別 鋼材本数 1 本当り断面積			1 \$15.2		
۲				-	(SWPR7B)	_	_
	PC鋼材量			本	14	-	-
^				mm ²	138.7	-	-
		総断面積	mm ²	1941.8	-	-	
~		鉄筋径		-	-	-	-
鉄筋	上縁側	本数		本	-	-	-
790		総断面積		mm ²	-	_	-
T	* ** ** ** **	ポエニオ ト・ト	中立軸	mm	123	_	-
9	以收找找加出	リモーメント	Mr	kN∙m	3723. 83	_	-
	曲げ破	壊安全度	Mr/Mu	_	1.008	-	-

18)3径間連結PCプレテンT桁橋(k18)

付図-2.2.18に上部工図を、付表-2.2.19に断面計算結果を示す。

付図-2.2.18 上部工図

付表-2.2.19 断面計算結果

					側径間	中間支点	中央径間
	J	王縮強度	E	N/mm ²	50.0	30.0	50.0
		ヤング係数	t	N/mm^2		3.30x10 ⁴	
	クリープ係数					2.60	
計	プレ減少 乾燥収縮度					200x10 ⁻⁶	
异谜	不静定 乾燥収縮度				150x10 ⁻⁶		
元	有効高	PC鋼材 図心位置 鉄筋	PC鋼材	mm	898	-	899
			鉄筋	mm	-	929	-
	PC鋼材引張強度			N/mm^2	1850		
	鉄筋降伏耐力				345		

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	382. 52	0.00	382.56
	T # #	場所打ち自重	M d2	kN∙m	78. 53	0.00	78.56
	761可主	橋面荷重	M d3	kN∙m	76.80	-94.97	35. 41
μe		計	Md	kN∙m	537.85	-94.97	496.53
崩	活井子	活荷重最大	Mlmax	kN∙m	327.75	46.94	266.73
断	伯何里	活荷重最小	Mlmin	kN∙m	-73.76	-250.89	-91.02
面	(死: 東)	活荷重最大	Mimax	kN∙m	75. 38	10.80	61.35
71	121 12	活荷重最小	Mimin	kN∙m	-16.97	-57. 71	-20.94
	プレストレス2次 M		MPS	kN m	32.19	558.90	0.00
	クリープ		MCR	kN∙m	130. 21	-250.28	295.73
	乾燥収縮			kN∙m	0.00	0.00	0.00
	1. 3D+2. 5 (L+1) +1. 0 (PS+CR+SH)				1869. 43	329. 51	1761.42
終	終局荷重 1.0D+2.5(L+1)+1.0(PS+CR		S+CR+SH)	kN∙m	1708.08	358.00	1612.46
作用	時断面力	1.7(D+L+I)+1.0(PS	+CR+SH)	kN∙m	1762.07	245. 33	1697.57
		採用値	Mu	kN∙m	1869. 43	358.00	1761.42
	初期	緊張応力度	σ _{Pi}	N/mm ²	1350	-	1350
_	直後	プレストレス	σ _{Po}	N/mm ²	1242	-	1252
	有効	プレストレス	σ_{Pe}	N/mm ²	1074	-	1096
z		使用鋼材種別			1 \$15.2		1 \$15. 2
۲				_	(SWPR7B)	_	(SWPR7B)
	PC鋼材量	鋼材本数		本	10	-	9
$ ^{}$		1本当り断面積 総断面積		mm ²	138.7	-	138.7
				mm ²	1387	-	1248.3
		鉄筋径			-	D13	-
鉄筋	下縁側	本数		本	-	10	-
- RU		総断面積		mm ²	-	1267	-
	中体方字子	ばエ _ J ヽ , L	中立軸	mm	138	-	127
4	以纸抵抗田	リモーメント	Mr	kN∙m	2052.45	398. 31	1856.04
				_	1.098	1.113	1.054

19)3径間連結PCプレテンT桁橋(k24)

付図-2.2.19に上部工図を、付表-2.2.20に断面計算結果を示す。

(a)照查断面図(支間中央,連結部)

(b) 側面図

付図--2.2.19 上部工図

|--|

_						112	~	
					側径間	中間支点	中央径間	
		圧 縮 強 唐	E	N/mm ²	50.0	30.0	50.0	
		ヤング係数	k	N/mm^2		3. 30x10 ⁴		
	2	リープ係	数	-		2. 60		
計	プ	レ減少 乾燥収線	宿度	-		200x10 ⁻⁶		
异谜	不	静定 乾燥収網	腹	-	150x10 ⁻⁶			
元	古林古	网心传来	PC鋼材	mm	1185	-	1185	
	1月 X/1 回	図 心 泣 置 鉄筋	mm	-	76	-		
	PC鋼材引張強度			N/mm^2	1850			
		鉄筋降伏耐力		N/mm^2		345		

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	838.68	0.00	838.87
	元 英禾	場所打ち自重	M d2	kN∙m	141.14	0.00	141.27
	901间里	橋面荷重	M d3	kN∙m	135.09	-165.31	58.50
<i>l</i> /⊨		計	Md	kN∙m	1114.91	-165.31	1038.64
崩	迁益禾	活荷重最大	Mlmax	kN∙m	531.05	78. 71	432.31
断	伯何里	活荷重最小	Mlmin	kN∙m	-118.47	-406. 22	-154.39
面	(死: 東)	活荷重最大	Mimax	kN∙m	107.27	15.90	87. 33
7	121 12	活荷重最小	Mimin	kN∙m	-23.93	-82.06	-31.19
	プレ	ストレス2次	MPS	kN m	34. 81	814.94	0.00
	クリープ		MCR	kN∙m	105.22	-537.61	270.35
	乾燥収縮		MSH	kN∙m	0.00	0.00	0.00
	1. 3D+2. 5 (L+1) +1. 0 (PS+CR+SH)				3185. 21	-1158.27	2919.68
終	終局荷重 1.0D+2.5(L+I)+1.0(PS+CR+SH)			kN∙m	2850.74	-1108.68	2608.09
作用	作用時断面力 1.7(D+L+1)+1.0(PS+CR-		+CR+SH)	kN∙m	3120.52	-833. 77	2919.43
		採用値	Mu	kN∙m	3185. 21	-1158.27	2919.68
	初期	緊張応力度	σ _{Pi}	N/mm ²	1350	-	1350
-	直後	プレストレス	σ _{Po}	N/mm ²	1258	-	1258
	有効	プレストレス	σ_{Pe}	N/mm ²	1118	-	1114
z		使用鋼材種別			1 \$15.2		1 \$15.2
۲				_	(SWPR7B)	_	(SWPR7B)
	PC鋼材量	鋼材本数		本	12	-	12
		1本当り断面	mm ²	138.7	-	138.7	
	総断面積			mm ²	1664.4	-	1664.4
		鉄筋径		—	-	D22	-
鉄筋	上縁側	本数		本	-	8	-
נעת		総断面積		mm ²	-	3096.8	-
	* +* +* +* +*	11 T 11 1	中立軸	mm	107	-	107
4	区场抵抗田	ロナーメント	Mr	kN∙m	3260.88	-1253.87	3256.77
曲げ破壊安全度 Mr/Mu			_	1.024	1.083	1, 115	

20) 単純 PC バルブ T 桁橋(145)

付図-2.2.20に上部工図を、付表-2.2.21に断面計算結果を示す。

付図-2.2.20 上部工図

付表-2.2.21 断面計算結果

					側径間	中間支点	中央径間
	1	圧 縮 強 度	E	N/mm^2	50.0	-	-
		ヤング係数	t	N/mm^2	3 30x10 ⁴	-	-
計	ク	リープ係	数	-	2.60	-	-
	プリ	レ滅少 乾燥収線	-	200x10 ⁻⁶	-	-	
异諸	不	静定 乾燥収編	-	150x10 ⁻⁶	-	-	
元	***	网心传来	PC鋼材	mm	2572	-	-
	19 20 回	因心过度	鉄筋	mm	-	-	-
		PC鋼材引張強度			1850	-	-
		鉄筋降伏耐力		N/mm ²	345	-	-

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	7739. 92	-	-
	死荷重	場所打ち自重	M d2	kN∙m	760. 25	-	-
		橋面荷重	Md3	kN∙m	1992. 31	-	-
μe		計	Md	kN∙m	10492.48	-	-
崩	活井子	活荷重最大	Mlmax	kN∙m	4898. 29	-	-
断	伯何里	活荷重最小	Mlmin	kN∙m	-552.33	-	-
面	衝撃	活荷重最大	Mimax	kN∙m	700. 45	-	-
л		活荷重最小	Mimin	kN∙m	-78.98	-	-
	プレストレス2次		MPS	kN m	0.00	-	-
	クリープ		MCR	kN∙m	0.00	-	-
	乾燥収縮			kN∙m	0.00	-	-
	1. 3D+2. 5 (L+1) +1. 0 (PS+CR+SH)				27637.07	-	-
終	終局荷重 1.0D+2.5(L+1)+1.0(PS+CR+SH)			kN∙m	24489.33	-	-
作用	作用時断面力 1.7(D+L+I)+1.0(PS		S+CR+SH)	kN∙m	27355.07	-	-
		採用値	Mu	kN∙m	27637.07	-	-
	初期	緊張応力度	σ _{Pi}	N/mm ²	1340	-	-
_	直後	プレストレス	σ _{Po}	N/mm ²	1161	-	-
	有効	プレストレス	σ _{Pe}	N/mm ²	1006	-	-
z		使用鋼材種別			1 2\$15.2		
۲				_	(SWPR7B)	-	_
	PC鋼材量	鋼材本数		本	4	-	-
^		1本当り断面積		mm ²	1664.4	-	-
		総断面積		mm ²	6657.6	-	-
A 4		鉄筋径		_	-	_	-
鉄筋	上縁側	本数		本	-	_	-
790		総断面積		mm ²	-	-	-
T	电黄素作量	リポエ メ ヽ. ト	中立軸	mm	168	_	-
9	以收找找饥田	10-2-225	Mr	kN∙m	28669.21	-	-
	曲げ破	曲げ破壊安全度 M		_	1.037	-	-

21) 3径間連結 PC バルブ T桁橋(m45)

付図-2.2.21に上部工図を、付表-2.2.22に断面計算結果を示す。

(b)側面図

付図-2.2.21 上部工図

						1 1 코 코	₹-2.2.22	团
					側径間	中間支点	中央径間	
	J	王縮強度	E	N/mm^2	50.0	30.0	50.0	
	-	ヤング係数	t	N/mm^2		3. 30x10 ⁴		
	ク	リープ係	数	-		2.60		
計	プリ	レ滅少 乾燥収線	-	200x10 ⁻⁶				
异 諸	자	铮定 乾燥収編	度	-	150x10 ⁻⁶			
元	有効高	h高 図心位置 PC鋼材 鉄筋	PC鋼材	mm	2572	-	2572	1
			mm	-	76	-	i	
	PC鋼材引張強度			N/mm^2	1850			1
		鉄筋降伏耐力		N/mm^2	345			

付表-2.2.22 断面計算結果

					側径間	中間支点	中央径間
作用断面力	死荷重	主桁自重	Md1	kN∙m	7733. 91	0.00	7748.25
		場所打ち自重	M d2	kN∙m	760. 17	0.00	760.25
		橋面荷重	M d3	kN∙m	1218.60	-1576.62	440.09
		計	Md	kN∙m	9712.68	-1576.62	8948.59
	活荷重	活荷重最大	Mlmax	kN∙m	3924.85	828. 72	3201.94
		活荷重最小	Mlmin	kN∙m	-1064. 12	-3328. 20	-1449.27
	衝撃	活荷重最大	Mimax	kN∙m	557.33	117.68	454.68
		活荷重最小	Mimin	kN∙m	-151.10	-472.61	-205.80
	プレストレス2次		MPS	kN m	154.54	6844.93	0.00
	クリープ		MCR	kN∙m	465.33	-5597.43	1215.22
	乾燥収縮		MSH	kN∙m	0.00	0.00	0.00
		1. 3D+2. 5 (L+1) +1. 0 (PS+CR+SH)		kN∙m	24451.80	-10304.13	21989.94
終局荷重 作用時断面力		1. 0D+2. 5 (L+1) +1. 0 (PS+CR+SH)		kN∙m	21538.00	-9831.15	19305.36
		1.7(D+L+1)+1.0(PS+CR+SH)		kN∙m	24751.13	-7894.13	22644.08
		採用値	Mu	kN∙m	24751.13	-10304.13	22644.08
プレストレス	初期緊張応力度		σ _{Pi}	N/mm ²	1340	-	1340
	直後プレストレス		σρο	N/mm ²	1163	-	1116
	有効プレストレス		σ _{Pe}	N/mm ²	990	-	948
		使用鋼材種別		—	1 2\$15.2		1 2\$15.2
	PC鋼材量				(SWPR7B)	_	(SWPR7B)
		鋼材本数		本	4	-	4
		1本当り断面積		mm ²	1664.4	-	1664.4
		総断面積		mm ²	6657.6	-	6657.6
鉄筋	上縁側	鉄筋径		_	-	D22	-
		本数		本	-	32	-
		総断面積		mm ²	-	12387.2	-
破壊抵抗曲げモーメント Mr			mm	167	-	166	
			Mr	kN∙m	28623.85	-10597.14	28581.75
曲げ破壊安全度 Mr/Mu			_	1.156	1.028	1.262	
22) 単純PC コンポ橋(n30)

付図-2.2.22に上部工図を、付表-2.2.23に断面計算結果を示す。

付図-2.2.22 上部工図

付表-2.2.23 断面計算結果

			側径間	中間支点	中央径間		
	J	王縮強度	E	N/mm^2	50.0	-	-
	-	ヤング係数	۲.	N/mm^2	3.30x10 ⁴	-	-
	ク リ ー プ 係 数			-	2.60	-	-
計	プレ減少 乾燥収縮度			-	200x10 ⁻⁶	-	-
异諸	不静定 乾燥収縮度			-	150x10 ⁻⁶	-	-
元	有効高	図心位置	PC鋼材	mm	2180	-	-
			鉄筋	mm	-	-	-
	ŀ	PC鋼材引張強度			1180	-	-
		鉄筋降伏耐力		N/mm^2	345	-	-

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	2668.08	-	-
		場所打ち自重	M d2	kN∙m	149.53	-	-
	死荷重	床版自重	Md3	kN∙m	2341.28	-	-
		橋面荷重	Md4	kN∙m	980. 43		
作		計	Md	kN∙m	6139.32	-	-
用	活荷重	活荷重最大	Mlmax	kN∙m	3513.66	-	-
町面		活荷重最小	Mlmin	kN∙m	-371.22	-	-
ш Д	衝撃	活荷重最大	Mimax	kN∙m	639.49	-	-
		活荷重最小	Mimin	kN∙m	-67.56	-	-
	プレ	ストレス2次	MPS	kN m	0.00	-	-
	クリープ		MCR	kN∙m	0.00	-	-
	1	MSH	kN∙m	0.00	-	-	
		1.3D+2.5(L+1)+1.0(P	S+CR+SH)	kN∙m	18363.99	-	-
終	局荷重	1.0D+2.5(L+I)+1.0(P	S+CR+SH)	kN∙m	16522.20	-	-
作用	時断面力	1.7(D+L+I)+1.0(PS	+CR+SH)	kN∙m	17497.20	-	-
		採用値	Mu	kN∙m	18363. 99	-	-
	初期緊張応力度		σ _{Pi}	N/mm ²	1340	-	-
-	直後	プレストレス	σ _{Po}	N/mm ²	1161	-	-
Ń	有効	プレストレス	σ_{Pe}	N/mm^2	1006	-	-
ス		唐田鈿廿番	Ril		1 2\$12.7	_	_
۲		使用卵材種	<i>/</i> 51	-	(SWPR7B)		_
	PC鋼材量	鋼材本数		本	4	-	-
		1本当り断面	ī積	mm ²	1184.52	-	-
		総断面積		mm ²	4738.08	-	-
£#		鉄筋径		-	-	-	-
鉄筋	上縁側	本数		本	_	-	-
		総断面積		mm ²	-	-	-
5	* 使 折 坊 曲	げモーメント	中立軸	mm	115	-	-
я	ox -ax 1-5 10 L III		Mr	kN∙m	18768.80	-	-
曲げ破壊安全度		Mr/Mu	_	1.022			

23) 単純PC コンポ橋(n45)

付図-2.2.23に上部工図を、付表-2.2.24に断面計算結果を示す。

付図-2.2.23 上部工図

付表 2.2.24 断面計算結果

				側径間	中間支点	中央径間	
	圧 縮 強 度			N/mm ²	50.0	-	-
	ヤング係数			N/mm^2	3 30x10 ⁴	-	-
	クリープ係数			-	2.60	-	-
計	プレ減少 乾燥収縮度			-	200x10 ⁻⁶	-	-
异谜	不静定 乾燥収縮度			-	150x10 ⁻⁶	-	-
元	ちかさ	助高 図心位置	PC鋼材	mm	3027	-	-
	有双向		鉄筋	mm	-	-	-
	PC鋼材引張強度			N/mm^2	1180	-	-
		鉄筋降伏耐力		N/mm^2	345	1	-

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	7413.48	-	-
		場所打ち自重	M d2	kN∙m	333. 23	-	-
	死荷重	床版自重	Md3	kN∙m	5268.02	-	-
		橋面荷重	Md4	kN∙m	2198.39		
作		計	Md	kN∙m	15213.12	-	-
用	迁益金	活荷重最大	Mlmax	kN∙m	6515.38	-	-
面	/11 11 里	活荷重最小	Mlmin	kN∙m	-686.19	-	-
<u>л</u>	(HL 80)	活荷重最大	Mimax	kN∙m	931.70	-	-
	121 141	活荷重最小	Mimin	kN∙m	-98.12	-	-
	プレ	マストレス2次	MPS	kN m	0.00	-	-
	クリープ		MCR	kN∙m	0.00	-	-
	j	乾燥収縮		kN∙m	0.00	-	-
		1.3D+2.5(L+1)+1.0(P	S+CR+SH)	kN∙m	38394.76	-	-
終	局荷重	1.0D+2.5(L+1)+1.0(P	S+CR+SH)	kN∙m	33830.82	-	-
作用	時断面力	1.7(D+L+I)+1.0(PS	S+CR+SH)	kN∙m	38522.34	-	-
		採用値	Mu	kN∙m	38522.34	-	-
	初期緊張応力度		σ _{Pi}	N/mm^2	1340	-	-
	直後プレストレス		σ_{Po}	N/mm^2	1141	-	-
Ń	有効	プレストレス	σ_{Pe}	N/mm^2	951	-	-
スト		使用鋼材種	別	_	1 2S15.2 (SWPR7B)	-	-
レマ	PC鋼材量	鋼材本数		本	5	-	-
		1本当り断面	面積	mm ²	1664.4	-	-
		総断面積		mm ²	8322	-	-
£#		鉄筋径		—	-	-	-
鉄筋	上縁側	本数		本	-	_	-
77		総断面積		mm ²	-	_	-
T	皮疹妊娠曲	ゴエーイント	中立軸	mm	205	_	-
9	以被找打出		Mr	kN∙m	44586.40	-	-
曲げ破壊安全度 Mr/Mu			_	1.157	-	-	

24) 3径間連結 PC コンポ橋(o30)

付図-2.2.24に上部工図を、付表-2.2.25に断面計算結果を示す。

付図-2.2.24 上部工図

付表-2.2.25 断面計算結果

			側径間	中間支点	中央径間		
	l	圧 縮 強 度			50.0	30.0	50.0
	ヤング係数			N/mm^2	3. 30x10 ⁴		
	クリープ係数			-	2.60		
計	プレ減少 乾燥収縮度			-	200x10 ⁻⁶		
异諸	不	不静定 乾燥収縮度			150x10 ⁻⁶		
元	ちかさ	図心位置 鉄筋	PC鋼材	mm	2180	-	2180
	19 以同		鉄筋	mm	-	110	-
	F	PC鋼材引張強度			1180		
	鉄筋降伏耐力			N/mm^2	345		

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	2668.08	0,00	2668.08
		場所打ち自重	Md2	kN∙m	149.53	0,00	149.53
		床版自重	M d3	kN·m	2340, 91	0,00	2340, 53
		橋面荷重	Md4	kN∙m	575.18	-899.40	189.85
作			Md	kN∙m	5733.70	-899.40	5347.99
用		活荷重最大	Mlmax	kN∙m	2768.96	498.05	2280.94
断面	沽何重	活荷重最小	Mlmin	kN∙m	-760. 32	-2156.26	-971.70
力	(#° #0)	活荷重最大	Mimax	kN∙m	503.95	90.65	415.13
	倒肇	活荷重最小	Mimin	kN∙m	-138.38	-392.44	-176.85
	プレ	ストレス2次	MPS	kN m	2889.89	5707.88	5635.98
	クリープ		MCR	kN∙m	-1684.85	-3332.68	-3295.56
	1	MSH	kN∙m	-175.35	-346.80	-342.99	
		1.3D+2.5(L+1)+1.0(P	S+CR+SH)	kN∙m	16665.78	-5512.57	15689.99
終	局荷重	1.0D+2.5(L+1)+1.0(P	S+CR+SH)	kN∙m	14945.67	-5242.75	14085.60
作用	時断面力	1. 7 (D+L+I)+1. 0 (PS+CR+SH)		kN∙m	16340.93	-3833. 37	15672.33
		採用値	Mu	kN∙m	16665. 78	-5512.57	15689.99
	初期緊張応力度		σ _{Pi}	N/mm ²	1340	-	1340
-	直後	プレストレス	σ _{Po}	N/mm ²	1055	-	985
	有効	プレストレス	σ_{Pe}	N/mm ²	994	-	932
z		/# ㅋ 씨 ++ 또 ㅋ			1 2\$12.7		1 2\$12.7
F		使用卵材種	<i>/</i> 51	-	(SWPR7B)		(SWPR7B)
	PC鋼材量	鋼材本数		本	4	-	4
		1本当り断面	靣積	mm ²	1184.52	-	1184.52
		総断面積		mm ²	4738.08	-	4738.08
44		鉄筋径		—	-	D19	-
鉄筋	上縁側	本数		本	-	24	-
		総断面積		mm ²	-	6876	-
ā	皮速抵抗曲	げモーメント	中立軸	mm	115	-	115
		., _ , _ , _ ,	Mr	kN∙m	18743.90	-5515. 429	18721.7
曲げ破壊安全度		壊安全度	Mr/Mu	-	1.125	1.001	1.193

25) 3径間連結 PC コンポ橋(o45)

付図-2.2.25に上部工図を、付表-2.2.26に断面計算結果を示す。

(a) 照查断面図(支間中央)

(b) 側面図

付図--2.2.25 上部工図

付表-2.2.26 断面計算結果

			側径間	中間支点	中央径間		
	l	圧 縮 強 度			50.0	30.0	50.0
	ヤング係数			N/mm^2	3 30x10 ⁴		
	クリープ係数			-	2.60		
計	プレ減少 乾燥収縮度			-	200x10 ⁻⁶		
异諸	不	不静定 乾燥収縮度			150x10 ⁻⁶		
元	ちかさ	図心位置 —	PC鋼材	mm	3073	-	3073
	11 X/1 m		鉄筋	mm	-	110	-
	PC鋼材引張強度			N/mm^2	1180		
	鉄筋降伏耐力			N/mm^2	345		

					側径間	中間支点	中央径間
		主桁自重	Md1	kN∙m	7491.02	0.00	7491.02
		場所打ち自重	M d2	kN∙m	333. 23	0.00	333. 23
	死荷重	床版自重	Md3	kN∙m	5267.04	0.00	5266.07
		橋面荷重	Md4	kN∙m	1273.84	-2029.60	385.49
作		計	Md	kN∙m	14365.13	-2029.60	13475.81
用	·· +	活荷重最大	Mlmax	kN∙m	5014.59	959.81	4119.06
面	伯何里	活荷重最小	Mlmin	kN∙m	-1417.10	-4127.50	-1896.86
カ	(他) 第9	活荷重最大	Mimax	kN∙m	912.66	174.69	749.67
	11月 11年	活荷重最小	Mimin	kN∙m	-257.91	-751.20	-345.23
	プレ	ストレス2次	MPS	kN m	5388.35	10667.48	10558.24
	クリープ		MCR	kN∙m	-4320.90	-8561.98	-8482.19
	乾燥収縮 M Sh			kN∙m	-275.30	-545.50	-540.43
	1.3D+2.5(L+1)+1.0		S+CR+SH)	kN∙m	34284.94	-13275.23	31226.00
終	局荷重	1.0D+2.5(L+I)+1.0(P	S+CR+SH)	kN∙m	29975.41	-12666.35	27183.26
作用	時断面力	1.7(D+L+I)+1.0(PS+CR+SH)		kN∙m	35289.20	-10184.11	32721.34
		採用値	Mu	kN∙m	35289.20	-13275. 23	32721.34
	初期緊張応力度		σ _{Pi}	N/mm^2	1340	-	1340
-	直後	プレストレス	σ _{Po}	N/mm^2	1073	-	1012
ν	有効	プレストレス	σ_{Pe}	N/mm^2	1002	1	951
ス		唐田鈿廿番	eil		1 2\$15.2	_	1 2815.2
F		医用卵物性	נימ	_	(SWPR7B)		(SWPR7B)
	PC鋼材量	鋼材本数		本	4	-	4
		1本当り断面	靣積	mm ²	1664.4	-	1664.4
		総断面積		mm ²	6657.6	-	6657.6
£#		鉄筋径		—	-	D19	-
鉄筋	上縁側	本数		本	-	44	-
10		総断面積		mm ²	-	12606	_
F	* 使 括 拉 击	げモーメント	中立軸	mm	115	-	115
4	a ag pa ni m		Mr	kN∙m	36317.90	-13731.284	36267.5
曲げ破		壊安全度	Mr/Mu	_	1.029	1.034	1.108

(2) 斜引張破壊に対する耐力照査用モデル

1) 単純 RC 中空床版橋(a20)

付図-2.2.26に上部工図を、付表-2.2.27に断面計算結果を示す。

付表-2.2.27 断面計算結果

	圧約	宿強度	N/mm ²	24 0
	N/mm ²	2 50×10 ⁴		
	クリー	-	2 60	
プ	レストレス派	載少 乾燥収縮度	-	200×10-6
	不静定	乾燥収縮度	-	150×10-6
	鉄筋障	锋伏耐力	N/mm ²	345
	主桁自重	S _{d1}	kN	1421 65
死荷重	橋面荷重	S _{d2}	kN	266 30
	計	S _d	kN	1687 95
迁莅重	活荷重最大	Slmax	kN	898 51
伯彻里	活荷重最小	Slmin	kN	-0 88
金に曲ひ	活荷重最大	S _{imax}	kN	157 24
倒革	活荷重最小	Simin	kN	-0 15
	1 3D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	4833 71
	1 3D+2 5(Lm	kN	2191 75	
	1 0D+2 5(Lm	kN	4327 32	
	1 0D+2 5(Lm	kN	1685 37	
	1 7(D+L _{max} +)	kN	4664 29	
	1 7(D+L _{min} +I	kN	2867 76	
44 🖂		Su最大	kN	4833 71
於同 荷重		M _{Su max}	kNm	2496 42
作用時	採用値最大	d _{Su max}	m	1 008
		tanα	-	0 000
		Su最大(有効高考慮)	kN	4833 71
		Su最小	kN	1685 37
		M _{Su min}	kNm	982 10
	採用値最小	d_su_min	m	1 008
		tanα	-	0 000
		Su最小(有効高老庸)	ĿN	1685.31

		幅	b	mm	2304				
	J	ンクリート負担応力度	τ_{c}	N/mm ²	0 39				
	プレストレス分力		Sp	kN	0 00				
- [勾己语建筑导	配筋	-	D13ctc125				
		析 1 版	配置量	mm ² /m	16217 6				
		斜引張鉄筋抵抗力	Ss	kN	4903 23				
		デョンプレッションモーメント	M ₀	kNm	0 00				
	最	軸力補正係数	k	—	1 000				
	大	コンクリート負担力	S _c	kN	905 57				
		せん断耐力	P _{s2}	kN	5808 80				
		せん断安全度	P_{s2}/S_u	-	1 202				
- [斜引張鉄筋抵抗力	Ss	kN	4903 23				
		デョンプレッションモーメント	M ₀	kNm	0 00				
	最	軸力補正係数	k	-	1 000				
	小	コンクリート負担力	Sc	kN	905 57				
		せん断耐力	P _{s2}	kN	5808 80				
		せん断安全度	P_{s2}/S_{u}	_	3 447				

2) 単純 PRC 中空床版橋(b20)

付図-2.2.27に上部工図を、付表-2.2.28に断面計算結果を示す。

付図-2.2.27 上部工図

付表2. 2. 28	断面計算結果

			N/mm ²	40 0				
		ヤン	N/mm ²	3 10×10 ⁴				
		クリー	-	2 60				
	プ	レストレス演	載少 乾燥収縮度	-	200×10 ⁻⁶			
		不静定	乾燥収縮度	-	150×10-6			
		PC鋼材	引張強度	N/mm ²	1700			
		鉄筋隊	备伏耐力	N/mm ²	345			
		主桁自重	S _{d1}	kN	1396 53			
	死荷重	橋面荷重	S _{d2}	kN	266 30			
		計	S _d	kN	1662 83			
	江古香	活荷重最大	Slmax	kN	898 51			
	伯彻里	活荷重最小	Slmin	kN	-0 88			
	新に書い	活荷重最大	S _{imax}	kN	199 67			
	倒挙	活荷重最小	S _{imin}	kN	-0 20			
		1 3D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	4907 13			
		1 3D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	2158 99			
		1 0D+2 5(Lm	kN	4408 28				
		1 0D+2 5(Lmi	kN	1660 14				
		1 7(D+L _{max} +1	kN	4693 72				
		1 7(D+L _{min} +I	kN	2824 98				
	44 12		S _u 最大	kN	4907 13			
	於同 荷重		M _{Su max}	kNm	2529 24			
	作用時	採用値最大	d_ _{Su_max}	m	1 035			
			tanα	-	0 000			
			Su最大(有効高考慮)	kN	4907 13			
l			Su最小	kN	1660 14			
			M _{Su min}	kNm	969 64			
l		採用値最小	d _{Su min}	m	1 035			
l			tanα	-	0 000			
			Su最小(右効喜考慮)	ĿN	1660 14			

_					
	幅 コン/リート負担応力度 プレストレス分力		b	mm	2164
			τ _c	N/mm ²	0 55
			Sp	kN	755 81
			配筋	—	D13ctc250
1		析17版欧肋里	配置量	mm ² /m	8108 8
- [斜引張鉄筋抵抗力	Ss	kN	2517 78
		デョンプレッションモーメント	M ₀	kNm	5864 82
1	最	軸力補正係数	k	—	2 000
1	大	コンクリート負担力	S _c	kN	2463 71
1		せん断耐力	P _{s2}	kN	5737 31
1		せん断安全度	P _{s2} /S _u	-	1 1 6 9
- [斜引張鉄筋抵抗力	Ss	kN	2517 78
1		デョンプレッションモーメント	M ₀	kNm	5864 82
1	最	軸力補正係数	k	—	2 000
1	小	コンクリート負担力	Sc	kN	2463 71
		せん断耐力	P _{s2}	kN	5737 31
- 1		せん断安全度	P2/S.	_	3 4 5 6

3) 単純 PC 中空床版橋 (c20)

付図-2.2.28 に上部工図を, 付表-2.2.29 に断面計算結果を示す。

付表-2.2.29 断面計算結果

	圧約	宿強度	N/mm ²	40 0
	N/mm ²	3 10×10		
	クリー	-プ係数	-	2 60
ブ	レストレス演	或少 乾燥収縮度	-	200×10 ⁻⁶
	不静定	乾燥収縮度	-	150×10 ⁻⁴
	PC鋼材	引張強度	N/mm ²	1700
	鉄筋障	锋伏耐力	N/mm ²	345
	主桁自重	S _{d1}	kN	1361 30
死荷重	橋面荷重	S _{d2}	kN	266 30
	計	S _d	kN	1627 6
江古舌	計 S _d 活荷重最大 S _{lmax} 活荷重最小 S _{lmin} 活荷重最大 S _{imax}		kN	898 5
伯彻里	活荷重最小	Slmin	kN	-0.88
(新) 書	活荷重最大	S _{imax}	kN	199 6'
倒车	活荷重最小	S _{imin}	kN	-0 20
	1 3D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	48614
	1 3D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	2113 2
	1 0D+2 5(Lm	kN	4373 1	
	1 0D+2 5(Lmi	kN	1624 9'	
	1 7(D+L _{max} +)	kN	4633 93	
	1 7(D+L _{min} +I	min)+1 0(PS+CR+SH)	kN	2765 20
49 円		Su最大	kN	48614
於同 荷重		M _{Su max}	kNm	2503 3
作用時	採用値最大	d _{Su max}	m	1 03:
		tanα	-	0 000
		Su最大(有効高考慮)	kN	48614
		Su最小	kN	1624 97
		M _{Su min}	kNm	949 73
	採用値最小	d _{Su min}	m	1 03:
		tanα	-	0.000
		Su最小(有効高考慮)	kN	1624 9'

ф	幅			1968	
コンクリート負	コンクリート負担応力度			0 55	
プレスト	Sp	kN	1218 95		
おきま	斜引張鉄筋量			D13ctc250	
ホイワー カマ				8108 8	
	斜引張鉄筋抵抗力	Ss	kN	2517 78	
	テ [*] コンフ [*] レッションモーメント	M ₀	kNm	7210 24	
最	軸力補正係数	k	—	2 000	
大	コンクリート負担力	S _c	kN	2240 57	
	せん断耐力	P _{s2}	kN	5977 30	
	せん断安全度	P _{s2} /S _u	—	1 230	
	斜引張鉄筋抵抗力	Ss	kN	2517 78	
	デ [*] コンフ [*] レッションモーメント	M ₀	kNm	7210 24	
最	軸力補正係数	k	—	2 000	
/小	コンクリート負担力	Sc	kN	2240 57	
	せん断耐力	P _{s2}	kN	5977 30	
	せん断安全度	P_{s2}/S_{u}	_	3 678	

4) 単純ポステン T 桁橋(d20)

付図-2.2.29に上部工図を, 付表-2.2.30に断面計算結果を示す。

(b)側面図 付図-2.2.29 上部工図

付表-2.2.30 断面計算結果

				/
	圧約	宿強度	N/mm ²	40 0
	ヤン	グ係数	N/mm ²	3 10×10
	クリープ係数			2 60
プ	レストレス派	載少 乾燥収縮度	-	200×10-
	不静定	乾燥収縮度	-	150×10 ⁻⁶
	PC鋼材	引張強度	N/mm ²	1700
	鉄筋障	备伏耐力	N/mm ²	345
	主桁自重	S _{d1}	kN	143 87
矿带重	昜所打ち自重	S _{d1} '	kN	21 02
2617月里	橋面荷重	S _{d2}	kN	57 40
	計	S _d	kN	222 35
江古舌	活荷重最大	Slmax	kN	235 84
伯彻里	活荷重最小	Slmin	kN	-19 85
衝撃	活荷重最大	S _{imax}	kN	52 36
衝撃	活荷重最小	S _{imin}	kN	-4 40
	1 3D+2 5(L _m	ax+Imax)+1 0(PS+CR+SH)	kN	1009 50
	1 3D+2 5(L _m	in+Imin)+1 0(PS+CR+SH)	kN	942 85
	1 0D+2 5(L _m	ax+Imax)+1 0(PS+CR+SH)	kN	867 94
	1 0D+2 5(Lm	kN	228 44	
	1 7(D+L _{max} +)	kN	161 74	
	1 7(D+L _{min} +I	kN	336 78	
紋目		Su最大	kN	1009 56
荷重		M _{Su max}	kNm	545 25
作用時	採用値最大	d _{Su max}	m	1 340
		tanα	-	0 000
		Su最大(有効高考慮)	kN	1009 56
		S _u 最小	kN	161 74
		M _{Su min}	kNm	169 33
	採用値最小	d_ _{Su_min}	m	1 340
		tanα	-	0 000
		Su最小(有効高考慮)	kN	161 74

	幅	b	mm	252
Ξ	ンクリート負担応力度	$\tau_{\rm c}$	N/mm ²	0 55
-	プレストレス分力		kN	200 57
	公司進姓故景		—	D16ctc250
	赤171 顶欧肋里	配置量	mm ² /m	1588 80
	斜引張鉄筋抵抗力	Ss	kN	638 70
	テ゛コンプ゜レッションモーメント	M ₀	kNm	1207 17
最	軸力補正係数	k	—	2 000
大	コンクリート負担力	S _c	kN	371 45
	せん断耐力	P _{s2}	kN	1210 72
	せん断安全度	P_{s2}/S_u	—	1 199
	斜引張鉄筋抵抗力	Ss	kN	638 70
	テ゛コンプ゜ レッションモーメント	M ₀	kNm	1207 17
最	軸力補正係数	k	-	2 000
小	コンクリート負担力	Sc	kN	371 45
	せん断耐力	P _{s2}	kN	1210 72
	せん断安全度	P_{s2}/S_u	—	7 486

5)連結ポステンT桁橋 (e20)

付図-2.2.30 に上部工図を, 付表-2.2.31 に断面計算結果を示す。

付図-2.2.30 上部工図

付表-2.2.31 断面計算結果

圧縮強度 N/mm ² 40 0 ヤング係数 N/mm ² 3 10×10 ⁴		
ヤング係数 N/mm ² 310×10 ⁴		
クリープ係数 - 260	2 60	
プレストレス減少 乾燥収縮度 - 200×10 ⁻⁶	200×10 ⁻⁶	
不静定 乾燥収縮度 - 150×10 ⁻⁶		
PC鋼材引張強度 N/mm ² 1700	1700	
鉄筋降伏耐力 N/mm ² 345		
主桁自重 S _{d1} kN 143 88 -	143 88	
	-21 02	
^{9L1} 间重 橋面荷重 S _{d2} kN 50 93	-78 56	
計 S _d kN 21583 -	243 46	
近世重 活荷重最大 S _{lmax} kN 212 84	26 05	
活何里 活荷重最小 S _{lmin} kN -25 88 -	271 87	
(新日本) 活荷重最大 Simax kN 47 25	5 78	
個举 活荷重最小 S _{imin} kN -574	-60 36	
死荷重 S _{CR1} kN 000	0 00	
クリープ プレ2次 S _{CR2} kN 7878	78 78	
計 S _{CR} kN 7878	78 78	
1 3D+2 5(L _{max} +I _{max})+1 0(PS+CR+SH) kN 1009 58 -	158 14	
1 3D+2 5(L _{min} +I _{min})+1 0(PS+CR+SH) kN 944 84	-85 11	
1 0D+2 5(L _{max} +I _{max})+1 0(PS+CR+SH) kN 887 84 -	280 99	
1 0D+2 5(L _{min} +I _{min})+1 0(PS+CR+SH) kN 280 31 -1	068 29	
17(D+L _{max} +I _{max})+10(PS+CR+SH) kN 21556	995 26	
1 7(D+L _{min} +I _{min})+1 0(PS+CR+SH) kN 391 94 -	899 89	
終局 Su最大 kN 1009 58 1)68 29	
荷重 M _{Sumax} kNm 683 03	144 94	
作用時 採用値最大 d _{Sumax} m 1340	1 340	
tanα - 0.000	0 000	
Su最大(有効高考慮) kN 1009 58 1	68 29	
Su最小 kN 215 56	85 11	
M Su min kNm 418 80 1	502 43	
1休用 進取 小 d Su min m 1340	1 340	
tand - 0 000 Su最小(右効高考慮) kN 215 56	85 11	

	2101210						
	照査部(立		端支点	中間支点		
	幅	b	mm	261	261		
3	レンクリート負担応力度	$\tau_{\rm c}$	N/mm ²	0 55	0 55		
-	プレストレス分力	Sp	kN	173 19	169 37		
	创己语种效果	配筋	—	D16ctc250	D13ctc125		
	おり放妖肋里	配置量	mm ² /m	1588 80	2027 20		
	斜引張鉄筋抵抗力	Ss	kN	638 70	814 93		
	テ゛コンフ゜レッションモーメント	M ₀	kNm	1531 88	1498 16		
最	軸力補正係数	k	—	2 000	2 000		
大	コンクリート負担力	S _c	kN	384 71	384 71		
	せん断耐力	P _{s2}	kN	1196 60	1369 02		
	せん断安全度	Ps2/Su	—	1 185	1 282		
	斜引張鉄筋抵抗力	Ss	kN	638 70	814 93		
	テ゛コンフ゜レッションモーメント	M ₀	kNm	1531 88	1498 16		
最	軸力補正係数	k	—	2 000	1 935		
小	コンクリート負担力	Sc	kN	384 71	372 20		
	せん断耐力	P _{s2}	kN	1196 60	1356 50		
	せん断安全度	P_{s2}/S_{u}	—	5 551	15 939		

6)連結ポステンT桁橋 (e30)

付図-2.2.31 に上部工図を, 付表-2.2.32 に断面計算結果を示す。

(a)照查断面図(端支点,中間支点)

付図-2.2.31 上部工図

付表-2.2.32	断面計算結果
-----------	--------

	照		端支点	中間支点	
	圧縮強	度	N/mm ²	40	0
	ヤング	系数	N/mm ²	3 10	×10 ⁴
	クリーフ	係数	-	2 60	
プリ	プレストレス減少 乾燥収縮度			200×10 ⁻⁶	
不静定 乾燥収縮度			-	150>	10-6
PC鋼材引張強度			N/mm ²	17	00
鉄筋降伏耐力			N/mm ²	34	15
	主桁自重	S _{d1}	kN	265 40	-265 40
灰齿舌	場所打ち自重	S _{d1} '	kN	31 35	-31 35
7619 里	橋面荷重	S _{d2}	kN	73 06	-113 29
	計	S _d	kN	369 81	-410 04
汗带重	活荷重最大	Slmax	kN	274 10	38 45
伯刑里	活荷重最小	Slmin	kN	-38 89	-340 84
(活:書)	活荷重最大	S _{imax}	kN	49 89	7 00
個學 活荷重最小 S _{imin}		kN	-7 08	-62 03	
	死荷重	S _{CR1}	kN	0 00	0 00
クリープ	プレ2次	S _{CR2}	kN	63 19	63 19
	計	S _{CR}	kN	63 19	63 19
	1 3D+2 5(L _{max} +I _{max})+1 0(PS+CR+SH)		kN	1353 92	-356 24
	1 3D+2 5(L _{min} +I _{min})+1 0(PS+CR+SH)		kN	1242 98	-233 23
	1 0D+2 5(L _{max} +	kN	1242 65	-556 61	
	1 0D+2 5(L _{min} +	kN	429 02	-1477 04	
	1 7(D+L _{max} +I _{max})+1 0(PS+CR+SH)		kN	318 08	-1354 03
	1 7(D+L _{min} +I _{mir}	kN	613 72	-1318 76	
紋目		S _u 最大	kN	1353 92	1477 04
於同 荷重		M _{Su max}	kNm	701 67	844 75
作用時	採用値最大	d _{Su max}	m	1 740	1 740
		tanα	-	0 000	0 000
		Su最大(有効高考慮)	kN	1353 92	1477 04
		S _u 最小	kN	318 08	233 23
		M _{Su min}	kNm	416 51	1602 88
	採用値最小	d _{Su min}	m	1 740	1 740
		tana	-	0 0 0 0 0	0 000
		Su最小(有効高考慮)	kN	318 08	233 23

[照査部(端支点	中間支点			
	幅		b	mm	272	272		
	I	ンクリート負担応力度	τ_{c}	N/mm ²	0 55	0 55		
- [プレストレス分力		Sp	kN	272 43	262 50		
		的司证仲依里	配筋	—	D16ctc250	D13ctc125		
	料归册跃筋重		配置量	mm ² /m	1588 80	2027 20		
- [斜引張鉄筋抵抗力	Ss	kN	829 35	1058 20		
		デ゛コンフ゜レッションモーメント	M ₀	kNm	2060 81	2032 16		
	最	軸力補正係数	k	-	2 000	2 000		
	大	コンクリート負担力	S _c	kN	520 61	520 61		
		せん断耐力	P _{s2}	kN	1622 39	1841 31		
		せん断安全度	P _{s2} /S _u	-	1 198	1 247		
		斜引張鉄筋抵抗力	Ss	kN	829 35	1058 20		
		デ゛コンフ゜レッションモーメント	M ₀	kNm	2060 81	2032 16		
	最	軸力補正係数	k	—	2 000	2 000		
	小	コンクリート負担力	Sc	kN	520 61	520 61		
		せん断耐力	P _{s2}	kN	1622 39	1841 31		
		せん断安全度	P_{s2}/S_{u}	_	5 101	7 895		

7)連結ポステンT桁橋 (e40)

付図-2.2.32 に上部工図を, 付表-2.2.33 に断面計算結果を示す。

(a)照查断面図(端支点,中間支点)

(b) 側面図 付図-2.2.32 上部工図

付表-2.2.33	断面計算結果
	TALES FOR THE PARTY

	照		端支点	中間支点	
	圧縮強	度	N/mm ²	40 0	
	ヤングイ	系数	N/mm ²	3 10	×10 ⁴
	クリープ	。係数	-	2 60	
プロ	- ストレス減少	• 乾燥収縮度	-	200×10 ⁻⁶	
不静定 乾燥収縮度			-	150×	10-6
PC鋼材引張強度			N/mm ²	17	00
鉄筋降伏耐力		N/mm ²	345		
	主桁自重	S _{d1}	kN	440 56	-440 56
龙齿舌	場所打ち自重	S _{d1} '	kN	24 81	-24 81
9L1刊 里	橋面荷重	S _{d2}	kN	97 14	-150 27
	計	S _d	kN	562 51	-615 64
汗苔香	活荷重最大	Slmax	kN	319 80	46 23
伯刑里	活荷重最小	Slmin	kN	-48 17	-393 17
金に書い	活荷重最大	S _{imax}	kN	49 25	7 12
個举 活荷重最小 S _{imin}		kN	-7 42	-60 55	
	死荷重	S _{CR1}	kN	0 00	0 00
クリープ	プレ2次	S _{CR2}	kN	69 73	69 73
	計	S _{CR}	kN	69 73	69 73
	1 3D+2 5(L _{max} +	-Imax)+1 0(PS+CR+SH)	kN	1723 62	-597 23
	1 3D+2 5(L _{min} +I _{min})+1 0(PS+CR+SH)		kN	1554 87	-412 54
	1 0D+2 5(L _{max} +	kN	1653 38	-886 16	
	1 0D+2 5(L _{min} +	kN	662 02	-1864 90	
	1 7(D+L _{max} +I _{max})+1 0(PS+CR+SH)		kN	493 27	-1680 21
	1 7(D+L _{min} +I _{min})+1 0(PS+CR+SH)	kN	931 49	-1748 18
紋局		Su最大	kN	1723 62	1864 90
荷重		M _{Su max}	kNm	1196 84	20 09
作用時	採用値最大	d _{Su max}	m	2 240	2 240
		tanα	-	0 000	0 000
		Su最大(有効高考慮)	kN	1723 62	1864 90
		Su最小	kN	493 27	412 54
		M _{Su min}	kNm	641 15	1745 59
	採用値最小	d _{Su min}	m	2 240	2 240
		tanα	-	0 000	0 000
		Su最小(有効高考慮)	kN	493 27	412 54

1		照査部伯	端支点	中間支点		
		幅	b	mm	272	272
ſ	Z	ンクリート負担応力度	τ_{c}	N/mm ²	0 55	0 55
ſ	7	プレストレス分力	Sp	kN	364 38	356 95
-		创己语姓符号	配筋	—	D16ctc250	D13ctc125
	斜引張釱肋重		配置量	mm ² /m	1588 80	2027 20
ſ		斜引張鉄筋抵抗力	Ss	kN	1067 67	1362 28
		デ゛コンフ゜レッションモーメント	M ₀	kNm	3925 76	3848 25
	最	軸力補正係数	k	_	2 000	2 000
	大	コンクリート負担力	Sc	kN	670 21	670 21
		せん断耐力	P _{s2}	kN	2102 26	2389 44
		せん断安全度	P_{s2}/S_u	—	1 220	1 281
ſ		斜引張鉄筋抵抗力	Ss	kN	1067 67	1362 28
		デ゛コンフ゜レッションモーメント	M ₀	kNm	3925 76	3848 25
	最	軸力補正係数	k	—	2 000	2 000
	小	コンクリート負担力	Sc	kN	670 21	670 21
		せん断耐力	P _{s2}	kN	2102 26	2389 44
		せん断安全度	P. 2/S.,	_	4 262	5 792

8)PC連続箱桁橋(f40)

端支点部 側径間 1/4 部 10700 600 9500 600 <u>アスファルト舗装</u> _____t=80mm <u>12S12.4A (SWPR7AL)</u> Np = 12本 200 300 697 8 . . . ⊕ ● ⊕ 1618 7S15.2B (SWPR7BL) Np = 9本 2300 1500 <u>7S15.2B(SWPR7BL)</u> Np = 9本 1453 2S12.4A (SWPR7AL) Np = 6本 • • • • 482 ő لاحط 5 2890 2960 290 360 2100 6500 2100 中間支点中央径間側部 10700 600 600 9500 <u>アスファルト舗装</u> t=80mm <u>12S12.4A (SWPR7AL)</u> Np = 12本 200 300 300 200 a ⊕ 2300 1300 1800 500 950 4600 950 2100 6500 2100 (a) 照查断面図 120900 40000 19450 9000 2050 23 00 00 外ケーブル 9本 7S15.2B(SWPR7BL A) 1150 照查断面位置(端支点) 120900 40000 8000 40000 1500 9000 500 1/50 2300 7S15. 2B (SWPR7BL ブル 9本 外ケ 9500 1150 照查断面位置(中間支点中央径間側) 照查断面位置(側径間 1/4) ø (b) 側面図

付図-2.2.33 に上部工図を、付表-2.2.34 に断面計算結果を示す。

付図-2.2.33 上部工図

					付 表 2 .	2.34 断
照査部位				端支点	側径間1/4	中間支点 中央径間側
圧縮強度					40 0	一人正间因
	ヤング	グ係数	N/mm ²		3 10×10 ⁴	
	クリー	プ係数	-		2.60	
プリ	レストレス減	小	-		200×10 ⁻⁶	
	不静定 卓	乾燥収縮度	-		150×10 ⁻⁶	
PC	鋼材	内ケーブル	N/mm ²		1850	
引引	長強度	外ケーブル	N/mm ²		1850	
	鉄筋降	伏耐力	N/mm ²		345	
	主桁自重	Sdi	kN	2309 73	-3153 64	4180 92
死荷重	橋面荷重	S _{d2}	kN	415 37	-411 71	531 19
9619 里	計	S ₄	kN	2725 10	-3565 35	4712.11
we allow or .	活荷重最大	Simar	kN	1163 47	94 95	1370 92
沽何重	活荷重最小	Slmin	kN	-122 45	-1084 08	-210 03
64.444	活荷重最大	Simar	kN	179.00	14 61	210.91
衝撃	活荷重最小	Simin	kN	-18 84	-166 78	-32 31
	内ケーブル	S _{PS1}	kN	182 31	182 31	0.00
プレ2次	外ケーブル	S _{PS2}	kN	142 15	142 15	0.00
	計	S _{PS}	kN	324 46	324 46	0 00
	死荷重	S _{CR1}	kN	286 61	286 61	0 00
クリープ	プレ2次	S _{CR2}	kN	-312 09	-312 09	0 00
	計	S _{CR}	kN	-25 48	-25 48	0 00
	1 3D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	7197 76	-4062 07	10080 32
	1 3D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	3488 38	-7463 13	5519 88
活荷重 衝撃 プレ2次 クリープ 終局	1 0D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	6380 23	-2992 47	8666 69
	1 0D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	2670 85	-6393 53	4106 24
	1 7(D+L _{max} +)	Imax)+1 0(PS+CR+SH)	kN	7213 83	-5575 86	10699 70
	1 7(D+L _{min} +I	min)+1 0(PS+CR+SH)	kN	4691 45	-7888 58	7598 60
427 円		Su最大	kN	7213 83	-7888 58	10699 70
於 向 荷 街		M _{Su max}	kNm	8207 18	3211 89	-75184 99
作用時	採用値最大	d _{Su max}	m	2 08	2 18	2 10
		tanα	-	0 000	0 000	0 000
		Su最大(有効高考慮)	kN	7213 83	-7888 58	10699 70
		Su最小	kN	2670 85	-2992 47	4106 24
		M _{Su min}	kNm	3267 88	11219 94	-29678 10
	採用値最小	d_ _{Su_min}	m	2 08	2 18	2 10
		tanα	-	0 000	0 000	0 000
		Su最小(有効高老庸)	kN	2670.85	-2992 47	4106 24

'表-2.2.34	断面計算結果
-----------	--------

	照査部(<u>v</u> .	端支点	中間支点	中間支点 中央径間側					
	幅	b	mm	720	1344	1900				
	コンクリート負担応力度	$\tau_{\rm c}$	N/mm ²	0 55	0 55	0 55				
	プレストレス分力	Sp	kN	1617 55	-1490 19	0 00				
	公司連续な島	配筋	-	D16ctc125	D16ctc125	D22ctc125				
	州小山山山山	配置量	mm ² /m	6355 2	6355 2	12387 2				
	斜引張鉄筋抵抗力	Ss	kN	3963 74	4146 77	7803 94				
	デ゛コンフ゜ レッションモーメント	M ₀	kNm	3963 74	4146 77	7803 94				
暃	e 軸力補正係数	k	—	8563 39	8585 94	-44220 42				
ノ	マ コンクリート負担力	Sc	kN	2 000	2 000	1 588				
	せん断耐力	P _{s2}	kN	1646 57	-3215 52	3485 21				
	せん断安全度	P_{s2}/S_u	—	7227 86	-8852 48	11289 14				
	斜引張鉄筋抵抗力	Ss	kN	1 002	1 122	1 055				
	デ゛コンフ゜ レッションモーメント	M ₀	kNm	8563 39	8585 94	-44220 42				
暃	e 軸力補正係数	k	—	2 000	1 765	2 000				
1	、 コンクリート負担力	Sc	kN	1646 57	-2838 08	4389 00				
	せん断耐力	P _{s2}	kN	7227 86	-8475 04	12192 94				
	せん断安全度	P_{s2}/S_u	—	2 706	2 832	2 969				

9)PC連続箱桁橋(f80)

付図-2.2.34 に上部工図を, 付表-2.2.35 に断面計算結果を示す。

(b) 側面図 付図-2.2.34 上部工図(2)

1	付表─2.2.	35 断面	計算結果
技点	側径間1/4	中間支点中央径間側	1

	1	照査部位		端支点	側径間1/4	中央径間側		
	圧縮	強度	40 0					
					3 10×10 ⁴			
クリープ係数				2 60				
プレストレス減少 乾燥収縮度			-		200×10 ⁻⁶			
アレストレス減少 乾燥収縮度 不静定 乾燥収縮度			-		150×10 ⁻⁶			
<hr/>		N/mm ²		1850				
引引	長強度	外ケーブル	N/mm ²		1850			
	鉄筋降	伏耐力	N/mm ²		345			
	主桁自重	S _{d1}	kN	-264 27	-5660 43	7942 32		
死荷重	橋面荷重	S _{d2}	kN	117 58	-681 33	1056 75		
プレ アC第 引張: 死荷重 活荷重 第二 第二	計	S _d	kN	-146 69	-6341 76	8999 07		
还去香	活荷重最大	S _{lmax}	kN	1169 41	137 79	1881 77		
伯彻里	活荷重最小	Slmin	kN	-596 79	-1328 66	-114 78		
衝撃	活荷重最大	S _{imax}	kN	179 91	21 20	182 13		
倒寧	活荷重最小	S _{imin}	kN	-56 89	-184 26	-17 63		
	内ケーブル	S _{PS1}	kN	147 33	147 33	0 05		
プレ2次	外ケーブル	S _{PS2}	kN	367 85	367 85	0 00		
	計	S _{PS}	kN	515 17	515 17	0 05		
	死荷重	S _{CR1}	kN	636 12	636 12	0 00		
クリープ	プレ2次	S _{CR2}	kN	-687 10	-687 10	0 02		
	計	S _{CR}	kN	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
	1 3D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	3646 79	-7382 64	16858 60		
	1 3D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	-1360 69	-11562 38	11367 86		
	1 0D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	3690 80	-5480 11	14158 88		
	1 0D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	-1316 68	-9659 85	8668 14		
	1 7(D+L _{max} +)	(max)+1 0(PS+CR+SH)	kN	2508 66	-10046 53	18807 12		
	1 7(D+L _{min} +I	min)+1 0(PS+CR+SH)	kN	-896 43	-12888 75	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
44 12		Su最大	kN	3690 80	-12888 75	18807 12		
於向 荷重		M_Su_max	kNm	4868 34	-143628 10	-252826 54		
作用時	採用値最大	d_ _{Su_max}	m	2 55	3 72	4 77		
		tanα	-	0 000	0 112	-0 117		
		Su最大(有効高考慮)	kN	3690 80	-8566 79	12605 71		
		Su最小	kN	-1360 69	-5480 11	8668 14		
		M _{Su min}	kNm	-1432 95	-61606 10	-117039 13		
	採用値最小	d _{Su min}	m	2 60	3 72	4 77		
		tanα	-	0 000	0 112	-0 117		
		Su最小(有効高老庸)	kN.	-1360.69	-3626.30	5797 37		

12	7771						
		照査部位	Z		端支点	中間支点	中間支点 中央径間側
	幅		b	mm	336	860	920
	3	ンクリート負担応力度	τ	N/mm ²	0 55	0 55	0 55
	7	プレストレス分力	Sp	kN	82 95	0 00	1149 05
		公司連续な長	配筋		D13ctc125	D16ctc125	D16ctc125
		对行政政加重	配置量	mm ² /m	4054 4	6355 2	6355 2
		斜引張鉄筋抵抗力	Ss	kN	3104 05	7096 22	9094 29
		テ゛コンプ゜ レッションモーメント	M ₀	kNm	6363 08	-122925 05	-218487 21
	最	軸力補正係数	k	-	2 000	1 856	1 864
	大	コンクリート負担力	S _c	kN	943 22	-3267 25	4499 42
		せん断耐力	P _{s2}	kN	4130 22	-10363 46	14742 76
		せん断安全度	P _{s2} /S _u		1 1 1 9	1 210	1 170
		斜引張鉄筋抵抗力	Ss	kN	3162 43	7096 22	9094 29
		テ゛コンフ゜ レッションモーメント	M ₀	kNm	-9063 79	-122925 05	-218487 21
	最	軸力補正係数	k	-	2 000	2 000	2 000
	小	コンクリート負担力	Sc	kN	-960 96	-3521 01	4827 24
		せん断耐力	P _{s2}	kN	-4040 44	-10617 23	15070 58
		せん断安全度	P_{s2}/S_{u}		2 969	2 928	2 600

10)PC 連続箱桁橋(f120)

付図-2.2.35 に上部工図を, 付表-2.2.36 に断面計算結果を示す。

(b)側面図 付図-2.2.35 上部工図(2)

付表2.2.36	断面計算結果
----------	--------

	1	照査部位		端支点	側径間1/4	中間支点 中央径間側	
	圧縮	強度	N/mm ²		40 0		
ヤング係数			N/mm ²	3 10×10 ⁴			
	クリー	プ係数	-		2 60		
プリ	レストレス減	少 乾燥収縮度	-		200×10 ⁻⁶		
	不静定 輤	吃燥収縮度	-		150×10 ⁻⁶		
PC	鋼材	内ケーブル	N/mm ²		1850		
引引	長強度	外ケーブル	N/mm ²		1850		
	鉄筋降	伏耐力	N/mm ²		345		
	主桁自重	S _{d1}	kN	3172 89	-9841 59	13963 99	
死荷重	橋面荷重	S _{d2}	kN	575 85	-1100 87	1587 94	
	計	S _d	kN	3748 74	-10942 46	15551 93	
活荷重	活荷重最大	Slmax	kN	1720 09	214 01	2324 48	
	活荷重最小	Slmin	kN	-533 33	-1810 02	-258 98	
衝戰	活荷重最大	S _{imax}	kN	163 82	20 38	164 40	
围车	活荷重最小	S _{imin}	kN	-36 80	-163 38	-24 64	
	内ケーブル	S _{PS1}	kN	-34 91	-34 91	0 00	
プレ2次	外ケーブル	S _{PS2}	kN	573 90	573 90	-2 93	
	計	S _{PS}	kN	538 99	538 99	-2 93	
	死荷重	S _{CR1}	kN	1173 29	1173 29	-0 05	
クリープ	プレ2次	S _{CR2}	kN	-1199 46	-1199 46	1 01	
	計	S _{CR}	kN	-26 17	-26 17	0 96	
	1 3D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	10095 95	-13126 40	26437 73	
	1 3D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	3960 85	-18645 88	19506 50	
	1 0D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	8971 33	-9843 67	21772 15	
	1 0D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	2836 23	-15363 15	14840 92	
	1 7(D+L _{max} +1	(max)+1 0(PS+CR+SH)	kN	10088 31	-17690 90	30667 41	
	1 7(D+L _{min} +I	min)+1 0(PS+CR+SH)	kN	5916 45	-21444 14	25954 17	
終局		Su最大	kN	10095 95	-21444 14	30667 41	
荷重		M_ _{Su_max}	kNm	17459 24	-279018 99	-662737 54	
作用時	採用値最大	d_su_max	m	3 24	5 52	6 98	
		tanα	-	0 000	0 086	-0 133	
		Su最大(有効高考慮)	kN	10095 95	-17098 68	18035 69	
		Su最小	kN	2836 23	-9843 67	14840 92	
		M _{Su min}	kNm	5549 90	-105378 45	-310915 46	
	採用個載小	d _{Su min}	m	3 24	5 52	6 98	
		tanα c.,导小(方动宣老虎)	-	0 000	0 086	-0 133	
		Su取小(有別尚考慮)	KIN	2830 23	-8202 50	8914 90	

	照査部伯	端支点	中間支点	中間支点 中央径間側		
	幅	b	mm	420	780	780
11	いかート負担応力度	τ	N/mm ²	0 55	0 55	0 55
	プレストレス分力	Sp	kN	2549 72	-2964 24	1767 81
	公己連建な量	配筋	-	D16ctc125	D16ctc125	D16ctc125
	ボリア成政加重	配置量	mm ² /m	6355 2	6355 2	6355 2
	斜引張鉄筋抵抗力	Ss	kN	6173 44	10528 02	13303 98
	テ゛コンフ゜レッションモーメント	M ₀	kNm	34145 43	-342033 59	-731759 87
最	軸力補正係数	k	—	2 000	2 000	2 000
大	コンクリート負担力	S _c	kN	1495 96	-4737 88	5987 12
	せん断耐力	P _{s2}	kN	10219 11	-18230 14	21058 91
	せん断安全度	P_{s2}/S_u	—	1 012	1 066	1 168
	斜引張鉄筋抵抗力	Ss	kN	6173 44	10528 02	13303 98
	デ゛コンフ゜レッションモーメント	M ₀	kNm	34145 43	-342033 59	-731759 87
最	軸力補正係数	k	—	2 000	2 000	2 000
小	コンクリート負担力	Sc	kN	1495 96	-4737 88	5987 12
	せん断耐力	P _{s2}	kN	10219 11	-18230 14	21058 91
	せん断安全度	P_{s2}/S_u	_	3 603	2 223	2 362

11)PC連続箱桁橋(g80)

(b)側面図 付図-2.2.36 上部工図(2)

付表-2.2.3/ 断面計算	[話果]
----------------	------

	l	照査部位		端支点	側径間1/4	中間支点 中央径間側		
	圧縮	油度	N/mm ²		40 0			
				3 10×10 ⁴				
イング (ボタ) クリープ係数 プレストレス減少、 乾燥収縮度				2 60				
プレストレス減少 乾燥収縮度 不静定 乾燥収縮度					200×10 ⁻⁶			
不静定 乾燥収縮度				150×10 ⁻⁶				
PC鋼材 内ケーブル		N/mm ²		1850				
引引	脹強度	外ケーブル	N/mm ²		1850			
	鉄筋降	:伏耐力	N/mm ²		345			
	主桁自重	Sd1	kN	1063 20	-4324 19	7269 89		
死荷重	橋面荷重	S _{d2}	kN	268 63	-530 28	993 35		
	照査部位 端支点 側径間 E縮強度 N/mm ² 40 (0) ヤング係数 N/mm ² 3 10× プレストレス減少 乾燥収縮度 - 2 60 プレストレス減少 乾燥収縮度 - 200×1 PC鋼材 内ケーブル N/mm ² 1855 引張強度 外ケーブル N/mm ² 1855 j引張強度 外ケーブル N/mm ² 1855 j 電 査術自重 S ₄₁ KN 1063 20 443 j 電 査術自重 S ₄₂ KN 268 63 -53 背重 査術重量人 S _{max} KN 1022 94 5 活荷重量人 S _{max} KN 1025 0 10 2/X 外 N/m 185 9 10 2/X 外 ケーブル S _{PS1} KN	-4854 46	8263 23					
汗苔香	活荷重最大	Slmax	kN	1022 94	57 51	1805 88		
伯彻里	活荷重最小	Slmin	kN	-185 70	-1234 33	-84 57		
衝撃	活荷重最大	S _{imax}	kN	157 21	8 68	174 10		
倒率	活荷重最小	Simin	kN	-18 45	-184 69	-12 92		
	内ケーブル	S _{PS1}	kN	102 50	102 50	0 00		
プレ2次	外ケーブル	S _{PS2}	kN	2 84	2 84	0 00		
	計	S _{PS}	kN	105 34	105 34	0 00		
	死荷重	S _{CR1}	kN	850 27	850 27	0 00		
クリープ	プレ2次	S _{CR2}	kN	-1241 33	-1241 33	0 00		
	計	S _{CR}	kN	-391 06	-391 06	0 00		
乾炸	彙収縮	S _{SH}	kN	-188 49	-188 49	0 00		
	1 3D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	4207 54	-6619 53	15692 14		
	1 3D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	746 78	-10332 54	10498 50		
	1 0D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	3807 99	-5163 19	13213 17		
	1 0D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	347 23	-8876 20	8019 53		
	1 7(D+L _{max} +)	Imax)+1 0(PS+CR+SH)	kN	3796 15	-8614 27	17413 45		
	1 7(D+Lmin+I	min)+1 0(PS+CR+SH)	kN	1442 84	-11139 12	13881 78		
紋局		Su最大	kN	4207 54	-11139 12	17413 45		
荷重		M_Su_max	kNm	5681 06	-91374 62	-220119 39		
作用時	採用値最大	d_ _{Su_max}	m	2 59	3 72	4 51		
		tanα	-	0 000	0 112	-0 114		
		Su最大(有効高考慮)	kN	4207 54	-8389 53	11845 76		
		Su最小	kN	347 23	-5163 19	8019 53		
		M_Su_min	kNm	799 32	-52002 84	-97630 02		
	採用値最小	d_ _{Su_min}	m	2 59	3 72	4 51		
		tanα	-	0 000	0 112	-0 114		
		Su最小(有効高考慮)	kN	347.23	-3598 36	5550.08		

	照査部位			端支点	中間支点	中間支点 中央径間側
	幅	b	mm	400	800	800
2	ンクリート負担応力度	τ	N/mm ²	0 55	0 55	0 55
7	プレストレス分力	Sp	kN	344 70	-466 20	1220 56
	创己再建筑基	配筋	_	D13ctc125	D16ctc125	D16ctc125
	ポイラリア東欧加重	配置量	mm ² /m	4054 4	6355 2	6355 2
	斜引張鉄筋抵抗力	Ss	kN	3146 62	7096 22	8592 87
	テ゛コンフ゜レッションモーメント	M ₀	kNm	6544 24	-90276 10	-184796 26
最	軸力補正係数	k	_	2 000	1 988	1 840
大	コンクリート負担力	Sc	kN	1138 28	-3255 67	3647 93
	せん断耐力	P _{s2}	kN	4629 60	-10818 09	13461 35
	せん断安全度	P _{s2} /S _u	_	1 100	1 289	1 1 3 6
	斜引張鉄筋抵抗力	Ss	kN	3146 62	7096 22	8592 87
	デョンプレッションモーメント	M ₀	kNm	6459 39	-90282 15	-181533 98
最	軸力補正係数	k	_	2 000	2 000	2 000
小	コンクリート負担力	Sc	kN	1138 28	-3275 36	3966 16
	せん断耐力	P _{s2}	kN	4629 60	-10837 78	13779 58
	せん断安全度	P_{s2}/S_u	_	13 333	3 012	2 483

12)PC 連続箱桁橋(g120)

(b)側面図 付図-2.2.37 上部工図(2)

付表-2.2.38 断面計算結果

		1	照査部位		端支点	側径間1/4	中間支点 中央径間側
		圧縮	強度	N/mm ²		40 0	
		ヤンジ	ゲ係数	N/mm ²		3 10×10 ⁴	
		クリー	プ係数	-		2 60	
	プリ	レストレス減	少 乾燥収縮度	-		200×10 ⁻⁶	
		不静定 韓	乾燥収縮度	-		150×10 ⁻⁶	
	PC	鋼材	内ケーブル	N/mm ²		1850	
	引引	長強度	外ケーブル	N/mm ²		1850	
		鉄筋降	伏耐力	N/mm ²		345	
		主桁自重	S _{d1}	kN	1126 40	-12199 27	13653 7
	死荷重	橋面荷重	S _{d2}	kN	633 82	-1042 89	1510 45
		計	S _d	kN	1760 22	-13242 16	1516415
	汗带重	活荷重最大	Slmax	kN	1469 15	69 78	2376 5
	伯刑里	活荷重最小	S _{lmin}	kN	-166 29	-1786 30	-185 72
	衝戰	活荷重最大	S _{imax}	kN	139 84	6 56	166 80
	围事	活荷重最小	S _{imin}	kN	-12 06	-167 83	-17 63
		内ケーブル	S _{PS1}	kN	153 72	153 72	0.00
プレ2次	外ケーブル	S _{PS2}	kN	296 38	296 38	0.00	
		計	S _{PS}	kN 296 38 296 38 0 0 kN 450 10 450 10 0 0 kN 2918 16 2918 16 0 0 kN -2382 31 -2382 31 0 0			
	死荷	死荷重	S _{CR1}	kN	2918 16	2918 16	0.00
	クリープ	プレ2次	S _{CR2}	kN	-2382 31	-2382 31	0.00
		計	S _{CR}	kN	535 85	535 85	0.00
	乾炸	彙収縮	S _{SH}	kN	-128 05	-128 05	0.00
		1 3D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	7168 67	-16166 04	26071 69
		1 3D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	2700 33	-21242 22	19205 00
		1 0D+2 5(Lm	ax+Imax)+1 0(PS+CR+SH)	kN	6640 61	-12193 39	21522 44
		1 0D+2 5(Lmi	in+Imin)+1 0(PS+CR+SH)	kN	2172 27	-17269 57	14655 70
		1 7(D+L _{max} +)	(max)+1 0(PS+CR+SH)	kN	6585 57	-21523 98	30102 70
		1 7(D+L _{min} +I	min)+1 0(PS+CR+SH)	kN	3547 10	-24975 78	25433 35
	纵已		S _u 最大	kN	7168 67	-24975 78	30102 70
	於向 荷重		M _{Su max}	kNm	12324 77	-461526 21	-650387 52
	作用時	採用値最大	d_ _{Su_max}	m	3 26	5 52	6 62
			tanα	-	0 000	0 086	-0 130
			Su最大(有効高考慮)	kN	7168 67	-17787 94	17328 81
			S u最小	kN	2172 27	-12193 39	14655 70
			M _{Su min}	kNm	4257 79	-228858 82	-315785 74
		採用値最小	d_ _{Su_min}	m	3 26	5 52	6 62
			tanα	-	0 000	0 086	-0 130
			Su最小(有効高考慮)	kN	2172 27	-8629 13	8453 59

	照査部伯	<u>v</u> .	端支点	中間支点	中間支点 中央径間側	
	幅	b	mm	400	900	900
З	ンクリート負担応力度	$\tau_{\rm c}$	N/mm ²	0 55	0 55	0 55
1	プレストレス分力	Sp	kN	1075 18	-1371 95	964 96
	创己语独放县	配筋	—	D16ctc125	D19ctc125	D16ctc125
	析 的 政	配置量	mm ² /m	6355 2	9168 0	6355 2
	斜引張鉄筋抵抗力	Ss	kN	6221 11	15187 71	12619 52
	テ゛コンフ゜レッションモーメント	M ₀	kNm	38578 01	-402366 21	-675048 66
最	軸力補正係数	k	—	2 000	1 872	2 000
大	コンクリート負担力	S _c	kN	1435 72	-5116 40	6552 81
	せん断耐力	P _{s2}	kN	8732 01	-21676 06	20137 29
	せん断安全度	P_{s2}/S_u	—	1 218	1 219	1 162
	斜引張鉄筋抵抗力	Ss	kN	6221 11	15187 71	12619 52
	テ゛コンフ゜レッションモーメント	M ₀	kNm	38288 95	-402447 32	-668529 98
最 小	軸力補正係数	k	—	2 000	2 000	2 000
	コンクリート負担力	Sc	kN	1435 72	-5466 78	6552 81
	せん断耐力	P _{s2}	kN	8732 01	-22026 43	20137 29
	せん断安全度	P_{s2}/S_u	-	4 020	2 553	2 382

2.3 FOSM 法による耐力試算

2.3.1 FOSM法

FOSM 法は、性能関数を平均値まわりで一次の項までテーラー展開して近似する方法であり、正規確率密度 関数以外の分布をもつ確率変数がある場合は正規確率変数で近似し、相関をもつ複数の確率変数を、相関を もたない新しい確率変数にすることにより算出した性能関数Zの平均値μzと標準偏差σzから、信頼性指標 を算出するものである。FOSM 法の概要を以下に示す。

性能関数^Ziを式(付2.3.1)と定義する。

式(付 2.3.1)で示される性能関数 z_i をある任意の点 $(x_i^*, x_2^*, \dots, x_n^*)$ のまわりでテーラー展開すると、式(付 2.3.2)が得られる。

$$Z_{i} \approx g_{i} \left(x_{1}^{*}, x_{2}^{*}, \dots, x_{n}^{*} \right) + \sum_{j=1}^{n} \left(X_{j} - x_{j}^{*} \right) \frac{\partial g_{i}}{\partial x_{j}} \Big|_{x^{*}} + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \left(X_{j} - x_{j}^{*} \right) \left(X_{k} - x_{k}^{*} \right) \frac{\partial^{2} g_{i}}{\partial x_{j} \partial x_{k}} \Big|_{x^{*}} + \cdots$$
(f 2. 3. 2)

ただし、 $\partial g_i / \partial x_j |_{x^*}$ の記号は、関数 $g_i(x_i^*, x_2^*, \dots, x_n^*)$ の x_j に関する偏微分を求めて、 $x^* = (x_i^*, x_2^*, \dots, x_n^*)$ を代入することによって得られる偏微分値である。ここでは、各確率変数は互いに独立であると仮定する。ここで、級数を1次の項で打ち切ると、式(付 2.3.2)は式(付 2.3.3)として表せる。

さらに、式(付 2.3.3)に含まれる確率変数のうち、正規確率変数以外の確率変数が正規確率変数で近似されたとすると、式(付 2.3.3)は正規確確率変数の線形 1 次関数となるので、 Z_i も当然正規確率変数になる。 この場合、 Z_i の平均値 μ_a と標準偏差 σ_a が求まれば変動係数を求めることができる。

式(付2.3.3)において,ある任意の点を各確率変数の平均値 μ_x として,性能関数 \mathbf{Z}_i の平均値 μ_z と分散 σ_z^2 を求める。ある任意の点を,各確率変数の平均値 μ_x とすると,式(付2.3.3)は,

となる。さらに、式(付2.3.4)から Z_i の平均値は、 $E[X_j] = \mu_{x_j}$ とすれば、

式(付2.3.6)の第1項と第4項の和は0,また第2項も0になることから、

ここで、 $con(X_j, X_k)$ は、 X_j 、 X_k の共分散である。 さらに、 $X_j \ge X_k$ が無相関であれば、式(付 2.3.7)は式(付 2.3.8) となる。

$$\sigma_{zi}^{2} = \sum_{j=i}^{n} \sigma_{x_{j}}^{2} \left\{ \frac{\partial g_{i}}{\partial x_{j}} \right|_{\mu_{x}} \right\} \quad \dots \quad (\text{(ff 2. 3. 8)})$$

性能関数²*i* が式の形で明確に表せる場合は,式(付2.3.7)に当てはめることにより分散が求まる。しかし, コンクリート橋の曲げ耐力のように簡単に性能関数で表せなく煩雑な場合もある。従って,代入法によって 分散を算定するため,式(付2.3.8)を展開すると式(付2.3.9)となる。

ここで、偏微分値は平均値を挟んでそれぞれ $\mu_x + \sigma_x$, $\mu_x - \sigma_x$ 時の性能関数値を求めると、式(付 2.3.9) は式(付 2.3.10)となり、式を整理すると分散値は式(付 2.3.11)で表せる。

$$\sigma_{z_{1}}^{2} = \sigma_{x_{1}}^{2} \left\{ \frac{g_{i}(\mu_{x_{1}} + \sigma_{x_{1}}, \mu_{x_{2}}, \cdots, \mu_{x_{n}}) - g_{i}(\mu_{x_{1}} - \sigma_{x_{1}}, \mu_{x_{2}}, \cdots, \mu_{x_{n}})}{2\sigma_{x_{1}}} \right\}^{2} + \sigma_{x_{2}}^{2} \left\{ \frac{g_{i}(\mu_{x_{1}}, \mu_{x_{2}} + \sigma_{x_{2}}, \cdots, \mu_{x_{n}}) - g_{i}(\mu_{x_{1}}, \mu_{x_{2}} - \sigma_{x_{2}}, \cdots, \mu_{x_{n}})}{2\sigma_{x_{2}}} \right\}^{2} + \cdots + \sigma_{x_{n}}^{2} \left\{ \frac{g_{i}(\mu_{x_{1}}, \mu_{x_{2}}, \cdots, \mu_{x_{n}} + \sigma_{x_{n}}) - g_{i}(\mu_{x_{1}}, \mu_{x_{2}}, \cdots, \mu_{x_{n}} - \sigma_{x_{n}})}{2\sigma_{x_{n}}} \right\}^{2} + \cdots + \sigma_{x_{n}}^{2} \left\{ \frac{g_{i}(\mu_{x_{1}}, \mu_{x_{2}}, \cdots, \mu_{x_{n}} + \sigma_{x_{n}}) - g_{i}(\mu_{x_{1}}, \mu_{x_{2}}, \cdots, \mu_{x_{n}} - \sigma_{x_{n}})}{2\sigma_{x_{n}}} \right\}^{2} + \cdots + \sigma_{x_{n}}^{2} \left\{ \frac{g_{i}(\mu_{x_{1}}, \mu_{x_{2}}, \cdots, \mu_{x_{n}} + \sigma_{x_{n}}) - g_{i}(\mu_{x_{1}}, \mu_{x_{2}}, \cdots, \mu_{x_{n}} - \sigma_{x_{n}})}{2\sigma_{x_{n}}} \right\}^{2}$$

この δ_{x_n} は、各変動要因により平均値を挟んで $2^{\sigma_{x_n}}$ 変動した場合の性能関数 Z_i の変化量である。 したがって、標準偏差は式(付 2.3.16)で表せる。

2.3.2 材料・施工による変動要因

材料の品質や施工誤差による曲げ耐力や斜引張破壊等に対する耐力への影響を検討するため、それぞれの 耐力において、影響を与えると思われる変動要因を付表-2.3.1のように設定した。なお、各変動要因の平均 値および変動係数は、既往の調査結果等を踏まえ総合的に勘案し設定した(本編2.2参照)。各変動要因の 中には、コンクリート強度、ヤング係数など、本来は関連性が高いと考えられる特性もあるが、本検討では 独立なものとして取り扱い試算することとした。

		変動	検討耐力と用いた変動要因		
項目	平均值	係数	曲げ耐力・ 降伏曲げ	斜引張破壊耐力 (せん断)	
コンクリートの強度	設計基準強度×1.2	15%	0	0	
ヤング係数	道示の通り	10%	0	-	
乾燥収縮・クリープ	道示の通り	17%	0	0	
有効高	設計値	10mm	0	0	
PC 鋼材の引張強度	規格値×1.03	1%	0	-	
鉄筋の降伏強度	規格値×1.14	4%	0	0	

付表-2.3.1 材料・施工による変動要因

2.3.3 耐力式

(1) 曲げ耐力式

道示III編の曲げ耐力は、一般に平面保持を仮定することによりひずみを求め、これから、H24 道示III編4.2.4 図-4.2.2(破壊抵抗曲げモーメントを算出する場合のコンクリート応力--ひずみ曲線)及び図-4.2.3(破壊抵 抗曲げモーメントを算出する場合の鋼材の応力度--ひずみ曲線)にしたがって、コンクリートの応力度の分布 および鋼材の応力度を求める。次に、力の釣り合い条件及びひずみの適合条件によって中立軸位置を算出す る。最後に、破壊抵抗曲げモーメントを算出する順序で曲げ耐力を算定する。ここで、耐力の算定において 考慮するコンクリートの応力--ひずみ曲線は、実際にはコンクリートに使用されたセメントや骨材、養生条 件、材齢等によって、構成則の骨格の折れ点が変化することとなるが、構成則の折れ点の位置が破壊抵抗曲 げモーメントの算出結果に与える影響はわずかである。また、コンクリートの応力--ひずみ曲線の形状を設 定できるほど実験データの数がないことから、コンクリートの応力--ひずみ曲線はH24道示III編と同様とし た。

さらに、設計では釣り合い鋼材比の 75%以下とするため、破壊抵抗曲げモーメント算出においては、鋼材 は引張降伏(曲げ引張破壊するように制御)に達している。そのため、破壊抵抗曲げモーメントは、鋼材の 応カーひずみ曲線の形状が大きな影響は与えることはないが、鋼材の降伏値の影響は大きい。鋼材の降伏値 については**付表-2.3.1**に示す変動要因を材料のばらつきとして考慮し、鋼材の応カーひずみ曲線はH24 道示 III編と同様とした。つまり、破壊抵抗曲げモーメントの耐力算定式は理論式であることから「評価式のモデ ル誤差」は考慮せず、材料のばらつきのみを考慮することにより、曲げ耐力式に関する変動係数等を算定し ている。また、e20,e30,e40 は、設計プログラムの都合上、軸力を考慮していない。

(2) 降伏曲げモーメントの算定式

降伏曲げモーメントは最外縁の鉄筋が降伏する曲げモーメントと定義し,H24 道示Ⅲ編に示される破壊抵 抗曲げモーメントの算出と同様の前述の条件に従い算出した。

(3) せん断による斜引張破壊に対する耐力式

斜引張破壊に対する耐力式は、道示V編修正式により算出する。道示V修正式は、次の通りである。なお、 PC 構造においても、最小鋼材量などの鉄筋を配置しており、引張鉄筋比の算定は PC 鋼材量および鉄筋量から算出している。

$P_s = S_s$	$_{c} + S_{s} + S_{p}$	(付2.3.17)
$S_c = \tau_c$	$b_{w} \cdot b_{w} \cdot d + S_{d} \cdot M_{o}/M_{d}$	(付2.3.18)
ただし,	$S_c < 2.5 \tau_{cV} \cdot b_w \cdot d$	(付2.3.19)
	$M_o/M_d \leq 1.0$ · · · · · · · · · · · · · · · · · · ·	(付2.3.20)

- $S_{s} = \sum \left(A_{w} \cdot \sigma_{sy} \cdot d \left(\sin \theta + \cos \theta \right) \right) / 1.15 a \qquad (\text{fr} 2.3, 21)$
- $S_{p} = A_{p} \cdot \sigma_{pe} \cdot \sin \alpha \quad (\text{fr} 2.3.22)$

ここに,

- *P*_s : せん断耐力(N)
- *S*_c : コンクリートが負担できるせん断力(N)
- S。: 主方向の設計におけるせん断力に対して配置したとみなせる斜引張鉄筋が負担できるせん 断力の合計(N)
- S, : PC 鋼材の引張力のせん断力作用方向の分力(N)
- τ_{ev}:式(付 2.3.23)で算出されるコンクリートが負担できる平均せん断応力度(N/mm²)
- *b*_w: 部材断面のウエブ厚(mm)
- *d* : 部材断面の有効高(mm)
- *M*。: プレストレス力及び軸方向力によるコンクリートの応力度が部材引張縁で0となる曲げモーメント(Nmm)
- *S_d*: 部材断面に作用するせん断力(N)
- M_d: 部材断面に作用する曲げモーメント(Nmm)
- A_w : 間隔aおよび角度 θ で配筋される斜引張鉄筋の断面積(mm^2)
- σ_{sy}: : 斜弓 | 張鉄筋の降伏点 (N/mm²)
- *θ* : 斜引張鉄筋が部材軸となす角度
- a : 斜引張鉄筋の部材軸方向の間隔(mm)
- *A_p*: 部材断面における PC 鋼材の断面積(mm²)
- σ_{pe}: 部材断面における PC 鋼材の有効引張応力度(N/mm²)
- α : PC 鋼材が部材軸となす角度
- *p*_t : 引張鉄筋比
- σ_{ck} : コンクリートの設計基準強度(N/mm²)

2.3.4 試算結果

(1) 降伏曲げモーメント

試算結果を付表-2.3.2 に示す。降伏曲げモーメントの変動係数は,最大 4.6%,平均 2.4%となる(付図-2.3.1)。

付図-2.3.1 降伏曲げモーメントの変動係数

記号	a20	b20	c20	d20	e20
型式	単純RC中空床版橋	単純PRC中空床版橋	単純PC中空床版橋	単純PCポステンT桁橋	3径間連結ポステンT桁橋
照査項目	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力
照査断面	支間中央	支間中央	支間中央	支間中央	側径間
現行設計曲げモーメント(kN·m)	24520, 29	25413.74	25007.27	5050.75	4759.36
1. 3D+2. 5L	24520. 29	25413.74	25007.27	5050.75	4759.36
1. 0D+2. 5L	21658.04	22551.49	22145.02	4647.25	4389.43
1. 7D+1. 7L	24459.12	25196.74	24790. 27	4532.05	4466. 50
現行断面決定特徵	鉄筋:SD345 D32が100本	PC鋼材: 7S12.4(SWPR7AL)が18本, 鉄筋: SD345, D22が66本	PC鋼材: 7S12.4(SWPR7AL)が28本。	PC鋼材: 7S12.7(SWPR7BL)が4本	PC鋼材: 8S12.7(SWPR7BL)が3本
断面耐力					
現行計算值(kN·m)	23698.15	22945.14	22471.06	4500.38	3958.75
余裕度	96.6	90.3	89.9	89.1	83. 2
実平均值(kN·m)	27249.87	24796.46	23598.38	4677.69	4118.62
圧縮強度+1σ	27455. 18	24921.48	23737.72	4696.99	4134.56
圧縮強度-1σ	26992. 40	24641.36	23424. 81	4654.99	4099. 91
圧縮強度の影響	231.39	140.06	156.45	21.00	17.33
ヤング係数+1σ	27249.87	24786.15	23645.30	4677.04	4134.45
ヤング係数-1σ	27249.87	24808.67	23542, 78	4677, 91	4099.87
ヤング係数の影響	0,00	11,26	51, 26	0,43	17, 29
プレ減少+1σ		24687.47	23414, 46	4679, 29	4067, 31
プレ減少-1σ		24863, 73	23784, 90	4675, 89	4172, 24
プレ減少の影響		88, 13	185, 22	1.70	52.47
有効高+1σ	27547.37	25057, 44	23845.02	4716, 70	4148,05
有効高-1σ	26952.86	24534, 96	23350, 53	4638, 90	4089, 42
有効高の影響	297, 26	261, 24	247, 25	38,90	29.32
PC引張強度+1σ		24796, 46	23598, 38	4726, 93	4118.62
PC引張強度-1σ		24664, 18	23598, 38	4633, 63	4118,62
PC引張強度の影響		66, 14	0.00	46,65	0,00
鉄筋降伏強度+1σ	28337.93	25225, 98	23906.97	4684.31	4171.51
鉄筋降伏強度-1σ	26159.51	24236.00	23289.09	4670, 19	4065, 69
鉄筋隆伏強度の影響	1089 21	494.99	308.94	7.06	52,91
断面耐力の標準偏差 (kN·m)	1152.51	587, 49	466, 89	64, 68	83, 73
变動 低数	4 23%	2 37%	1 08%	1 29%	2 039

付表-2.3.2 降伏曲げモーメントの試算結果(1)

記号	e20	e20	e30	e30	e30
型式	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋
照査項目	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力
照查断面	中間支点	中央径間	側径間	中間支点	中央径間
現行設計曲げモーメント (kN·m)	1122.98	4731.16	9473.45	-3234.01	8890. 98
1. 3D+2. 5L	1373. 18	4731.16	9473. 45	-3234.01	8890. 98
1. 0D+2. 5L	1455. 72	4393. 43	8532.15	-3058, 13	8028.16
I. 7D+1. 7L	1122. 98	4534.69	9234. 27	-2225. 88	8828. 57
現行断面決定特徴	鉄筋: SD345, D19が14本	PC編材: 8S12.7(SWPR7BL)が3本	PC鋼材: 12S12.7(SWPR7BL)が3本	鉄筋: SD345, D19が22本	PC銀材: 12S12.7(SWPR7BL)が3本
断面耐力					
現行計算值(kN·m)	1583. 98	3916.50	7728.33	-3106.14	7633.14
余裕度	141.1	82.8	81.6	96.0	85.9
実平均值(kN·m)	1780.26	4057.17	8021.95	-3499.75	7886.56
王縮強度+1σ	1784. 69	4072.32	8046.96	-3515.91	7910. 03
王縮強度-1σ	1775. 99	4039.39	7990. 78	-3484.22	7857.73
王縮強度の影響	4.35	16.46	28.09	15.85	26.15
ヤング係数+10	1783. 17	4074.08	8054.00	-3507.98	7921.52
ヤング係数-10	1776. 68	4037.16	7984.08	-3489.66	7845. 21
ヤング係数の影響	3. 25	18.46	34.96	9.16	38, 16
プレ減少+1σ	1765. 97	4000.18	7919.36	-3468.89	7772.14
プレ減少-1σ	1795. 11	4116.61	8129. 22	-3532.09	8006.36
プレ減少の影響	14. 57	58.21	104.93	31.60	117.11
有効高+1σ	1795. 72	4086.63	8063. 21	-3523.71	7927.78
有効高−1σ	1764. 74	4027.94	7981.18	-3475.67	7845.83
有効高の影響	15.49	29.34	41.02	24.02	40.98
2C引張強度+1σ	1780. 26	4057.17	8021.95	-3499.75	7886.56
C引張強度-1σ	1780. 26	4057.17	8021.95	-3499.75	7886.56
C引張強度の影響	0.00	0.00	0.00	0.00	0.00
跌筋降伏強度+1σ	1859.14	4109, 93	8121.05	-3655, 99	7985. 40
鉄筋降伏強度 -1σ	1701.37	4004.32	7922, 75	-3343.30	7787.63
鉄筋降伏強度の影響	78.89	52. 81	99.15	156.35	98.89
断面耐力の標準偏差 (kN·m)	81,88	87.47	156.64	162.34	165.26
亦動区数	4 60%	2 16%	1 95%	4 64%	2 105

記号	e40	e40	e40	f40	f40
型式	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連続箱桁橋	3径間連続箱桁橋
照査項目	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力
照査断面	側径間	中間支点	中央径間	側径間	中間支点
現行設計曲げモーメント(kN·m)	16718.27	-6443.22	15412.35	60187.63	-73538.56
1. 3D+2. 5L	16359.00	-6443.22	14807. 97	60187.63	-64639.07
1. 0D+2. 5L	14361.04	-6132.60	12954. 41	53790. 23	-52319.67
1. 7D+1. 7L	16718. 27	-4911.35	15412. 35	60026.12	-73538.56
現行断面決定特徵	PC鎮村: 12S12.7(SWPR7BL)が4本	鉄筋: SD345, D22が26本	PC鋼材: 12S12.7(SWPR7BL)が4本	PC編材: 内12S12.4A(SWPR7AL)が12本 外7S15.2B(SWPR7BL)が9本	PC鋼材: 内12S12.4A(SWPR7AL)が20本 外7S15.2B(SWPR7BL)が9本
断面耐力					
現行計算値(kN·m)	13192. 87	-6675.74	12721.82	55444.96	-74281.10
余裕度	78.9	103.6	82.5	92.1	101.0
実平均值(kN·m)	13678.83	-7549.20	13101.59	57601.61	-77636.09
$E縮強度+1\sigma$	13718.83	-7577.58	13136.47	57807.33	-78112.11
$E縮強度-1\sigma$	13626.07	-7522.11	13115.29	57358.84	-77096.21
圧縮強度の影響	46.38	27.73	10.59	224.25	507.95
ヤング係数+1σ	13742.08	-7562.62	13173.35	57831.23	-77972.26
ヤング係数-1σ	13604, 75	-7533. 31	13016.69	57327.55	-77233.26
ヤング係数の影響	68.67	14.65	78.33	251.84	369.50
プレ減少+1σ	13489, 96	-7501.03	12884. 22	57055, 62	-76827.65
プレ減少-1σ	13875. 22	-7599.89	13328.50	58155.14	-78451.33
プレ減少の影響	192, 63	49, 43	222, 14	549,76	811.84
有効高+1σ	13727, 80	-7587.92	13150, 09	57870, 93	-77230, 13
有効高-1σ	13629, 49	-7460, 96	13124, 53	57332.09	-78039, 14
有効高の影響	49.16	63, 48	12.78	269.42	404.50
PC引張強度+1σ	13678 83	-7549 20	13101 59	57601 61	-77636.09
PC引导编度-1σ	13678 83	-7549 20	13101 59	57601 61	-77636.09
PC引張強度の影響	0.00	0.00	0.00	0.00	0.00
鉄筋隆伏強度+1σ	13845.62	-7837.57	13267.74	58262.27	-78656.59
鉄筋隆伏強度-1σ	13511 65	-7219 77	12935 11	56939 56	-76613 64
鉄筋隆伏強度の影響	166.99	308 90	166.32	661.36	1021 47
新面耐力の標準偏差(kN·m)	272 53	320 74	288 82	962 25	1503 55
亦動係数	1 00%	A 25%	2 20%	1 67%	1 048

付表-2.3.2 降伏曲げモーメントの試算結果(2)

記号	f40	f80	f80	f80	f120
型式	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続箱桁橋
照查項目	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力
照査断面	中央径間	側径間	中間支点	中央径間	側径間
現行設計曲げモーメント(kN·m)	30955.20	14178.72	-323557.34	73483.36	134383.73
1. 3D+2. 5L	30133.97	8218.20	-275274.91	73483.36	133488.66
1. 0D+2. 5L	30955. 20	14178.72	-222681.34	70047.58	118849.42
1. 7D+1. 7L	22205. 26	-8275. 46	-323557.34	66147.62	134383.73
現行断面決定特徵	PC鋼材: 内12S12.4A(SWPR7AL)が6本 外7S15.2B(SWPR7BL)が9本	PC鎮材: 内7S12.7B(SWPR7BL)が4本 外19S15.2B(SWPR7BL)が2本	PC鋼材: 内7S12.7B(SWPR7BL)が62本 外19S15.2B(SWPR7BL)が10本	PC鋼材: 内7S12.7B(SWPR7BL)が10本 外19S15.2B(SWPR7BL)が8本	PC鋼材: 内12S15.2B(SWPR7BL)が10本 外37S15.2B(SWPR7BL)が4本
断面耐力		202000000000000000000000000000000000000			
現行計算値(kN·m)	34437.57	20894. 98	-359104. 22	74805.57	124568.71
余裕度	111.2	147.4	111.0	101.8	92.7
実平均值(kN·m)	35701.42	-73911.83	-372378.44	76351.45	128323.89
圧縮強度+1σ	35814.78	-74120.78	-373895.62	76568.36	128639.74
圧縮強度-1σ	35562. 63	-73677.46	-370336.98	76102.70	127947.28
圧縮強度の影響	126.08	221.66	1779.32	232.83	346.23
ヤング係数+1σ	35872.42	-73990.22	-373774.20	76829.21	129170.76
ヤング係数-1σ	35498, 11	-73818, 62	-370705, 38	75780, 78	127316.76
ヤング係数の影響	187, 16	85,80	1534, 41	524, 21	927.00
プレ減少+1σ	35245, 96	-73716, 14	-369059, 49	75213.22	126314, 27
プレ減少-1σ	36160, 80	-74110, 50	-375750, 90	77510, 38	129332.36
プレ減少の影響	457.42	197.18	3345, 71	1148.58	1509.04
有効高+1σ	35888, 63	-73577.87	-371509.50	76676.05	128858, 08
有効高-1 σ	35516, 16	-74247.60	-373239.98	76026, 51	127787, 99
有効高の影響	186.23	334.87	865.24	324, 77	535.05
PC引張強度 $+1\sigma$	35701.42	-74595.36	-372378.44	76351,45	128323, 89
PC引張強度-10	35701 42	-73161 09	-372378 44	76351 45	128323 89
PC引張強度の影響	0.00	717.14	0.00	0.00	0.00
鉄筋降伏強度+1σ	36147.04	-73911.83	-376322.77	76932.79	129566.50
鉄筋降伏強度 -1σ	35256.17	-73911.83	-368412 62	75766.84	127081.84
鉄筋隆伏強度の影響	445 44	0.00	3955.07	582.98	1242 33
断面耐力の標準偏差(kN·m)	702.32	849.58	5753.73	1446.92	2255.23
变動係数	1 97%	1 15%	1 55%	1 90%	1 76%

降伏曲げモーメント	6100	6100		-00	-00
記亏	±120	T120	g8U	g80	g8U
型式	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続ラーメン橋	3径間連続ラーメン橋	3径間連続ラーメン橋
照査項目	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力
照査断面	中間支点	中央径間	側径間	中間支点	中央径間
現行設計曲げモーメント(kN·m)	-840751.07	144230.83	23563. 12	-304976.77	62217.88
1. 3D+2. 5L	-698736.02	144230.83	23563.12	-259800.88	62217.88
1. 0D+2. 5L	-557994. 32	138324.83	21417.41	-209816.85	59549.60
1. 7D+1. 7L	-840751.07	131690.44	20687.03	-304976.77	57210.26
現行断面決定特徵	PC領材: 内12S15.2B(SWPR/BL)が72本 外37S15.2B(SWPR7BL)が12本	PC領材: 内12S15.2B(SWPR7BL)が4本 外37S15.2B(SWPR7BL)が8本	PC編材: 内/S12.7B(SWPR7BL)が6本 外12S15.2B(SWPR7BL)が2本	PC鋼材: 内7S12.7B(SWPR7BL)が64本 外12S15.2B(SWPR7BL)が12本	PC鋼材: 内7S12.78(SWPR7BL)が6本 外12S15.28(SWPR7BL)が12本
断面耐力	-				
現行計算値(kN·m)	-1182507.39	145031.79	19590. 78	-315487.93	62379.07
余裕度	140.6	100.6	83.1	103.4	100.3
実平均值(kN·m)	-1238255.57	146581.88	21045.15	-330172.84	61567.31
圧縮強度+1σ	-1247485.97	146907.90	21115.87	-331288.01	61737.65
圧縮強度 -1σ	-1225148.61	146192.30	20962.34	-328713.51	61367.06
圧縮強度の影響	11168.68	357.80	76.76	1287.25	185.29
ヤング係数+1σ	-1251521.51	148140.24	21078.89	-331599.96	61921.11
ヤング係数-10	-1222918.33	144749.59	21126.19	-328479.62	61133.34
ヤング係数の影響	14301.59	1695. 32	23.65	1560.17	393.89
ブレ減少+1σ	-1211819.93	143000.91	20896. 44	-326569.16	60485.18
プレ減少-1σ	-1258028.57	148787.91	21199.18	-333899.12	62701.82
プレ減少の影響	23104.32	2893.50	151.37	3664.98	1108.32
有効高+1σ	-1236767.58	147352.57	21167.25	-329466.70	61842.56
有効高-1σ	-1239847.80	146090.30	20936.76	-330897.03	61225.76
有効高の影響	1540.11	631.13	115.24	715.16	308.40
PC引張強度+1σ	-1238255.57	146657.52	21046.90	-330172.84	61567.31
PC引張強度-1σ	-1238255.57	146581.88	21046.90	-330172.84	61567.31
PC引張強度の影響	0.00	37.82	0.00	0.00	0.00
鉄筋降伏強度+1σ	-1252447.29	147322.04	21494.08	-333703.73	62034.47
鉄筋降伏強度-1σ	-1224019.99	145840.76	20596.44	-326638.85	61098.29
鉄筋降伏強度の影響	14213.65	740, 64	448.82	3532.44	468.09
断面耐力の標準偏差 (kN·m)	32672.38	3510, 39	494.05	5523.84	1316.08
変動係数	2.64%	2. 39%	2. 35%	1.67%	2.14%

付表-2.3.2 降伏曲げモーメントの試算結果(3)

降伏曲げモーメント

記号	g120	g120	g120
型式	3径間連続ラーメン橋	3径間連続ラーメン橋	3径間連続ラーメン橋
照査項目	降伏sy曲げ耐力	降伏sy曲げ耐力	降伏sy曲げ耐力
照査断面	側径間	中間支点	中央径間
現行設計曲げモーメント(kN·m)	77009. 48	-1057726.17	83252.82
1. 3D+2. 5L	77009. 48	-838226.55	83252.82
1. 0D+2. 5L	75118. 52	-646307.55	78772. 88
1. 7D+1. 7L	65166.32	-1057726.17	74902. 52
現行断面決定特徵	PC編材: 内12S152B(SWPR7BL)が4本 外19S152B(SWPR7BL)が6本	PC鋼材: 内12S15.2B(SWPR7BL)が72本 外19S15.2B(SWPR7BL)が6本	PC鋼材: 内12S15.2B(SWPR7BL)が4本 外19S15.2B(SWPR7BL)が6本
断面耐力			
現行計算值(kN·m)	81092.76	-1128834.29	87104. 21
余裕度	105.3	106.7	104.6
実平均值(kN·m)	83846.78	-1191889.21	85150.63
圧縮強度+1σ	84077.65	-1200043.67	85468.08
圧縮強度-1σ	83595.25	-1180462.80	84938.77
圧縮強度の影響	241.20	9790.44	264.66
ヤング係数+1σ	84225, 39	-1194159.03	85604, 93
ヤング係数-1σ	83394, 26	-1189238.07	84581, 42
ヤング係数の影響	415, 56	2460, 48	511, 75
プレ減少+1σ	82802.56	-1187208.53	83951, 18
プレ減少-1σ	84891.48	-1196868.05	86333 53
プレ減少の影響	1044,46	4829.76	1191, 17
有効高+1 σ	84207, 85	-1190106.91	85451, 59
有効高-1σ	83485 72	-1193672 18	84878 84
有効高の影響	361.06	1782 63	286.38
PC引張強度+1g	83846 78	-1191889 21	85150 63
$PC引張強度 - 1\sigma$	83846 78	-1191889 21	85150 63
PC引張強度の影響	0.00	0.00	0.00
鉄筋降伏強度 $+1\sigma$	84484.60	-1204272.76	85777.83
鉄筋降伏強度 -1σ	83119.58	-1177698.23	84432.00
鉄筋降伏強度の影響	682. 51	13287.26	672.92
断面耐力の標準偏差 (kN·m)	1384.90	17463.17	1511.84
亦動反動	1 65%	1 47%	1 79%

降伏曲げモーメント					
記号	h9	h24	i24	i24	i24
型式	PC単純プレテン床版橋	PC単純プレテン床版橋	PC連結プレテン床版橋	PC連結プレテン床版橋	PC連結プレテン床版橋
照査項目	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力
照査断面	支間中央	支間中央	側径間	中間支点	中央径間
現行設計曲げモーメント(kN·m)	530.06	2684. 79	2353.27	-806.03	2075. 37
1. 3D+2. 5L	530.06	2635.94	2251.05	-984. 35	1934.64
1. 0D+2. 5L	498. 05	2307.87	1944. 54	-943. 57	1645.27
1. 7D+1. 7L	447. 53	2684. 79	2353. 27	-806. 03	2075. 37
現行断面決定特徵	PC鋼材: 1S12.7(SWPR7BL)が11本	PC鋼材: 1S15.2(SWPR7BL)が17本	PC鋼材: 1S15.2(SWPR7BL)が13本	鉄筋: SD345 D22が6本, D19が6本	PC鋼材: 1S15.2(SWPR7BL)が13本
断面耐力					
現行計算值(kN·m)	457.61	2339.50	2092. 43	-963.86	1902.04
余裕度	86,3	87.1	88.9	119.6	91, 6
実平均值 (kN·m)	478, 82	2438, 39	2175, 77	-1105, 12	1975, 29
圧縮強度+1σ	484. 70	2461.35	2193.63	-1115.21	1991.47
圧縮強度-1σ	470.74	2407.64	2152.94	-1091.45	1954.99
圧縮強度の影響	6, 98	26.86	20.35	11.88	18, 24
ヤング係数+1σ	478.54	2437.20	2174.88	-1105.39	1975, 10
ヤング係数-1σ	479.18	2439.76	2176, 70	-1104.77	1975, 45
ヤング係数の影響	0, 32	1,28	0, 91	0, 31	0, 17
プレ減少+1σ	479.34	2440.44	2176.98	-1104.11	1975.47
プレ減少-1σ	478.24	2436.10	2174.44	-1106, 17	1975.10
プレ減少の影響	0.55	2.17	1.27	1.03	0.18
有効高+1σ	494. 32	2472.50	2204.33	-1122.26	2001.72
有効高-1σ	463, 41	2404.38	2147.23	-1091.93	1948, 86
有効高の影響	15.45	34.06	28.55	15.16	26.43
PC引張強度+1 σ	484.07	2464.95	2199.61	-1105.12	1997, 43
PC引張強度-1σ	473.78	2413.08	2152.80	-1105.12	1954, 19
PC引張強度の影響	5.14	25.94	23.41	0.00	21.62
鉄筋降伏強度+1σ	478.82	2438.39	2175.77	-1150.07	1975, 29
鉄筋降伏強度-1σ	478.82	2438.39	2175.77	-1062.90	1975. 29
鉄筋降伏強度の影響	0.00	0.00	0.00	43.58	0.00
断面耐力の標準偏差 (kN·m)	17.73	50, 60	42, 18	47.66	38, 71
変動係数	3.70%	2.08%	1.94%	4. 31%	1.96%

付表-2.3.2 降伏曲げモーメントの試算結果(4)

降伏曲げモーメント	101				
記号	j	j 24	k18	k18	k18
型式	PC単純プレテンT桁橋	PC単純ブレテンT桁橋	PC連結プレテンT桁橋	PC連結プレテンT桁橋	PC連結プレテンT桁橋
照査項目	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Mpy曲げ耐力
照査断面	中央径間	中央径間	側径間	中間支点	中央径間
現行設計曲げモーメント(kN·m)	2306.13	3694.04	1869, 43	358.00	1761.42
1. 3D+2. 5L	2306. 13	3694, 04	1869. 43	329.51	1761.42
1. 0D+2. 5L	2139. 55	3353. 44	1708, 08	358.00	1612.46
1. 7D+1. 7L	2021. 25	3438. 39	1762.07	245. 33	1697. 57
現行断面決定特徵	PC鋼材: 1S15.2(SWPR7BL)が12本	PC鋼材: 1S15.2(SWPR7BL)が12本	PC鋼材: 1S15.2(SWPR7BL)が10本	鉄筋: SD345, D13が10本	PC鋼材: 1S15.2(SWPR7BL)が9本
断面耐力					
現行計算値(kN·m)	2037. 58	3164.74	1744. 23	372.25	1577.02
余裕度	88.4	85.7	93. 3	104.0	89.5
実平均值(kN·m)	2114.34	3282.18	1808.89	424.38	1634.62
圧縮強度+1σ	2129.48	3301.26	1821.11	426.05	1645.34
圧縮強度-1σ	2095, 54	3255, 73	1793.83	422.13	1621, 30
圧縮強度の影響	16, 97	22, 76	13.64	1,96	12.02
ヤング係数+10	2114.11	3281.95	1808. 52	424.50	1634.31
ヤング係数-10	2114.58	3282.37	1809.33	424, 26	1634, 97
ヤング係数の影響	0.23	0.21	0,41	0,12	0.33
プレ減少+1σ	2114.62	3282.41	1809.35	423.87	1634.85
ブレ減少-10	2113.99	3281.76	1809.40	424 93	1634 34
プレ減少の影響	0.32	0.32	0.02	0, 53	0.25
有効高+1σ	2140, 20	3312.44	1830. 57	429.27	1655, 46
有効高-1σ	2088 53	3251 93	1787 23	419 51	1615 13
有効高の影響	25.84	30.25	21 67	4 88	20.17
PC引張強度+10	2136 48	3316 51	1828 17	424 38	1652 12
PC引張強度-1σ	2093 33	3249.49	1790, 59	424.38	1617.95
PC引張強度の影響	21.58	33 51	18 79	0.00	17.08
鉄筋隆伏強度 $+1\sigma$	2114.34	3282, 18	1808.89	441.88	1634, 62
鉄筋隆伏強度 -1σ	2114.34	3282 18	1808.89	408.01	1634.62
鉄筋隆伏強度の影響	0.00	0.00	0.00	16 94	0.00
断面耐力の標準偏差(kN·m)	37,70	50.56	31.76	17.74	29.04
変動係数	1 78%	1 54%	1 76%	4 18%	1 78%

降伏曲げモーメント	1.04	1.04	1.04	145	
記号	KZ4	K24	KZ4	145	m45
型式	PC連結プレテンT桁橋	PC連結プレテンT桁橋	PC連結プレテンT桁橋	PC単純バルブT桁橋	PC連結 バル ブT 桁橋
照査項目	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力
照査断面	側径間	中間支点	中央径間	支間中央	側径間
現行設計曲げモーメント(kN·m)	3185. 21	-1158.27	2919.68	27637.07	24751.13
1. 3D+2. 5L	3185. 21	-1158.27	2919.68	27637.07	24451.80
1. 0D+2. 5L	2850. 74	-1108.68	2608.09	24489.33	21538.00
1. 7D+1. 7L	3120. 52	-833. 77	2919.43	27355.07	24751, 13
現行断面決定特徵	PC鋼材: 12S12.7(SWPR7BL)が3本	鉄筋: SD345, D19が22本	PC鋼材: 12S12.7(SWPR7BL)が3本	PC鋼材: 12S15.2(SWPR7BL)が4本	PC鋼材: 12S15.2(SWPR7BL)が4本
断面耐力	-				
現行計算値(kN·m)	2783. 43	-1169.37	2779.80	22366.10	22076.27
余裕度	87.4	101.0	95.2	80. 9	89.2
実平均值(kN·m)	2882. 54	-1342.93	2876.80	23313.51	23002.10
圧縮強度+1σ	2897.45	-1352.26	2891.58	23377.65	23065.01
圧縮強度-1σ	2862. 47	-1330. 33	2856.94	23220, 75	22912.79
圧縮強度の影響	17.49	10.97	17.32	78.45	76.11
ヤング係数+1σ	2882. 38	-1343.22	2876.71	23465.49	23172.32
ヤング係数-10	2882. 69	-1342.64	2876.77	23132.23	22804.89
ヤング係数の影響	0.15	0.29	0.03	166.63	183. 72
ブレ減少+1σ	2882. 39	-1341.73	2876.04	22991.19	22647.34
プレ減少-1σ	2882.60	-1344.22	2877.42	23648.38	23375.44
プレ減少の影響	0.10	1.24	0.69	328.59	364.05
有効高+1σ	2908. 61	-1354.66	2902.88	23384.19	23070.07
有効高-1σ	2856, 46	-1331.23	2850.72	23298.24	22932.59
有効高の影響	26.07	11.71	26.08	42.97	68.74
PC引張強度+1σ	2913.02	-1342.93	2907.24	23313.51	23002, 10
PC引張強度-1σ	2853. 52	-1342.93	2847.76	23313.51	23002.10
PC引張強度の影響	29.75	0.00	29.74	0.00	0.00
鉄筋降伏強度 $+1\sigma$	2882. 54	-1397, 82	2876.80	23603.74	23292.50
鉄筋降伏強度 -1σ	2882. 54	-1291.46	2876.80	23040.83	22730.05
鉄筋降伏強度の影響	0.00	53.18	0.00	281.45	281.22
断面耐力の標準偏差(kN·m)	43.25	55, 56	43, 19	472.18	505, 85
変動係数	1.50%	4.14%	1.50%	2.03%	2. 20%

付表-2.3.2 降伏曲げモーメントの試算結果(5)

記号	m45	m45	n30	n45	o30
型式	PC連結バルブT桁橋	PC連結バルブT桁橋	PC単純コンボ橋	PC単純コンポ橋	PC連結コンポ橋
照查項目	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力
照査断面	中間支点	中央径間	支間中央	支間中央	側径間
現行設計曲げモーメント(kN·m)	-10304.13	22644.08	18363.99	38522.34	16665. 78
1. 3D+2. 5L	-10304. 13	21989.94	18363.99	38394.76	16665. 78
1. 0D+2. 5L	-9831.15	19305.36	16522.20	33830. 82	14945.67
1. 7D+1. 7L	-7894. 13	22644. 08	17497.20	38522. 34	16340. 93
現行断面決定特徵	鉄筋: SD345, D22が28本	PC鋼材: 12S15.2 (SWPR7BL)が4本	PC鋼材: 12S12.7(SWPR7BL)が4本	PC鋼材: 12S15.2(SWPR7BL)が5本	PC鋼材: 12S12.7(SWPR7BL)が4本
断面耐力					
現行計算值(kN·m)	-9782. 43	21354.94	12599.40	22870.00	12411.40
余裕度	94.9	94.3	68. 6	59.4	74.5
実平均值(kN·m)	-11202.75	22257.21	13162.80	24172.00	12962.20
圧縮強度+1σ	-11288.72	22316.16	13209.10	24210.00	13006, 90
圧縮強度-1σ	-11085.87	22173. 31	13134.20	24095.20	12934.40
圧縮強度の影響	101.43	71.42	37.45	57.40	36.25
ヤング係数+1σ	-11205.54	22424.00	13269.50	24323. 20	13067.40
ヤング係数-1σ	-11198.92	22062. 67	13057.80	23958.90	12856.80
ヤング係数の影響	3. 31	180.67	105.85	182.15	105.30
プレ減少+1σ	-11189.87	21894.02	12952.70	23811.00	12741.60
プレ減少-10	-11217.03	22636.17	13372.90	24567.30	13182.70
プレ減少の影響	13.58	371.07	210. 10	378.15	220. 55
有効高+1σ	-11249.29	22322. 29	13207.30	24263.60	13007.60
有効高-1σ	-11155, 91	22190.18	13119.00	24079.30	12917.40
有効高の影響	46, 69	66.06	44, 15	92, 15	45.10
PC引張強度+1σ	-11202.75	22257, 21	13162.80	24172.00	12962.20
PC引張強度-1σ	-11202.75	22257.21	13162.80	24172.00	12962.20
PC引張強度の影響	0.00	0.00	0.00	0.00	0.00
鉄筋降伏強度 $+1\sigma$	-11660.05	22546, 81	13334.30	24570.80	13133.50
鉄筋降伏強度 -1σ	-10773.50	21985.07	13001.90	23798.00	12801.40
鉄筋降伏強度の影響	443.28	280.87	166.20	386.40	166.05
断面耐力の標準偏差 (kN·m)	457.34	508.61	293.80	580, 75	301.08
変動係数	4 089	2 29%	2 23%	2 40%	2 329

	付表-2.3.2	降伏曲げモーメン	トの試算結果(6)
--	----------	----------	-----------

降伏曲げモーメント					
記号	o30	o30	045	045	045
型式	PC連結コンポ橋	PC連結コンポ橋	PC連結コンポ橋	PC連結コンポ橋	PC連結コンポ橋
照査項目	降伏Msv曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力	降伏Msy曲げ耐力
照查断面	中間支点	中央径間	側径間	中間支点	中央径間
現行設計曲げモーメント(kN·m)	-5512.57	15689.99	35289, 20	-13275.23	32721.34
1. 3D+2. 5L	-5512, 57	15689.99	34284.94	-13275, 23	31226.00
1. 0D+2. 5L	-5242.75	14085.60	29975.41	-12666.35	27183.26
1. 7D+1. 7L	-3833. 37	15672. 33	35289. 20	-10184, 11	32721.34
現行断面決定特徴	鉄筋: SD345, D19が24本	PC鋼材: 12S12.7(SWPR7BL)が4本	PC鋼材: 12S15.2 (SWPR7BL)が4本	鉄筋: SD345, D19が34本	PC鋼材: 12S15.2(SWPR7BL)が4本
断面耐力					
現行計算値(kN·m)	-5251.29	11845. 40	19365.80	-12856.86	18683.20
余裕度	95.3	75.5	54.9	96.8	57.1
実平均值(kN·m)	-5992.70	12382.40	20384.90	-14697.97	19677.20
圧縮強度+1σ	-6025. 77	12423. 50	20443.40	-14792.39	19734.10
圧縮強度-1σ	-5947.88	12356. 60	20352.10	-14570.18	19645.60
圧縮強度の影響	38.94	33. 45	45.65	111.10	44. 25
ヤング係数+1σ	-5994. 03	12481.50	20499.00	-14701.28	19786.20
ヤング係数-10	-5990. 83	12285.10	20250.30	-14693.84	19562.80
ヤング係数の影響	1.60	98.20	124.35	3.72	111.70
プレ減少+1σ	-5984. 17	12215.60	20166.20	-14681.65	19463. 30
プレ減少-1σ	-6001.51	12592. 50	20632.10	-14714.93	19918.60
プレ減少の影響	8.67	188.45	232.95	16.64	227.65
有効高+1σ	-6018.81	12413. 30	20431.80	-14745.65	19723.90
有効高 -1σ	-5966.35	12349.10	20336.80	-14649.92	19630. 50
有効高の影響	26.23	32.10	47.50	47.86	46.70
PC引張強度+1σ	-5992.70	12382. 40	20384.90	-14697, 97	19677.20
PC引張強度-1σ	-5992. 70	12382. 40	20384.90	-14697.97	19677, 20
PC引張強度の影響	0.00	0.00	0.00	0.00	0.00
鉄筋降伏強度+1σ	-6239.54	12553. 30	20715.20	-15300.65	20007.40
鉄筋降伏強度-1σ	-5761, 19	12222,00	20075, 10	-14132.45	19367.60
鉄筋降伏強度の影響	239.18	165.65	320.05	584.10	319.90
断面耐力の標準偏差 (kN·m)	243, 90	273.40	420, 12	596.74	413.25
亦動係数	4 079	2 21%	2 06%	4.06%	2 10%

(2) 破壊抵抗曲げモーメント

試算結果を付表-2.3.3 に示す。降伏曲げモーメントの変動係数は,最大 4.6%,平均 2.0%となる(付図-2.3.2)。

付図-2.3.2 破壊抵抗曲げモーメントの変動係数

曲げ破壊耐力					
記号	a20	b20	c20	d20	e20
型式	単純RC中空床版橋	単純PRC中空床版橋	単純PC中空床版橋	単純PCポステンT桁橋	3 径間連結ポステンT桁橋
照查項目	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力
照査断面	支間中央	支間中央	支間中央	支間中央	側径間
現行設計曲げモーメント(kN·m)	24520. 29	25413. 74	25007. 27	5050.75	4759.36
1. 3D+2. 5L	24520. 29	25413.74	25007. 27	5050.75	4759.36
1. 0D+2. 5L	21658.04	22551.49	22145.02	4647.25	4389. 43
1. 7D+1. 7L	24459.12	25196. 74	24790. 27	4532.05	4466.50
現行断面決定特徵	鉄筋: SD345,D32が100本	PC鋼材: 7S12.4 (SWPR7AL)が18本, 鉄筋: SD345, D22が66本	PC銅材: 7S12.4(SWPR7AL)が28本。	PC銅材: 7S12.7(SWPR7BL)が4本	PC鋼材: 8S12.7(SWPR7BL)が3本
断面耐力					
現行計算値(kN·m)	25841, 98	25820.94	25807.74	5060. 41	4992.88
余裕度	105.4	101.6	103. 2	100.2	104.9
実平均值(kN·m)	29557.08	27684. 47	26752.88	5234.65	5145.75
圧縮強度+1σ	29789.59	27794. 37	26871.96	5252.16	5161.81
$E縮強度-1\sigma$	29236.72	27523.94	26576.30	5208.54	5122.11
圧縮強度の影響	276.43	135.21	147.83	21.81	19.85
ヤング係数+1σ	29557.08	27677.81	26752.88	5234.65	5146.62
ヤング係数-1σ	29557.08	27694.46	26752.88	5234.65	5144.65
ヤング係数の影響	0.00	8, 33	0.00	0.00	0, 98
プレ減少+1σ		27626, 15	26752.88	5234, 65	5138, 76
プレ減少-1σ		27972, 16	26752.88	5234, 65	5152, 73
プレ減少の影響		173.00	0,00	0.00	6, 99
有効高+1σ	29869, 20	27972.16	27049.39	5276, 99	5187, 74
有効高 -1σ	29244, 96	27396.78	26456.37	5192.32	5103.75
有効高の影響	312, 12	287, 69	296, 51	42.33	41,99
PCSI張強度+1σ		27864.04	27016.08	5289 80	5196 27
PC引張強度-1 σ		27506 51	26488.08	5185.22	5092 40
PC引張強度の影響		178.76	264.00	52 29	51.93
鉄筋隆伏強度 $+1\sigma$	30676.81	28080, 29	26752.88	5234.65	5145.75
鉄筋隆伏強度 -1σ	28429.25	27288 74	26752.88	5234 65	5145.75
鉄筋隆伏強度の影響	1123 78	395 78	0.00	0.00	0.00
断面耐力の標準偏差 (kN·m)	1198 63	565.37	423 64	70 73	70.03
変動係数	4.069	2.04%	1.58%	1.35%	1,36%

付表-2.3.3 破壊抵抗曲げモーメントの試算結果(1)

曲げ破壊耐力

記号	e20	e20	e30	e30	e30
型式	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋
	AN 1914 AL + 0724 L	65 ET H	45 PH # (17) 1	AN (714	At 11 4 17 1
照省項日	於向MU曲け耐力	於局MU田け耐刀	於向MU田け耐力	於局MU田け耐力	於局MU田(丁酮刀
照査町面	中間支点	中央径間	側往間	中間支点	中央往間
現行設計曲げモーメント(KN·m)	1455. /2	4/31.16	94/3.45	-3234.01	8890.98
1. 3D+2. 5L	1373, 18	4/31.16	94/3, 45	-3234.01	8890, 98
1. 0D+2. 5L	1455. 72	4393.43	8532.15	-3058.13	8028.16
1. 7D+1. 7L	1122. 98	4534.69	9234. 27	-2225. 88	8828. 57
現行断面決定特徴	鉄筋: SD345, D19が14本	PC鋼材: 8S12.7(SWPR7BL)が3本	PC鋼材: 12S12.7(SWPR7BL)が3本	鉄筋: SD345, D19が22本	PC鋼材: 12S12.7(SWPR7BL)が3本
断面耐力					
現行計算値(kN·m)	1642. 58	4944.99	9778.35	-3270.13	9675. 45
余裕度	112.8	104. 5	103. 2	101. 1	108.8
実平均值 (kN·m)	1837.97	5075.64	10084.30	-3663.17	9937.41
圧縮強度+1σ	1839.76	5090.43	10120. 27	-3675.86	9970. 35
圧縮強度-1σ	1835.96	5053, 88	10031.51	-3650, 41	9889.16
圧縮強度の影響	1,90	18, 28	44, 38	12, 73	40, 59
ヤング係数+1σ	1841.20	5077.62	10086, 48	-3672, 43	9943, 09
ヤング係数-10	1833. 99	5073.22	10081.70	-3652.21	9931, 28
ヤング係数の影響	3.61	2,20	2,39	10, 11	5, 91
プレ減少+1σ	1822.29	5062.23	10070, 84	-3629, 16	9911, 13
プレ減少-1σ	1854.38	5089, 26	10098, 63	-3699,06	9964, 95
プレ減少の影響	16.05	13, 52	13, 89	34, 95	26, 91
有効高+1σ	1853, 73	5117,64	10147, 29	-3688, 22	10000, 83
有効高-1σ	1822.20	5033, 65	10021.32	-3638, 40	9874, 42
有効高の影響	15.76	41,99	62,99	24, 91	63, 21
PC引張強度+1σ	1837.97	5126, 24	10183.27	-3663, 17	10036, 95
PC引張強度-1σ	1837, 97	5022.04	9980, 22	-3663, 17	9833, 29
PC引張強度の影響	0.00	52, 10	101, 52	0.00	101, 83
鉄筋降伏強度+1σ	1919, 29	5075, 64	10084.30	-3824, 44	9937, 41
鉄筋降伏強度 -1σ	1756, 43	5075, 64	10084.30	-3501,68	9937, 41
鉄筋降伏強度の影響	81.43	0.00	0.00	161.38	0.00
断面耐力の標準偏差(kN·m)	84, 58	70, 71	128, 23	167, 78	129, 51
変動係数	4. 60%	1.39%	1. 27%	4. 58%	1. 30%

曲げ破壊耐力					-
記号	e40	e40	e40	f40	f40
型式	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連続箱桁橋	3径間連続箱桁橋
照查項目	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力
照查断面	側径間	中間支点	中央径間	側径間	中間支点
現行設計曲げモーメント(kN·m)	16718.27	-6443. 22	15412.35	60187.63	-73538.56
1. 3D+2. 5L	16359.00	-6443.22	14807.97	60187.63	-64639.07
1. 0D+2. 5L	14361.04	-6132.60	12954. 41	53790.23	-52319.67
1. 7D+1. 7L	16718. 27	-4911.35	15412.35	60026.12	-73538, 56
現行断面決定特徵	PC鋼村: 12S12.7(SWPR7BL)が4本	鉄筋: SD345, D22が26本	PC銅村: 12S12.7(SWPR7BL)が4本	PC鎮材: 内12S12.4A(SWPR7AL)が12本 外7S15.2B(SWPR7BL)が9本	PC編材: 内12S12.4A(SWPR7AL)が20本 外7S15.2B(SWPR7BL)が9本
断面耐力					
現行計算値(kN·m)	16813. 25	-6995.01	16660.91	61593.58	-83680. 34
余裕度	100.6	108.6	108.1	102.3	113.8
実平均値(kN·m)	17326. 42	-7869.29	17059.98	63006.24	-86093.38
圧縮強度+1σ	17381.07	-7886.88	17110.00	63133.93	-86515.93
圧縮強度-1σ	17247.56	-7851.59	16987.97	62817.92	-85469.48
圧縮強度の影響	66.75	17.64	61.01	158.01	523.22
ヤング係数+1σ	17334.16	-7884.23	17073.23	63097.32	-86226.68
ヤング係数-1σ	17317.90	-7851.67	17044.39	62898.62	-85933.04
ヤング係数の影響	8, 13	16.28	14.42	99.35	146.82
プレ減少+1σ	17301, 64	-7815, 35	17012.41	62751, 23	-85747.02
プレ減少-1σ	17353, 51	-7926.37	17110.61	63263, 07	-86438, 73
プレ減少の影響	25.93	55, 51	49.10	255, 92	345, 85
有効高+1σ	17410, 41	-7909, 38	17143.97	63309, 34	-85647, 28
有効高-1σ	17242.44	-7774, 19	17053.09	62697.95	-86537, 49
有効高の影響	83.98	67, 59	45,44	305.70	445.10
PC引張強度+1g	17497.99	-7869.29	17231.70	63466.92	-86813.10
PC引張強度-1σ	17146, 30	-7869, 29	16879, 91	62539.07	-85370, 39
PC引張強度の影響	175.84	0.00	175, 89	463, 92	721, 36
鉄筋隆伏強度+1σ	17326 42	-8167.02	17059.98	63006 24	-86093_38
鉄筋隆伏強度 -1σ	17326.42	-7528, 56	17059.98	63006, 24	-86093, 38
鉄筋隆伏強度の影響	0.00	319.23	0.00	0.00	0.00
断面耐力の標準偏差(kN·m)	207.77	331.87	198.36	639.54	1064.62
変動係 数	1 20%	4 22%	1 16%	1.029	1 24

付表-2.3.3 破壊抵抗曲げモーメントの試算結果(2)

曲げ破壊耐力

記号	f40	f80	f80	f80	f120
型式	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続箱桁橋
照査項目	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力
照査断面	中央径間	側径間	中間支点	中央径間	側径間
現行設計曲げモーメント(kN・m)	30955.20	14178.72	-323557.34	73483.36	134383.73
1. 3D+2. 5L	30133.97	8218.20	-275274.91	73483.36	133488.66
1. 0D+2. 5L	30955.20	14178.72	-222681.34	70047.58	118849.42
1. 7D+1. 7L	22205. 26	-8275.46	-323557.34	66147.62	134383.73
現行断面決定特徵	PC編材: 内12S12.4A(SWPR7AL)が6本 外7S15.2B(SWPR7BL)が9本	PC鋼材: 内7S12.7B(SWPR7BL)が4本 外19S15.2B(SWPR7BL)が2本	PC编材: 内7S12.7B(SWPR7BL)が62本 外19S15.2B(SWPR7BL)が10本	PC鎮材: 内7S12.7B(SWPR7BL)が10本 外19S15.2B(SWPR7BL)が8本	PC鋼材: 内12S15.2B(SWPR7BL)が10本 外37S15.2B(SWPR7BL)が4本
断面耐力				-	
現行計算値(kN·m)	35458.76	21599.14	-431579.03	79786.58	146078.04
余裕度	114.5	152.3	133. 4	108.6	108.7
実平均值(kN·m)	35927.04	-83807.04	-444107.09	80411.96	149320.74
圧縮強度+1σ	35965.55	-84107.10	-446399.78	80549.23	149829.32
圧縮強度-1σ	35867. 21	-83376.50	-440722.64	80211.39	148575.30
圧縮強度の影響	49.17	365.30	2838.57	168.92	627.01
ヤング係数+1σ	36045.69	-83887.19	-444660.67	80787.13	149791.04
ヤング係数-10	35785.75	-83706.57	-443439.55	79975.23	148759.78
ヤング係数の影響	129.97	90.31	610.56	405.95	515.63
プレ減少+1σ	35603.12	-83581.78	-442532.05	79439.37	148172.84
プレ減少-1σ	36250, 24	-84025.63	-445694.82	81403.11	149910.68
プレ減少の影響	323.56	221.92	1581.39	981.87	868.92
有効高+1σ	36110.18	-83437.01	-443074.15	80751.68	149943.43
有効高-1σ	35743, 89	-84180, 21	-445143,88	80079, 15	148699, 16
有効高の影響	183, 14	371,60	1034, 86	336, 26	622, 13
PC引張強度+1σ	36163, 37	-84540, 54	-447436.07	80735.34	150284, 51
PC引張強度-1σ	35690, 76	-83036, 40	-440590, 48	80080, 15	148300, 81
PC引張強度の影響	236, 31	752.07	3422.80	327, 60	991,85
鉄筋降伏強度+1σ	35927.04	-83807.04	-444107.09	80411.96	149320.74
鉄筋降伏強度-1σ	35927.04	-83807.04	-444107.09	80411.96	149320.74
鉄筋降伏強度の影響	0.00	0.00	0.00	0.00	0.00
断面耐力の標準偏差 (kN·m)	461, 93	945.80	4870.06	1173.79	1668.79
変動係数	1.29%	1.13%	1.10%	1.46%	1. 12%
11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	£120	£120	a80	a20	a80
--	---	---	--	--	---
記写	1120	1120	gou	gou	gou
型式	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続ラーメン橋	3径間連続ラーメン橋	3径間連続ラーメン橋
服本适日	終島をある	終島い曲げ話も	終島54曲(デ献市	終島畑山田田市	終島地のげ耐力
昭本斯而	山間支占	由中名問	御客問	山間支占	由中谷間
油行設計曲(ポキーメント (kN·m)	-840751 07	144230 83	23563 12	-304976 77	62217 88
1 30+2 51	-698736.02	144230 83	23563 12	-259800.88	62217.88
1.00+2.51	-557904 32	138324 83	21417 41	-200816.85	59549 60
1. 7D+1. 7L	-840751, 07	131690, 44	20687.03	-304976.77	57210.26
現行断面決定特徵	PC鋼材: 内12515.28(SWPR7BL)が72本 外37S15.28(SWPR7BL)が12本	PC鎮材: 内12515.28(SWPR7BL)が4本 外37S15.28(SWPR7BL)が8本	PC鋼材: 内7512.78(SWPR7BL)が6本 外12S15.28(SWPR7BL)が2本	PC鋼材: 内7512.78(SWPR7BL)が64本 外12S15.2B(SWPR7BL)が12本	PC鋼材: 内7512.78(SWPR7BL)が6本 外12S15.28(SWPR7BL)が12本
断面耐力					
現行計算値(kN·m)	-1526250.39	154583. 61	25787.28	-378893.40	63850.82
余裕度	181.5	107.2	109.4	124.2	102.6
実平均值(kN·m)	-1662472.54	155419.02	26495.30	-391810.41	61786.83
圧縮強度+1σ	-1708785.24	155959. 51	26572.50	-393436.34	61864.11
圧縮強度-1σ	-1562349.84	154638.68	26408.91	-389394.99	61672.32
圧縮強度の影響	73217.70	660. 42	81.80	2020. 67	95.89
ヤング係数+1σ	-1664987.15	156768.75	26554, 53	-392402.13	62077.84
ヤング係数-1σ	-1659581.33	153827.91	26608.91	-391104.53	61426.43
ヤング係数の影響	2702.91	1470.42	27.19	648, 80	325, 70
プレ減少+1σ	-1656717.48	152185.24	26392. 41	-389881.20	60746.83
プレ減少-10	-1666733.19	157407.55	26657.99	-393792.24	62875.89
プレ減少の影響	5007.86	2611.15	132.79	1955. 52	1064.53
有効高+1 σ	-1659655.37	156088.27	26739.81	-390942.87	62058.10
有劾高一1 σ	-1665304.30	154695.24	26313.00	-392673.44	61448.83
有効高の影響	2824, 46	696, 52	213.41	865, 29	304, 64
PC引張強度+1σ	-1670571, 79	155748, 54	26726.34	-394742.35	61980, 95
PC引張強度-1σ	-1653868.39	155023.18	26306.17	-388698.12	61587.36
PC引張強度の影響	8351, 70	362.68	210.09	3022, 11	196, 80
鉄筋降伏強度 $+1\sigma$	-1662472.54	155419.02	26517.91	-391810.41	61786.83
鉄筋降伏強度-1σ	-1662472.54	155419.02	26517.91	-391810.41	61786.83
鉄筋降伏強度の影響	0.00	0.00	0.00	0.00	0.00
断面耐力の標準偏差 (kN·m)	73965.83	3167.50	338, 74	4267.32	1174.75
変動係数	4, 459	2.04%	1, 28%	1.09%	1, 90%

付表-2.3.3 破壊抵抗曲げモーメントの試算結果(3)

曲げ破壊耐力

記号	g120	g120	g120	
型式	3径間連続ラーメン橋	3径間連続ラーメン橋	3径間連続ラーメン橋	
照査項目	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	
照査断面	側径間	中間支点	中央径間	
現行設計曲げモーメント(kN·m)	77009, 48	-1057726, 17	83252, 82	
1, 3D+2, 5L	77009, 48	-838226, 55	83252, 82	
1. 0D+2. 5L	75118.52	-646307.55	78772.88	
1. 7D+1. 7L	65166. 32	-1057726.17	74902.52	
現行断面決定特徴	PC額材: 内12S15.2B(SWPR7BL)が4本 外19S15.2B(SWPR7BL)が6本	PC鎮材: 内12S15.2B(SWPR7BL)が72本 外19S15.2B(SWPR7BL)が6本	PC鎮材: 内12S15.2B(SWPR7BL)が4本 外19S15.2B(SWPR7BL)が6本	
断面耐力				
現行計算值(kN·m)	86876.83	-1423668.22	92400.00	
余裕度	112.8	134.6	111.0	
実平均値(kN·m)	88877.59	-1510165.95	88970.68	
圧縮強度+1σ	89132.92	-1523658.94	89069.44	
圧縮強度-1σ	88391.85	-1463042.65	88815.78	
圧縮強度の影響	370. 54	30308.15	126.83	
ヤング係数+1σ	89170.48	-1510628.00	89332.92	
ヤング係数-1σ	88512.77	-1509616.39	88499.14	
ヤング係数の影響	328, 85	505, 80	416, 89	
プレ減少+1σ	88017, 48	-1509168.92	87865, 40	
プレ減少-1σ	89720 63	-1511199.74	90040_04	
プレ減少の影響	851, 57	1015, 41	1087.32	
有効高+1 σ	89350, 78	-1507866, 14	89276, 19	
有効高一10	88409.90	-1512466.13	88656.01	
有効高の影響	470.44	2300.00	310.09	
PC引張強度+1σ	89250.57	-1522950, 87	89360, 76	
PC引張強度-10	88455 20	-1496630 11	88559.02	
PC引張強度の影響	397 69	13160 38	400.87	
鉄筋隆伏強度 $+1\sigma$	88877 59	-1510165.95	88970 68	
鉄筋隆伏強度 -1σ	88877 59	-1510165.95	88970 68	
斜筋隆伏強度の影響	0.00	0.00	0.00	
新面耐力の標準偏差 (kN·m)	1161 94	33141 46	1276 32	
変動係数	1 319	2 199	1 439	

記号	h9	h24	124	i24	124
<u>ଅ</u> 式	PC単純プレテン床版橋	PC単純プレテン床版橋	PC連結プレテン床版橋	PC連結プレテン床版橋	PC連結プレテン床版橋
昭本百日	線目しかばおも	教員に曲ばまち	教員があります。	約日期。曲ば新ち	教員の曲ばおも
照本新面	支閉の中	麦間由央	和(名問)	形向MU曲(7)割(万) 山間支占	於向町田17町万
現行設計曲げモーメント (kN·m)	530.06	2684 79	2353 27	-806.03	2075 37
1 30+2 51	530.06	2635 94	2251 05	-984.35	1934 64
1. 0D+2. 5L	498.05	2307.87	1944, 54	-943.57	1645.27
1. 7D+1. 7L	447. 53	2684. 79	2353. 27	-806. 03	2075. 37
現行断面決定特徵	PC鋼材: 1S12.7(SWPR7BL)が11本	PC鋼材: 1S15.2(SWPR7BL)が17本	PC鋼材: 1S15.2(SWPR7BL)が13本	鉄筋: SD345 D22が6本, D19が6本	PC鋼材: 1S15.2(SWPR7BL)が13本
断面耐力	-				
現行計算値(kN·m)	537. 37	2755. 35	2458, 49	-1052.94	2245.91
余裕度	101.4	102.6	104. 5	130.6	108.2
実平均值(kN·m)	559.05	2864.14	2548.64	-1199.70	2324.26
圧縮強度 $+1\sigma$	568, 10	2906. 24	2575.65	-1208.48	2346.85
E 縮強度 -1σ	549.74	2819.00	2518.01	-1186.50	2298.78
圧縮強度の影響	9.18	43.62	28.82	10.99	24.03
ヤング係数+1σ	559.09	2864.01	2548.74	-1200.02	2324.93
ヤング係数-1σ	558.97	2864. 29	2548.50	-1199.35	2323.54
ヤング係数の影響	0.06	0.14	0.12	0.34	0.70
ブレ減少+1σ	558.94	2864.36	2548.08	-1198.56	2324.31
ブレ減少-1σ	559.15	2863.88	2549.16	-1200.91	2325.85
プレ減少の影響	0.11	0.24	0.54	1.17	0.77
有効高+1σ	577.10	2902. 53	2580.03	-1222.64	2353.37
有効高-1 σ	541, 23	2825.91	2517.35	-1185, 89	2295.43
有効高の影響	17.94	38, 31	31, 34	18, 37	28,97
PC引張強度+1σ	564, 18	2891, 60	2573, 79	-1199, 70	2347, 55
PC引張強度-1σ	554, 15	2838.02	2524, 66	-1199, 70	2302.14
PC引張強度の影響	5, 01	26.79	24, 57	0.00	22, 71
鉄筋降伏強度 $+1\sigma$	559.05	2864.14	2548, 64	-1246.82	2324.26
鉄筋降伏強度-1σ	559.05	2864, 14	2548, 64	-1155.36	2324, 26
鉄筋降伏強度の影響	0,00	0.00	0.00	45.73	0.00
断面耐力の標準偏差(kN·m)	20.76	63, 93	49, 16	50, 51	43.97
変動係数	3.71%	2 23%	1.93%	4, 21%	1.89%

付表-2.3.3	破壊抵抗曲げモーメン	トの試算結果(4)
----------	------------	-----------

曲げ破壊耐力					
記号	j18	j 24	k18	k18	k18
型式	PC単純プレテンT桁橋	PC単純プレテンT桁橋	PC連結プレテンT桁橋	PC連結プレテンT桁橋	PC連結プレテンT桁橋
照査項目	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力
照査断面	中央径間	中央径間	側径間	中間支点	中央径間
現行設計曲げモーメント(kN·m)	2306.13	3694.04	1869. 43	358.00	1761.42
1. 3D+2. 5L	2306. 13	3694.04	1869. 43	329.51	1761.42
1. 0D+2. 5L	2139.55	3353. 44	1708.08	358.00	1612.46
1. 7D+1. 7L	2021.25	3438. 39	1762.07	245. 33	1697.57
現行断面決定特徵	PC鋼材: 1S15.2(SWPR7BL)が12本	PC鋼材: 1S15.2(SWPR7BL)が12本	PC鋼材: 1S15.2(SWPR7BL)が10本	鉄筋: SD345, D13が10本	PC鋼材: 1S15.2(SWPR7BL)が9本
断面耐力					
現行計算值(kN·m)	2407. 19	3723. 83	2052, 45	398.31	1856.04
余裕度	104.4	100.8	109.8	111.3	105. 4
実平均値(kN·m)	2494. 35	3856.13	2123. 38	452. 31	1918.11
圧縮強度+1σ	2513.81	3882. 56	2136, 75	452.96	1928.85
圧縮強度-1σ	2470. 48	3823, 53	2106.91	451.39	1904.88
圧縮強度の影響	21.67	29.51	14. 92	0. 79	11.99
ヤング係数+1σ	2494. 35	3856. 13	2123. 43	452.42	1918.20
ヤング係数-10	2494.35	3856.13	2123. 33	452.21	1918.01
ヤング係数の影響	0.00	0.00	0.05	0.11	0.09
プレ減少+1σ	2494.35	3856.13	2123.07	451.78	1917.54
プレ減少-1σ	2494.35	3856.13	2123.69	452.95	1918.67
プレ減少の影響	0.00	0.00	0.31	0. 59	0.57
有効高+1σ	2523.85	3890. 55	2147.96	457.29	1941.65
有効高-1σ	2464, 84	3821, 71	2098, 79	447.33	1895, 98
有効高の影響	29.50	34.42	24. 59	4.98	22.84
PC引張強度+1σ	2519, 28	3894, 80	2144, 86	452.31	1937.60
PC引張強度-1σ	2470, 64	3819, 21	2102, 96	452, 31	1899, 54
PC引張強度の影響	24.32	37.80	20.95	0.00	19.03
鉄筋降伏強度+1σ	2494.35	3856, 13	2123.38	470.89	1918, 11
鉄筋降伏強度-1σ	2494.35	3856, 13	2123.38	434.97	1918, 11
鉄筋降伏強度の影響	0.00	0.00	0.00	17.96	0.00
断面耐力の標準偏差(kN·m)	43.94	59.03	35. 58	18.66	32.06
変動係数	1.76%	1.53%	1.68%	4. 13%	1.67%

曲げ破壊耐力					
記号	k24	k24	k24	145	m45
型式	PC連結プレテンT桁橋	PC連結プレテンT桁橋	PC連結プレテンT桁橋	PC単純バルブT桁橋	PC連結バルブT桁橋
照査項目	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力
照査断面	側径間	中間支点	中央径間	支間中央	側径間
現行設計曲げモーメント(kN・m)	3185. 21	-1158.27	2919.68	27637.07	24751.13
1. 3D+2. 5L	3185. 21	-1158. 27	2919.68	27637.07	24451.80
1. 0D+2. 5L	2850. 74	-1108, 68	2608.09	24489. 33	21538.00
1. 7D+1. 7L	3120. 52	-833. 77	2919. 43	27355.07	24751.13
現行断面決定特徴	PC鋼材: 12S12.7(SWPR7BL)が3本	鉄筋: SD345, D19が22本	PC鋼材: 12S12.7(SWPR7BL)が3本	PC鋼材: 12S15.2(SWPR7BL)が4本	PC鋼材: 12S15.2(SWPR7BL)が4本
断面耐力	-				-
現行計算値(kN·m)	3260, 88	-1253. 87	3256.77	28669. 21	28623.85
余裕度	102.4	108.3	111.5	103. 7	115.6
実平均值(kN·m)	3371.20	-1432. 52	3364.93	29627.23	29561.84
圧縮強度+1σ	3390. 49	-1439. 15	3384.04	29749.04	29682.24
圧縮強度 -1σ	3347.68	-1422.58	3341.53	29477.57	29412.56
圧縮強度の影響	21.41	8.29	21.25	135.74	134.84
ヤング係数+1σ	3371.37	-1432.80	3365.27	29627.23	29563.22
ヤング係数-1σ	3371.03	-1432.24	3364.59	29627.23	29559.08
ヤング係数の影響	0.17	0.28	0.34	0.00	2.07
プレ減少+1σ	3370. 53	-1431.21	3363.57	29627.23	29553.57
ブレ減少-1σ	3372.05	-1434.03	3366.29	29627.23	29568.72
ブレ減少の影響	0.76	1.41	1.36	0.00	7.57
有効高+1 σ	3400. 71	-1444. 69	3394. 43	29745.24	29679.85
有効高-1σ	3341.70	-1420.35	3335.42	29509.22	29443.83
有効高の影響	29.50	12.17	29.50	118.01	118.01
PC引張強度+1σ	3405. 53	-1432. 52	3399.20	29930.69	29864.70
PC引張強度-1σ	3338, 65	-1432.52	3332. 43	29338.72	29272.53
PC引張強度の影響	33.44	0.00	33. 38	295.98	296.08
鉄筋降伏強度+1σ	3371.20	-1489.82	3364.93	29627.23	29561.84
鉄筋降伏強度 -1σ	3371, 20	-1378, 77	3364, 93	29627.23	29561.84
鉄筋降伏強度の影響	0.00	55. 53	0.00	0.00	0.00
断面耐力の標準偏差(kN·m)	49.47	57.46	49.38	346.35	346.17
変動係数	1, 47%	4,01%	1,47%	1,17%	1, 17%

付表-2.3.3 破壊抵抗曲げモーメントの試算結果(5)

記号	k24	k24	k24	145	m45
型式	PC連結ブレテンT桁橋	PC連結プレテンT桁橋	PC連結プレテンT桁橋	PC単純バルブT桁橋	PC連結バルブT桁橋
照査項目	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力
照査断面	側径間	中間支点	中央径間	支間中央	側径間
現行設計曲げモーメント(kN·m)	3185. 21	-1158.27	2919.68	27637.07	24751.13
1. 3D+2. 5L	3185. 21	-1158.27	2919.68	27637.07	24451.80
1. 0D+2. 5L	2850. 74	-1108.68	2608.09	24489. 33	21538.00
1. 7D+1. 7L	3120. 52	-833. 77	2919. 43	27355.07	24751.13
現行断面決定特徴	PC鋼材: 12S12.7(SWPR7BL)が3本	鉄筋: SD345, D19が22本	PC鋼材: 12S12.7(SWPR7BL)が3本	PC鋼材: 12S15.2(SWPR7BL)が4本	PC鋼材: 12S15.2(SWPR7BL)が4本
断面耐力					
現行計算值(kN·m)	3260. 88	-1253. 87	3256.77	28669. 21	28623.85
余裕度	102.4	108.3	111.5	103. 7	115.6
実平均値 (kN·m)	3371.20	-1432. 52	3364.93	29627.23	29561.84
圧縮強度+1σ	3390. 49	-1439. 15	3384.04	29749.04	29682.24
$E縮強度-1\sigma$	3347.68	-1422. 58	3341.53	29477.57	29412.56
圧縮強度の影響	21.41	8.29	21.25	135.74	134.84
ヤング係数+1σ	3371.37	-1432.80	3365.27	29627.23	29563.22
ヤング係数-10	3371.03	-1432. 24	3364.59	29627.23	29559.08
ヤング係数の影響	0.17	0.28	0.34	0.00	2.07
プレ減少+1σ	3370. 53	-1431. 21	3363.57	29627.23	29553.57
ブレ減少-1σ	3372.05	-1434.03	3366.29	29627.23	29568.72
ブレ減少の影響	0.76	1.41	1.36	0.00	7.57
有効高+1σ	3400. 71	-1444. 69	3394. 43	29745.24	29679.85
有効高−1σ	3341.70	-1420. 35	3335.42	29509.22	29443.83
有効高の影響	29.50	12.17	29.50	118.01	118.01
PC引張強度+1σ	3405, 53	-1432, 52	3399.20	29930.69	29864.70
PC引張強度-1σ	3338, 65	-1432. 52	3332. 43	29338.72	29272.53
PC引張強度の影響	33.44	0.00	33. 38	295.98	296.08
鉄筋降伏強度 $+1\sigma$	3371.20	-1489.82	3364.93	29627.23	29561.84
鉄筋降伏強度 -1σ	3371, 20	-1378, 77	3364.93	29627.23	29561, 84
鉄筋降伏強度の影響	0,00	55, 53	0,00	0,00	0.00
断面耐力の標準偏差(kN·m)	49.47	57.46	49, 38	346, 35	346, 17
亦動反對	1 479	4 019	1 47%	1 174	1 178

曲げ破壊耐力	1				
記号	o30	o30	o45	045	045
型式	PC連結コンポ橋	PC連結コンポ橋	PC連結コンポ橋	PC連結コンポ橋	PC連結コンポ橋
照査項目	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力	終局Mu曲げ耐力
照査断面	中間支点	中央径間	側径間	中間支点	中央径間
現行設計曲げモーメント(kN・m)	-5512.57	15689.99	35289.20	-13275.23	32721.34
1. 3D+2. 5L	-5512. 57	15689. 99	34284.94	-13275.23	31226.00
1. 0D+2. 5L	-5242.75	14085, 60	29975. 41	-12666.35	27183.26
1. 7D+1. 7L	-3833, 37	15672. 33	35289, 20	-10184.11	32721.34
現行断面決定特徴	鉄筋: SD345, D19が24本	PC鋼材: 12S12.7(SWPR7BL)が4本	PC鋼材 : 12S15.2 (SWPR7BL) が4本	鉄筋: SD345, D19が34本	PC鋼材: 12S15.2(SWPR7BL)が4本
断面耐力					
現行計算値(kN·m)	-5515. 43	18721. 70	36317.90	-13731.28	36267.50
余裕度	100.1	119.3	102.9	103. 4	110.8
実平均値 (kN·m)	-6264.85	19322.00	37502.70	-15615.80	37427.30
圧縮強度+1σ	-6284.80	19377. 80	37614, 10	-15678.99	37537.30
圧縮強度-1σ	-6234. 28	19284. 80	37428.40	-15521.95	37354.00
圧縮強度の影響	25.26	46.50	92.85	78.52	91.65
ヤング係数+1σ	-6266. 15	19323. 10	37504.20	-15619.90	37430.30
ヤング係数-10	-6262.67	19320. 60	37500.80	-15611.70	37423.80
ヤング係数の影響	1.74	1.25	1.70	4.10	3. 25
プレ減少+1σ	-6255, 27	19352. 20	37495.10	-15598.36	37413.10
プレ減少-1σ	-6274.42	19328.70	37510.60	-15635.29	37442.30
プレ減少の影響	9.57	11.75	7.75	18.47	14.60
有効高+1σ	-6291.87	19406.00	37620.70	-15665.34	37545.30
有効高-1σ	-6237.82	19238.00	37384.70	-15566.26	37309.30
有効高の影響	27.02	84.00	118.00	49.54	118.00
PC引張強度+1σ	-6264.85	19521.90	37890.00	-15615.80	37814.70
PC引張強度−1σ	-6264.85	19132.00	37134.60	-15615, 80	37059, 10
PC引張強度の影響	0.00	194, 95	377.70	0.00	377.80
鉄筋降伏強度+1σ	-6518.88	19322.00	37502, 70	-16243.66	37427.30
鉄筋降伏強度 -1σ	-6026.19	19322.00	37502.70	-15026.05	37427.30
鉄筋降伏強度の影響	246.35	0.00	0.00	608, 81	0.00
断面耐力の標準偏差(kN·m)	249.30	217.63	406, 53	616, 13	406, 55
変動係数	3, 98%	1, 13%	1,08%	3, 95%	1,09%

付表-2.3.3 破壊抵抗曲げモーメントの試算結果(6)

(3) 斜引張破壊に対する耐力 (Sc+Ss)

試算結果を付表-2.3.4 に示す。斜引張破壊に対する耐力(Sc+Ss)の変動係数は、最大 3.4%、平均 3.0% となる(付図-2.3.3)。

付図-2.3.3 斜引張破壊に対する耐力 (Sc+Ss) の変動係数

付表-2.3.4 斜引張破壊に対する耐力 (Sc+Ss) の試算結果(1)

斜引張破壊に対する耐力

記号	a20	b20	c20	d20	e20
型式	単純RC中空床版橋	単純PRC中空床版橋	単純PC中空床版橋	PC単純ポステンT桁橋	3径間連結ポステンT桁橋
照査項目	せん断耐力	せん断耐力	せん断耐力	せん断耐力	せん断耐力
照査断面	端支点	端支点	端支点	端支点	端支点
現行終局荷重作用時断面力(kN)(有効高変化を考慮)	4833.71	4907.13	4861.41	1009.56	1009.58
現行終局荷重作用時断面力(kN)	4833.71	4907.13	4861.41	1009.56	1009.58
1.30D + 2.50(L + I) + 1.00(PS + CR + SH)	4833.71	4907.13	4861.41	1009.56	1009.58
1.00D + 2.50(L + I) + 1.00(PS + CR + SH)	4327.32	4408.28	4373.11	942.85	944.84
1.70D + 1.70(L + I) + 1.00(PS + CR + SH)	4664.29	4693.72	4633.93	867.94	887.84
現行断面決定特徴	D13ctc125	D13ctc250	D13ctc250	D13ctc125	D13ctc125
断面耐力					
現行計算值(kN)	6714.37	6006.07	5488.45	1095.90	1077.69
余裕度	138.91	122.39	112.90	108.55	106.75
実平均值(kN)	8255.68	7655.42	6653.50	1313.09	1285.46
圧縮強度 + 1 σ	8348.56	7834.60	6775.72	1326.59	1306.45
圧縮強度-1σ	8116.37	7476.24	6490.55	1292.82	1264.48
圧縮強度の影響	116.10	179.18	142.58	16.88	20.98
プレ減少 + 1σ		7646.86	6633.34	1307.94	1280.46
プレ減少-1σ		7664.23	6673.87	1318.33	1290.56
プレ減少の影響		8.68	20.26	5.19	5.05
有効高 + 1 σ	8290.70	7721.50	6704.33	1319.12	1293.14
有効高-1σ	8173.77	7633.69	6602.58	1303.73	1277.76
有効高の影響	58.47	43.90	50.88	7.69	7.69
鉄筋降伏強度 + 1 σ	8483.08	7503.42	6770.27	1342.71	1315.08
鉄筋降伏強度 -1σ	8028.29	7269.89	6536.74	1283.46	1255.84
鉄筋降伏強度の影響	227.40	116.77	116.77	29.62	29.62
断面耐力の標準偏差(kN)	261.93	218.50	192.26	35.34	37.45
変動係数の算出	3.17%	2.85%	2.89%	2.69%	2.91%

記号	e20	e30	e30	e40	e40
型式	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋	3径間連結ポステンT桁橋
照査項目	せん断耐力	せん断耐力	せん断耐力	せん断耐力	せん断耐力
照査断面	中間支点	端支点	中間支点	端支点	中間支点
現行終局荷重作用時断面力(kN)(有効高変化を考慮)	1068.29	1353.92	1477.04	1723.62	1864.90
現行終局荷重作用時断面力(kN)	-1068.29	1353.92	-1477.04	1723.62	-1864.90
1.30D + 2.50(L + I) + 1.00(PS + CR + SH)	-1068.29	1353.92	-1477.04	1723.62	-1864.90
1.00D + 2.50(L + I) + 1.00(PS + CR + SH)	-995.26	1242.98	-1354.03	1554.87	-1680.21
1.70D + 1.70(L + I) + 1.00(PS + CR + SH)	-899.89	1242.65	-1318.76	1653.38	-1748.18
現行断面決定特徵	D13ctc125	D13ctc125	D13ctc125	D13ctc125	D13ctc125
断面耐力					
現行計算值(kN)	1092.31	1423.61	1610.80	1797.62	2147.36
余裕度	102.25	105.15	109.06	104.29	115.15
実平均值(kN)	1482.40	1690.45	1941.21	2116.77	2444.93
圧縮強度 + 1 σ	1503.38	1709.38	1960.14	2153.32	2481.49
圧縮強度-1σ	1461.42	1662.06	1912.81	2080.21	2408.37
圧縮強度の影響	20.98	23.66	23.66	36.56	36.56
プレ減少 +1σ	1476.81	1684.49	1940.62	2107.59	2434.58
プレ減少-1σ	1488.12	1696.49	1953.90	2126.12	2455.49
プレ減少の影響	5.65	6.00	6.64	9.27	10.46
有効高 + 1 σ	1491.52	1698.21	1956.35	2124.02	2453.57
有効高-1σ	1473.27	1682.67	1938.04	2109.49	2436.30
有効高の影響	9.12	7.77	9.16	7.26	8.64
鉄筋降伏強度 + 1 σ	1520.19	1728.91	1990.28	2166.28	2508.11
鉄筋降伏強度-1σ	1444.61	1651.99	1892.13	2067.25	2381.75
鉄筋降伏強度の影響	37.79	38.46	49.08	49.52	63.18
断面耐力の標準偏差(kN)	44.54	46.21	55.65	62.66	74.24
変動係数の算出	3.00%	2.73%	2.87%	2.96%	3.04%

付表-2.3.4 斜引張破壊に対する耐力 (Sc+Ss) の試算結果(2)

斜引張破壊に対する耐力

記号	f40	f40	f40	f80	f80
型式	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続箱桁橋
照査項目	せん断耐力	せん断耐力	せん断耐力	せん断耐力	せん断耐力
照查断面	端支点	側径間 1/4点	中間支点中央径間側	端支点	側径間 1/4点
現行終局荷重作用時断面力(kN)(有効高変化を考慮)	7213.83	-7888.58	10699.70	3690.80	-9252.72
現行終局荷重作用時断面力(kN)	7213.83	-7888.58	10699.70	3690.80	-12888.75
1.30D + 2.50(L + I) + 1.00(PS + CR + SH)	7197.76	-7463.13	10080.32	3646.79	-11562.38
1.00D + 2.50(L + I) + 1.00(PS + CR + SH)	6380.23	-6393.53	8666.69	3690.80	-9659.85
1.70D + 1.70(L + I) + 1.00(PS + CR + SH)	7213.83	-7888.58	10699.70	2508.66	-12888.75
現行断面決定特徴	D16ctc125	D16ctc125	D22ctc125	D13ctc125	D16ctc125
断面耐力					
現行計算値(kN)	7233.69	-7900.98	10849.32	4321.26	-9393.69
余裕度	100.28	100.16	101.40	117.08	101.52
実平均值(kN)	8516.08	-9511.54	13416.60	5250.52	-11517.23
圧縮強度 + 1 σ	8608.96	-9684.92	13652.80	5303.95	-11644.30
圧縮強度-1σ	8392.24	-9338.17	13259.12	5179.29	-11326.62
圧縮強度の影響	108.36	173.38	196.84	62.33	158.84
プレ減少 + 1σ	8503.03	-9498.77	13416.60	5250.00	-11517.23
プレ減少-1σ	8528.92	-9524.16	13416.60	5251.03	-11517.23
プレ減少の影響	12.95	12.69	0.00	0.51	0.00
有効高 + 1 σ	8486.02	-9548.87	13481.35	5270.02	-11548.41
有効高-1σ	8483.93	-9474.21	13351.84	5231.02	-11486.05
有効高の影響	1.04	37.33	64.75	19.50	31.18
鉄筋降伏強度 + 1 σ	8706.19	-9701.65	13773.69	5400.01	-11843.85
鉄筋降伏強度−1σ	8325.98	-9321.44	13059.50	5101.04	-11190.60
鉄筋降伏強度の影響	190.10	190.10	357.10	149.48	326.62
断面耐力の標準偏差(kN)	219.20	260.29	412.86	163.13	364.54
変動係数の算出	2.57%	2.74%	3.08%	3.11%	3.17%

記号	f80	f120	f120	f120	g80
型式	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続箱桁橋	3径間連続ラーメン橋
照査項目	せん断耐力	せん断耐力	せん断耐力	せん断耐力	せん断耐力
照査断面	中間支点中央径間側	端支点	側径間 1/4点	中間支点中央径間側	端支点
現行終局荷重作用時断面力(kN)(有効高変化を考慮)	12545.32	10095.95	-15684.87	17799.66	4207.54
現行終局荷重作用時断面力(kN)	18807.12	10095.95	-21444.14	30667.41	4207.54
1.30D + 2.50(L + I) + 1.00(PS + CR + SH)	16858.60	10095.95	-18645.88	26437.73	4207.54
1.00D + 2.50(L + I) + 1.00(PS + CR + SH)	14158.88	8971.33	-15363.15	21772.15	3807.99
1.70D + 1.70(L + I) + 1.00(PS + CR + SH)	18807.12	10088.31	-21444.14	30667.41	3796.15
現行断面決定特徵	D16ctc125	D16ctc125	D16ctc125	D16ctc125	D13ctc125
断面耐力					
現行計算值(kN)	12937.13	10484.39	-17986.88	20705.05	4712.75
余裕度	103.12	103.85	114.68	116.32	112.01
実平均值(kN)	15494.05	11738.83	-18924.42	21026.04	5691.20
圧縮強度 + 1 σ	15754.81	11795.11	-19010.13	21346.62	5776.00
圧縮強度-1σ	15233.28	11654.41	-18667.30	20919.18	5606.40
圧縮強度の影響	260.76	70.35	171.41	213.72	84.80
プレ減少 + 1σ	15483.01	11706.18	-18852.98	20971.34	5689.33
プレ減少-1σ	15505.35	11747.81	-18967.41	21069.93	5693.01
プレ減少の影響	11.17	20.81	57.22	49.30	1.84
有効高 + 1 σ	15524.48	11766.53	-18952.96	21054.67	5711.36
有効高-1σ	15463.61	11711.13	-18895.63	20997.51	5692.15
有効高の影響	30.44	27.70	28.67	28.58	9.61
鉄筋降伏強度 + 1 σ	15911.75	12035.04	-19410.20	21631.72	5840.68
鉄筋降伏強度-1σ	15076.35	11442.63	-18438.64	20420.37	5541.71
鉄筋降伏強度の影響	417.70	296.21	485.78	605.68	149.48
断面耐力の標準偏差(kN)	493.48	306.41	519.10	644.80	172.14
変動係数の算出	3.18%	2.61%	2.74%	3.07%	3.02%

付表 2.3.4	彩月 張破壊に対する耐力	(Sc+Ss)	の試算結果(3)
----------	--------------	---------	----------

斜引	張破	壊に	対す	る耐:	カ
					_

記号	g80	g80	g120	g120	g120
型式	3径間連続ラーメン橋	3径間連続ラーメン橋	3径間連続ラーメン橋	3径間連続ラーメン橋	3径間連続ラーメン橋
照査項目	せん断耐力	せん断耐力	せん断耐力	せん断耐力	せん断耐力
照査断面	側径間 1/4点	中間支点中央径間側	端支点	側径間 1/4点	中間支点中央径間側
現行終局荷重作用時断面力(kN)(有効高変化を考慮)	-8368.69	11810.95	7168.67	-17751.31	17274.54
現行終局荷重作用時断面力(kN)	-11139.12	17413.45	7168.67	-24975.78	30102.70
1.30D + 2.50(L + I) + 1.00(PS + CR + SH)	-10332.54	15692.14	7168.67	-21242.22	26071.69
1.00D + 2.50(L + I) + 1.00(PS + CR + SH)	-8876.20	13213.17	6640.61	-17269.57	21522.44
1.70D + 1.70(L + I) + 1.00(PS + CR + SH)	-11139.12	17413.45	6585.57	-24975.78	30102.70
現行断面決定特徴	D16ctc125	D16ctc125	D16ctc125	D16ctc125	D16ctc125
断面耐力					
現行計算値(kN)	-9814.09	12268.28	8748.56	-19449.40	16852.96
余裕度	117.27	103.87	122.04	109.57	97.56
実平均值(kN)	-11857.84	14603.00	10226.78	-22936.25	20024.95
圧縮強度 + 1 σ	-11976.05	14818.00	10307.18	-23232.92	20380.86
圧縮強度-1σ	-11680.53	14388.01	10119.58	-22639.57	19906.31
圧縮強度の影響	147.76	214.99	93.80	296.68	237.28
プレ減少 +1σ	-11856.73	14589.42	10213.41	-22929.90	20019.59
プレ減少-1σ	-11859.04	14616.90	10240.24	-22943.05	20030.57
プレ減少の影響	1.16	13.74	13.42	6.57	5.49
有効高 + 1σ	-11888.62	14633.01	10253.71	-22975.42	20053.85
有効高-1σ	-11827.05	14573.04	10199.85	-22897.07	19996.04
有効高の影響	30.79	29.98	26.93	39.17	28.90
鉄筋降伏強度 + 1 σ	-12184.46	14999.04	10522.99	-23637.03	20607.73
鉄筋降伏強度-1σ	-11531.21	14206.97	9930.57	-22235.46	19442.17
鉄筋降伏強度の影響	326.62	396.03	296.21	700.79	582.78
断面耐力の標準偏差(kN)	359.81	451.83	312.16	762.03	629.92
変動係数の算出	3.03%	3.09%	3.05%	3.32%	3.15%

記号	h9	h24	i24	i24	j18
型式	PC単純プレテン床版橋	PC単純プレテン床版橋	PC連結プレテン床版橋	PC連結プレテン床版橋	PC単純プレテンT桁橋
照査項目	せん断耐力	せん断耐力	せん断耐力	せん断耐力	せん断耐力
照査断面	端支点	端支点	端支点	中間支点	端支点
現行終局荷重作用時断面力(kN)(有効高変化を考慮)	228.15	403.30	403.30	473.00	484.23
現行終局荷重作用時断面力(kN)	228.15	403.30	403.30	-473.00	484.23
1.30D + 2.50(L + I) + 1.00(PS + CR + SH)	228.15	403.30	403.30	-473.00	484.23
1.00D + 2.50(L + I) + 1.00(PS + CR + SH)	214.64	357.84	357.84	-423.98	452.62
1.70D + 1.70(L + I) + 1.00(PS + CR + SH)	191.91	397.53	397.53	-455.35	415.26
現行断面決定特徴	D13ctc125	D13ctc125	D13ctc125	D13ctc125	D13ctc125
断面耐力					
現行計算値(kN)	354.00	167.08	416.49	436.41	459.19
余裕度	155.16	41.43	103.27	92.27	94.83
実平均值(kN)	393.13	597.12	528.67	535.82	595.43
圧縮強度 + 1 σ	405.06	608.08	539.55	544.37	613.09
圧縮強度-1σ	381.19	586.16	512.34	524.42	577.78
圧縮強度の影響	11.94	10.96	13.61	9.97	17.66
プレ減少 +1σ	393.13	597.12	528.67	535.82	595.43
プレ減少-1σ	393.13	597.12	528.67	535.82	595.43
プレ減少の影響	0.00	0.00	0.00	0.00	0.00
有効高 + 1 σ	398.19	603.66	529.00	538.58	596.84
有効高-1σ	390.26	596.00	522.84	530.18	589.56
有効高の影響	3.96	3.83	3.08	4.20	3.64
鉄筋降伏強度 + 1 σ	395.60	611.62	540.67	550.90	602.59
鉄筋降伏強度 -1σ	390.81	583.53	517.42	521.68	588.73
鉄筋降伏強度の影響	2.39	14.04	11.62	14.61	6.93
断面耐力の標準偏差(kN)	12.80	18.22	18.16	18.18	19.32
変動係数の算出	3.26%	3.05%	3.43%	3.39%	3.24%

付表-2.3.4 余	将 張破壊に対する耐力	(Sc+Ss)	の試算結果(4)
------------	--------------	---------	----------

斜引張破壊に対する耐力

記号	j24	k18	k18	k24	k24
型式	PC単純プレテンT桁橋	PC連結プレテンT桁橋	PC連結プレテンT桁橋	PC連結プレテンT桁橋	PC連結プレテンT桁橋
照查項目	せん断耐力	せん断耐力	せん断耐力	せん断耐力	せん断耐力
照査断面	端支点	端支点	中間支点	端支点	中間支点
現行終局荷重作用時断面力(kN)(有効高変化を考慮)	611.05	448.01	502.12	567.39	637.53
現行終局荷重作用時断面力(kN)	611.05	448.01	-502.12	567.39	-637.53
1.30D + 2.50(L + I) + 1.00(PS + CR + SH)	611.05	448.01	-502.12	567.39	-637.53
1.00D + 2.50(L + I) + 1.00(PS + CR + SH)	563.19	416.44	-467.28	519.27	-585.16
1.70D + 1.70(L + I) + 1.00(PS + CR + SH)	545.70	397.00	-429.73	521.73	-570.98
現行断面決定特徵	D13ctc125	D13ctc125	D13ctc125	D13ctc125	D13ctc125
断面耐力					
現行計算値(kN)	531.05	523.57	557.80	481.76	558.14
余裕度	86.91	116.87	111.09	84.91	87.55
実平均値(kN)	682.68	667.90	707.01	621.41	718.72
圧縮強度 + 1 σ	693.97	685.20	729.55	633.02	742.63
圧縮強度-1σ	654.45	647.15	688.98	598.18	700.78
圧縮強度の影響	19.76	19.03	20.29	17.42	20.92
プレ減少 + 1σ	682.68	666.78	705.85	619.91	717.16
プレ減少-1σ	682.68	669.04	708.20	622.94	720.31
プレ減少の影響	0.00	1.13	1.18	1.51	1.57
有効高 + 1 σ	687.96	671.26	715.74	616.05	725.74
有効高-1σ	677.40	660.93	707.20	616.04	717.63
有効高の影響	5.28	5.16	4.27	0.00	4.05
鉄筋降伏強度 + 1 σ	691.82	679.11	719.19	629.25	728.40
鉄筋降伏強度 -1σ	674.10	657.39	695.60	614.06	709.64
鉄筋降伏強度の影響	8.86	10.86	11.79	7.60	9.38
断面耐力の標準偏差(kN)	22.29	22.54	23.88	19.06	23.34
変動係数の算出	3.26%	3.37%	3.38%	3.07%	3.25%

記号	145	m45	m45	n30	n45
型式	PC単純バルブT桁橋	PC連結バルブT桁橋	PC連結バルブT桁橋	PC単純コンポ橋	PC単純コンポ橋
照査項目	せん断耐力	せん断耐力	せん断耐力	せん断耐力	せん断耐力
照査断面	端支点	端支点	中間支点	端支点	端支点
現行終局荷重作用時断面力(kN)(有効高変化を考慮)	2368.82	2292.98	2543.30	2290.21	3153.23
現行終局荷重作用時斷面力(kN)	2368.82	2292.98	-2543.30	2290.21	3153.23
1.30D + 2.50(L + I) + 1.00(PS + CR + SH)	2368.82	2292.98	-2543.30	2290.21	3153.23
1.00D + 2.50(L + I) + 1.00(PS + CR + SH)	2125.98	2060.97	-2290.03	2071.73	2790.90
1.70D + 1.70(L + I) + 1.00(PS + CR + SH)	2271.34	2208.40	-2400.23	2151.62	3129.73
現行断面決定特徵	D13ctc125	D13ctc125	D13ctc125	D13ctc125	D13ctc125
断面耐力					
現行計算值(kN)	2124.54	2075.30	2589.20	2032.08	3018.46
余裕度	89.69	90.51	101.81	88.73	95.73
実平均值(kN)	2465.45	2449.95	3148.39	2429.86	3492.67
圧縮強度 + 1σ	2500.68	2466.72	3181.93	2445.03	3511.17
圧縮強度-1σ	2430.22	2399.64	3081.32	2384.36	3437.18
圧縮強度の影響	35.23	33.54	50.31	30.33	37.00
プレ減少 +1σ	2445.86	2445.35	3142.14	2419.43	3468.99
プレ減少-1σ	2485.53	2475.81	3154.73	2429.86	3516.85
プレ減少の影響	19.84	15.23	6.30	5.22	23.93
有効高 + 1 σ	2470.77	2434.44	3159.45	2438.52	3462.75
有効高-1σ	2459.75	2451.77	3137.36	2421.20	3485.47
有効高の影響	5.51	8.66	11.05	8.66	11.36
鉄筋降伏強度 + 1 σ	2502.75	2496.58	3222.99	2486.62	3570.59
鉄筋降伏強度-1σ	2430.48	2406.24	3078.45	2376.65	3419.63
鉄筋降伏強度の影響	36.13	45.17	72.27	54.99	75.48
断面耐力の標準偏差(kN)	54.50	58.92	88.97	63.61	88.13
変動係数の算出	2.21%	2.41%	2.83%	2.62%	2.52%

記号	o30	o30	o45	o45
型式	PC連結コンポ橋	PC連結コンポ橋	PC連結コンポ橋	PC連結コンポ橋
照查項目	せん断耐力	せん断耐力	せん断耐力	せん断耐力
照查断面	端支点	中間支点	端支点	中間支点
現行終局荷重作用時断面力(kN)(有効高変化を考慮)	2226.99	2412.94	3049.83	3369.87
現行終局荷重作用時断面力(kN)	2226.99	-2412.94	3049.83	-3369.87
1.30D + 2.50(L + I) + 1.00(PS + CR + SH)	2226.99	-2412.94	3049.83	-3369.87
1.00D + 2.50(L + I) + 1.00(PS + CR + SH)	2018.26	-2187.14	2699.35	-2993.48
1.70D + 1.70(L + I) + 1.00(PS + CR + SH)	2112.01	-2225.07	3048.64	-3293.86
現行断面決定特徴	D13ctc125	D13ctc125	D13ctc125	D13ctc125
断面耐力				
現行計算値(kN)	1814.30	2302.49	2549.60	3137.26
余裕度	81.47	95.42	83.60	93.10
実平均值(kN)	2126.93	2833.80	2965.38	3745.16
圧縮強度 +1σ	2142.10	2908.69	2983.88	3800.15
圧縮強度-1σ	2081.43	2773.89	2909.89	3708.50
圧縮強度の影響	30.33	67.40	37.00	45.83
プレ減少 +1σ	2109.30	2830.85	2946.65	3735.62
プレ減少-1σ	2144.76	2836.78	2984.69	3754.20
プレ減少の影響	17.73	2.97	19.02	9.29
有劾高 + 1 σ	2144.77	2844.93	2935.83	3755.76
有効高-1σ	2109.14	2822.68	2957.80	3734.55
有効高の影響	17.82	11.13	10.99	10.60
鉄筋降伏強度 + 1 σ	2155.31	2901.07	3023.82	3837.81
鉄筋降伏強度-1σ	2100.32	2770.74	2910.60	3658.30
鉄筋降伏強度の影響	27.49	65.17	56.61	89.76
断面耐力の標準偏差(kN)	48.04	94.46	71.10	101.76
変動係数の算出	2.26%	3.33%	2.40%	2.72%

付表-2.3.4 斜引張破壊に対する耐力 (Sc+Ss) の試算結果(5)

付録3 鉄筋拘束の影響の試算

3.1 検討概要

付表-3.1.1の橋梁において,鉄筋拘束の影響を無視した場合と鉄筋拘束の影響を考慮した場合の試算を行う。ケース1,2では,鉄筋拘束の影響度を確認するために,許容応力度法で決定された断面に対して,鉄筋 拘束を考慮した場合に,引張縁応力度が制限値に対してどのように変化するかを,引張鉄筋量を変化させ影 響度を確認している。

ケース 3~6 は,許容応力度法で設計された実橋梁をモデルとして鉄筋拘束を考慮した場合の変化を確認している。

ケース	形式	桁長	支間長	幅員 (全幅)	桁高
1	PC 単純ポステンT 桁橋	20. 7m	20m	10. 7m	1.5m
2	PC3径間連続箱桁橋 (張出し架段)	161. Om	55+80+55m	10. 7m	2.8∼ 5.0m
3	PC10 径間連続箱桁橋 (全支保工架設)	360. 1m	37. 65+3@33. 00+5@36. 50+39. 70m	10. 2∼ 9. 7m	2. 2m
4	PC3 径間連続ラーメン箱桁橋 (張出し架段)	153. 4m	43. 0+70. 0+39. 0m	10. 2m	2.5∼ 4.5m
5	PC3 径間連続箱ラーメン桁橋 (張出し架段)	275. 2m	71. 6+130. 0+71. 9m	11. 5m	3. 0∼ 7. 0m
6	PC3 径間連続箱桁橋 (ラーメン(全支保工架設))	150. 25m	42. 15+65. 00m+41. 90m	12.9~ 19.5m	3.0∼ 4.5m

付表-3.1.1 検討橋梁一覧

3.2 検討結果

付図-3.2.1 に鉄筋拘束による影響度について、断面に配置されている鉄筋量(As/Ac)と引張応力度余裕 比*の関係を示す。

※曲げ引張; $(\sigma_{ca} - \sigma_{ct}) / (\sigma_{ca} - \sigma_{cta})$

ここに、 σ_{ca} ; 圧縮応力度の制限値、 σ_{ct} ; 引張応力度、 σ_{cta} ; 引張応力度の制限値

曲げ引張における余裕度は、 σ_{ct}/σ_{cta} とすると制限値 $\sigma_{cta}=0$ (フルプレストレス)の場合にゼロ割として評価ができないため、圧縮側の制限値を基準とした上式で与えている。

これより,

①T桁およびラーメン形式の箱桁に対して鉄筋拘束の影響度が大きく、T桁では鉄筋量が増えれば顕著に 影響があらわれる。

②断面形状や桁高により影響の大小が変化すると思われる。

③形式によらず、鉄筋拘束を考えると引張応力度が大きくなる。

なお、既往の文献¹¹²に、非緊張材である鉄筋の影響を見込むとその影響が少なからず発生することが示 されている状況である。道示で設計された PC 構造であれば、参考文献 2)に示す程度の鉄筋量(T 桁の例で 0.53%)となり、その影響が小さいことから、無視しても問題ないものとされていたと考えられる。

また、鉄筋拘束の計算式は各断面で評価し、その影響の範囲については考えずに計算する仮定となってお

り、安全側の算出式となっていると考えられる。つまり、比較的狭い範囲に鉄筋を入れたとしても、影響の 範囲は考えずに鉄筋拘束力を与えた断面計算を実施している。

付図-3.2.1 鉄筋拘束による影響

さらに、近年の研究で断面に鉄筋が配置された場合においては、鉄筋の拘束によりクリープ変形が抑えられ、クリープ係数が小さくなる傾向にあることもわかってきている³。ただし、供試体レベルでの研究であり実物構造物に対して鉄筋拘束の影響がどのようにあらわれるのかは明確になっておらず、今後のさらなる研究が必要な状況でありその評価を見込むだけ根拠がない。参考文献3)では、供試体レベルの実験結果より鉄筋量0.5%のクリープ係数は、道示のクリープ式の60%程度に低減されることも報告されている。

付録3 参考文献

- 1) F・ソーコ著(岡田清,小林和夫監訳):プレストレストコンクリート【1】基礎編, 鹿島出版会, pp. 110 ~113 4.6 ひび割れ発生荷重, 1982. 10
- 3) 国土交通省国土技術政策総合研究所、(一社)プレストレスト・コンクリート建設業協会: PC 橋の多様 化に対応した持続荷重の影響評価手法に関する共同研究、国総研資料第 1068 号, 2019.3

付録4 引張鉄筋の応力度制限値の試算

4.1 検討概要

(1) 概要

許容応力度設計法における引張鉄筋の配置で考慮される鉄筋の応力度は,180N/mm²(SD345)で あるのに対し,部分係数設計法案では210N/mm²と制限値が17%程度高く規定されているが,活荷 重の荷重係数が1.25と25%程度増加することを考慮すると,改定案で規定されている制限値では 引張鉄筋量が増加することが予想される。

本試算では、許容応力度設計法と部分係数設計法案で引張鉄筋の配置がどの程度増減し、応力 度制限値 210N/mm²を変化させた時の配置鉄筋の傾向を確認する事を目的に実施する。

(2) 検討断面構成

検討する断面は、本業務対象橋梁の PC3 径間ポストテンション T 桁橋とする。 以下に、検討断面図を示す。

<ポステン T 桁橋>

付図-4.1.1 検討断面図

4.2 試算結果①

許容応力度設計法において一般的に対象とする下縁最外縁の軸方向鉄筋(3本)を対象に必要 鉄筋量を試算した結果を付図-4.2.1に示す。引張鉄筋の制限値は、部分係数設計法案の200N/mm² から10N/mm²ピッチで220N/mm²までとし、試算を行った。

- ▶ 必要鉄筋量は、引張鉄筋とせん断で必要となる軸方向鉄筋の合計値とする。
- ▶ ポステンT桁の標準設計における軸方向鉄筋は支間中央でD22-3本まで使用されているが、 許容応力度設計法の計算上はD16-3本で満足する。
- ▶ 部分係数設計法案では第2径間支間中央でD22-3本配置となるため、現行設計法より大きく増えている。
- > 引張鉄筋の算出において、第2径間中央部のみ制限値の影響を受ける部材となっており、 その他の引張鉄筋は、引張面積の0.5%配筋で決定されているため、制限値の変化に影響を 受けない。
- ▶ せん断で必要となる軸方向鉄筋は、現行設計より若干低くなる。
- ▶ 制限値を 200~220N/mm² に変化させた場合、本試算では鉄筋量を下げることは出来なかった。

4.3 試算結果②

試算結果①より,部分係数設計法案による配置鉄筋は D16→D22 と増大し,制限値を変化させて も配置鉄筋に変化が無いことを確認した。

本試算では,部分係数設計法案による変動支配時の引張応力度が発生する領域に着目し,活荷 重係数が大きくなったことにより引張領域も拡大し,ウェブの下端鉄筋も引張領域に含まれるこ とから,この鉄筋を考慮した時の配置鉄筋を確認した。

なお,引張応力度制限値は 200N/mm²から 10N/mm²ピッチで 230N/mm²まで算出し,対象断面を引 張鉄筋の影響を受ける第2径間中央とする。試算結果を次頁に示す。

付図-4.3.1部分係数設計法における変動作用支配状況における第2径間の引張領域

- ▶ ウェブ下端鉄筋を引張鉄筋として考慮することで、軸方向鉄筋を D22→D19 に低減すること が可能である。
- ▶ 引張応力度制限値が 200~220N/mm²の範囲では軸方向鉄筋の低減は出来ないが、許容応力 度設計法と比較して鉄筋が1ランクアップに留まる。
- ▶ 引張応力度制限値を 230N/mm²とした場合,引張が生じるコンクリート断面の 0.5%の鉄筋 量で決定され,許容応力度設計法と同じ D16 鉄筋の配置が可能となる。

		北安虾肋
必要鉄筋量	(σsa=200)	948.8
必要鉄筋量	(σ sa=210)	903.6
必要鉄筋量	(σsa=220)	862.6
必要鉄筋量	(σsa=230)	825.1
0.5%鉄筋量		841.3

付図-4.3.2 第2径間支間中央の必要鉄筋量の比較(ウェブ鉄筋考慮)

v e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
$\theta = 0.05$	K _O								表 I/1
0	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000
b/4	+0.2500	+0.4375	+0.6250	+0.8125	+1.0000	+1.1875	+1.3750	+1.5625	+1.7500
b/2	-0.5000	-0.1250	+0.2500	+0.6250	+1.0000	+1.3750	+1.7500	+2.1250	+2.5000
3b/4	-1.2500	-0.6875	-0.1250	+0.4375	+1.0000	+1.5625	+2.1250	+2.6875	+3.2500
b	-1.9999	-0.1250	-0.5000	+0.2500	+1.0000	+1.7500	+2.5000	+3.2500	+4.0001
•	<i>K</i> ₁		I						
0	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000
b/4	+0.9969	+0.9978	+0.9985	+0.9992	+1.0000	+1.0008	+1.0015	+1.0023	+1.0030
b/2	+0.9938	+0.9954	+0.9969	+0.9985	+1.0000	+1.0015	+1.0031	+1.0046	+1.0061
3b/4	+0.9908	+0.9931	+0.9954	+0.9977	+1.0000	+1.0023	+1.0046	+1.0069	+1.0092
b	+0.9878	+0.9908	+0.9938	+0.9969	+1.0000	+1.0030	+1.0061	+1.0092	+1.0124
$\theta = 0.10$	K ₀					_	_	_	表 I/2
0	+0.9993	+0.9997	+1.0001	+1.0004	+1.0005	+1.0004	+1.0001	+0.9997	+0.9993
b/4	+0.2495	+0.4373	+0.6250	+0.8127	+1.0004	+1.1878	+1.3751	+1.5622	+1.7493
b/2	-0.5000	-0.1250	+0.2500	+0.6250	+1.0001	+1.3751	+1.7501	+2.1249	+2.4998
3b/4	-1.2495	-0.6873	-0.1250	+0.4373	+0.9997	+1.5622	+2.1249	+2.6877	+3.2505
b	-1.9989	-1.2495	-0.5000	+0.2495	+0.9993	+1.7493	+2.4998	+3.2505	+4.0015
-	K_1								
0	+0.9993	+0.9997	+1.0001	+1.0003	+1.0005	+1.0003	+1.0001	+0.9997	+0.9993
b/4	+0.9873	+0.9906	+0.9938	+0.9971	+1.0003	+1.0034	+1.0063	+1.0090	+1.0116
b/2	+0.9756	+0.9816	+0.9877	+0.9938	+1.0000	+1.0063	+1.0124	+1.0183	+1.0241
3b/4	+0.9641	+0.9728	+0.9816	+0.9906	+0.9997	+1.0090	+1.0183	+1.0276	+1.0369
b	+0.9527	+0.9641	+0.9756	+0.9873	+0.9993	+1.0116	+1.0241	+1.0369	+1.0498
~ e									
· ∼	_								
<u>у</u>	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
$\frac{y}{\theta} = 0.15$	— b K ₀	-3b/4	-b/2	— b/4	0	b/4	b/2	3b/4	b 表 I/3
$\frac{y}{\theta = 0.15}$	-b K ₀ +0.9963	-3b/4 +0.9984	- <i>b/2</i> +1.0003	- <i>b/4</i> +1.0018	0 +1.0025	<i>b/4</i> +1.0018	<i>b/2</i> +1.0003	<i>3b/4</i> +0.9984	b 表 I/3 +0.9963
$\frac{y}{\theta = 0.15}$ 0 $b/4$	-b +0.9963 +0.2475	-3b/4 +0.9984 +0.4363	-b/2 +1.0003 +0.6250	-b/4 +1.0018 +0.8136	<i>0</i> +1.0025 +1.0018	<i>b/4</i> +1.0018 +1.1892	<i>b/2</i> +1.0003 +1.3755	3b/4 +0.9984 +1.5612	b 表 I/3 +0.9963 +1.7466
$\frac{y}{\theta = 0.15}$ 0 $b/4$ $b/2$	-b +0.9963 +0.2475 -0.5003	-3b/4 +0.9984 +0.4363 -0.1252	-b/2 +1.0003 +0.6250 +0.2499	-b/4 +1.0018 +0.8136 +0.6250	<i>0</i> +1.0025 +1.0018 +1.0003	<i>b/4</i> +1.0018 +1.1892 +1.3755	<i>b/2</i> +1.0003 +1.3755 +1.7505	3b/4 +0.9984 +1.5612 +2.1247	b 表 I/3 +0.9963 +1.7466 +2.4988
$\frac{y}{\theta = 0.15}$ 0 $b/4$ $b/2$ $3/b/4$	$ -b \\ K_{0} \\ +0.9963 \\ +0.2475 \\ -0.5003 \\ -1.2474 $	- 3b/4 +0.9984 +0.4363 -0.1252 -0.6864	- b/2 +1.0003 +0.6250 +0.2499 -0.1252	-b/4 +1.0018 +0.8136 +0.6250 +0.4363	0 +1.0025 +1.0018 +1.0003 +0.9983	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247	3b/4 +0.9984 +1.5612 +2.1247 +2.6887	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526
$\frac{y}{\theta = 0.15}$ 0 $b/4$ $b/2$ $3/b/4$ b	$ -b \\ K_{\theta} \\ +0.9963 \\ +0.2475 \\ -0.5003 \\ -1.2474 \\ -1.9944 $	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474	- b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003	b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075
$\frac{y}{\theta = 0.15}$ 0 $b/4$ $b/2$ $3/b/4$ b	$ -b \\ K_0 \\ +0.9963 \\ +0.2475 \\ -0.5003 \\ -1.2474 \\ -1.9944 \\ K_1 $	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474	- b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075
$\frac{y}{\theta = 0.15}$ 0 $b/4$ $b/2$ $3/b/4$ b 0	$ -b \\ K_0 \\ +0.9963 \\ +0.2475 \\ -0.5003 \\ -1.2474 \\ -1.9944 \\ K_1 \\ +0.9969 $	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986	- b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002	b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526 +0.9986	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969
$\frac{y}{\theta = 0.15}$ 0 $b/4$ $b/2$ $3/b/4$ b 0 $b/4$	$ -b \\ K_0 \\ +0.9963 \\ +0.2475 \\ -0.5003 \\ -1.2474 \\ -1.9944 \\ K_1 \\ +0.9969 \\ +0.9708 $	3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784	- b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143	3b/4 +0.9984 +1.5612 +2.1247 +3.2526 +0.9986 +1.0194	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243
$\frac{y}{\theta = 0.15}$ 0 $b/4$ $b/2$ $3/b/4$ b 0 $b/4$ $b/2$	$ -b K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9459 +0.9459 +0.9459 -0.945 -0.945 $	3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279	3b/4 +0.9984 +1.5612 +2.1247 +3.2526 +0.9986 +1.0194 +1.0406	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0529
$\frac{y}{\theta = 0.15} \\ 0 \\ b/4 \\ b/2 \\ 3/b/4 \\ b \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ \end{bmatrix}$	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9459 +0.9219	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862 +0.9784	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0194	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0529 +1.0825
$\frac{y}{\theta = 0.15} \\ 0 \\ b/4 \\ b/2 \\ 3/b/4 \\ b \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ 0 \\ 0 \\ cond cond cond cond cond cond cond cond$	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9219 +0.9219 +0.8985	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403 +0.9129	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862 +0.9784 +0.9708	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0194 +1.0243	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529	3b/4 +0.9984 +1.5612 +2.1247 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0825 +1.1126
$\frac{y}{\theta = 0.15} \\ 0 \\ b/4 \\ b/2 \\ 3/b/4 \\ b \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ \sigma = 0.20$	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9219 +0.9219 +0.8985 K_{0}	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403 +0.9129	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862 +0.9784 +0.9708	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0194 +1.0243	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529	3b/4 +0.9984 +1.5612 +2.1247 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0529 +1.0825 +1.1126 表 I/4
$\frac{y}{\theta = 0.15} \\ 0 \\ b/4 \\ b/2 \\ 3/b/4 \\ b \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ \sigma = 0.20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9459 +0.9219 +0.8985 K_{0} +0.9884	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403 +0.9129 +0.9948	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459 +1.0009	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862 +0.9784 +0.9708 +1.0057	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969 +1.0078	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0194 +1.0243 +1.0057	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529 +1.0009	3b/4 +0.9984 +1.5612 +2.1247 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825 +0.9948	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0529 +1.0825 +1.1126 表 I/4 +0.9984
$\frac{y}{\theta = 0.15}$ 0 b/4 b/2 3/b/4 b 0 b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9459 +0.9219 +0.8985 K_{0} +0.9884 +0.2421	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403 +0.9129 +0.9948 +0.4336	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459 +1.0009 +0.6251	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862 +0.9784 +0.9708 +1.0057 +0.8160	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969 +1.0078 +1.0078	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0143 +1.0194 +1.0243 +1.0057 +1.1929	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529 +1.0009 +1.3767	3b/4 +0.9984 +1.5612 +2.1247 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825 +0.9948 +1.5583	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0529 +1.0825 +1.1126 表 I/4 +0.9984 +1.7394
$\frac{y}{\theta = 0.15}$ 0 b/4 b/2 3/b/4 b 0 b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4 b/2	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9459 +0.9219 +0.8985 K_{0} +0.9884 +0.2421 -0.5008	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403 +0.9129 +0.9948 +0.4336 -0.1257	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459 +1.0009 +0.6251 +0.2495	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862 +0.9784 +0.9788 +1.0057 +0.8160 +0.6251	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969 +1.0078 +1.0057 +1.0009	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0194 +1.0243 +1.0057 +1.1929 +1.3767	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529 +1.0009 +1.3767 +1.7514	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825 +0.9948 +1.5583 +2.1242	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0529 +1.0825 +1.1126 表 I/4 +0.9984 +1.7394 +2.4961
$\frac{y}{\theta = 0.15}$ 0 b/4 b/2 3/b/4 b 0 b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4 b/2 3b/4 b/2 3b/4 b/2 3b/4 b/2 3b/4	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9219 +0.9219 +0.8985 K_{0} +0.9884 +0.2421 -0.5008 -1.2418	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403 +0.9129 +0.9948 +0.4336 -0.1257 -0.6839	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459 +1.0009 +0.6251 +0.2495 -0.1257	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9784 +0.9784 +0.9708 +1.0057 +0.8160 +0.6251 +0.4336	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969 +1.0078 +1.0078 +1.0057 +1.0009 +0.9948	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0194 +1.0243 +1.0057 +1.1929 +1.3767 +1.5583	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529 +1.0009 +1.3767 +1.7514 +2.1242	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825 +0.9948 +1.5583 +2.1242 +2.6913	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0825 +1.1126 表 I/4 +0.9984 +1.7394 +2.4961 +3.2581
$\frac{y}{\theta = 0.15}$ 0 b/4 b/2 3/b/4 b 0 b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4 b/2 3b/4 b d b/2 3b/4 b d b/2 b/2 b/2 b/2 b/4 b/2 b b/4 b/2 b/2 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/2 b/2 b/4 b/2 b/2 b/4 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/4 b/2 b/4 b/4 b/2 b/4 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/4	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9459 +0.9219 +0.9219 +0.8985 K_{0} +0.9884 +0.2421 -0.5008 -1.2418 -1.9823	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403 +0.9129 +0.9948 +0.4336 -0.1257 -0.6839 -1.2418	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459 +1.0009 +0.6251 +0.2495 -0.1257 -0.5008	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862 +0.9784 +0.9708 +1.0057 +0.8160 +0.6251 +0.4336 +0.2421	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969 +1.0078 +1.0057 +1.0009 +0.9948 +0.9884	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0194 +1.0243 +1.0243 +1.057 +1.1929 +1.3767 +1.5583 +1.7394	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529 +1.0009 +1.3767 +1.7514 +2.1242 +2.4961	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825 +0.9948 +1.5583 +2.1242 +2.6913 +3.2581	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0529 +1.0825 +1.1126 表 I/4 +0.9984 +1.7394 +2.4961 +3.2581 +4.0236
$\frac{y}{\theta = 0.15}$ 0 b/4 b/2 3/b/4 b 0 b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4 b/2 3b/4 b d b/2 3b/4 b d b/2 b/2 b/2 b/2 b/4 b/2 b/2 b/2 b/4 b/2 b/2 b/2 b/4 b/2 b/2 b/2 b/4 b/2 b/2 b/4 b/2 b/2 b/2 b/4 b/2 b/2 b/4 b b/2 b/2 b/4 b/2 b/2 b/2 b/2 b/2 b/4 b/2 b/2 b/2 b/2 b/2 b/2 b/4 b/2 b/2 b/2 b/2 b/2 b/2 b/4 b/2 b/2 b/2 b/4 b/2	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9459 +0.9219 +0.8985 K_{0} +0.9884 +0.2421 -0.5008 -1.2418 -1.9823 K_{1}	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403 +0.9129 +0.9948 +0.4336 -0.1257 -0.6839 -1.2418	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459 +1.0009 +0.6251 +0.2495 -0.1257 -0.5008	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862 +0.9784 +0.9708 +1.0057 +0.8160 +0.6251 +0.4336 +0.2421	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969 +1.0078 +1.0078 +1.0077 +1.0009 +0.9948 +0.9884	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0194 +1.0243 +1.0194 +1.0243 +1.0057 +1.1929 +1.3767 +1.5583 +1.7394	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529 +1.0009 +1.3767 +1.7514 +2.1242 +2.4961	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825 +0.9948 +1.5583 +2.1242 +2.6913 +3.2581	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0529 +1.0825 +1.1126 表 I/4 +0.9984 +1.7394 +2.4961 +3.2581 +4.0236
$\frac{y}{\theta = 0.15}$ 0 b/4 b/2 3/b/4 b 0 b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4 b/2 3b/4 b c 0 b/4 b/2 3b/4 b c 0 b/4 b/2 c c c c c c c c c c c c c c c c c c c	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9459 +0.9219 +0.8985 K_{0} +0.9884 +0.2421 -0.5008 -1.2418 -1.9823 K_{1} +0.9912	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403 +0.9129 +0.9948 +0.4336 -0.1257 -0.6839 -1.2418 +0.9960	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459 +1.0009 +0.6251 +0.2495 -0.1257 -0.5008 +1.0006	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862 +0.9784 +0.9708 +1.0057 +0.8160 +0.6251 +0.4336 +0.2421 +1.0044	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969 +1.0078 +1.0057 +1.0057 +1.0009 +0.9948 +0.9884 +1.0061	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0143 +1.0194 +1.0243 +1.057 +1.1929 +1.3767 +1.5583 +1.7394 +1.0044	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529 +1.0009 +1.3767 +1.7514 +2.1242 +2.4961 +1.0006 +1.0006	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825 +0.9948 +1.5583 +2.1242 +2.6913 +3.2581 +0.9960	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0529 +1.0825 +1.1126 表 I/4 +0.9984 +1.7394 +2.4961 +3.2581 +4.0236
$\frac{y}{\theta = 0.15}$ 0 b/4 b/2 3/b/4 b 0 b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4 b/2 3b/4 b 0 b/4 b/2 ab/4 b 0 b/4 b/2 b/2 b/4 b 0 b/4 b/2 b/4 b b/4 b/2 b/4 b b/4 b/2 b/4 b/2 b/4 b b/4 b/2 b/2 b/4 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/4 b/2 b/4 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/4 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/4 b/2 b/4 b/2 b/4 b/2 b/4 b/4 b/2 b/2 b/4 b/2 b/2 b/4 b/2 b/4 b/2 b/2 b/2 b/4 b/2 b/2 b/4 b/2 b/2 b/2 b/4 b/2 b/2 b/2 b/4 b/2 b/2 b/2 b/4 b/2 b/2 b/2 b/2 b/4	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9219 +0.9219 +0.8985 K_{0} +0.9884 +0.2421 -0.5008 -1.2418 -1.9823 K_{1} +0.9912 +0.9468	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9784 +0.9590 +0.9403 +0.9129 +0.9948 +0.4336 -0.1257 -0.6839 -1.2418 +0.9960 +0.9610	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459 +1.0009 +0.6251 +0.2495 -0.1257 -0.5008 +1.0006 +0.9755	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862 +0.9784 +0.9788 +1.0057 +0.8160 +0.6251 +0.4336 +0.2421 +1.0044 +0.9902	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969 +1.0078 +1.0078 +1.0057 +1.0009 +0.9948 +0.9884 +1.0061 +1.0044	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0194 +1.0243 +1.0057 +1.1929 +1.3767 +1.5583 +1.7394 +1.0044 +1.0167	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529 +1.0009 +1.3767 +1.7514 +2.1242 +2.4961 +1.0006 +1.0257	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825 +0.9948 +1.5583 +2.1242 +2.6913 +3.2581 +0.9960 +1.0328	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0529 +1.0825 +1.1126 表 I/4 +0.9984 +1.7394 +2.4961 +3.2581 +4.0236 +0.9912 +1.0392
$\frac{y}{\theta = 0.15}$ 0 b/4 b/2 3/b/4 b 0 b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4 b/2 3b/4 b 0 0 b/4 b/2 b 0 b/4 b/2 b 0 b/4 b/2 b 0 0 b/4 b/2 b	$-b$ K_{θ} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{I} +0.9969 +0.9708 +0.9219 +0.9219 +0.8985 K_{θ} +0.9884 +0.2421 -0.5008 -1.2418 -1.9823 K_{I} +0.9912 +0.9912 +0.9468 +0.9058	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403 +0.9129 +0.9948 +0.4336 -0.1257 -0.6839 -1.2418 +0.9960 +0.9610 +0.9281	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459 +1.0009 +0.6251 +0.2495 -0.1257 -0.5008 +1.0006 +0.9755 +0.9513	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9784 +0.9784 +0.9788 +1.0057 +0.8160 +0.6251 +0.4336 +0.2421 +1.0044 +0.9902 +0.9755	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969 +1.0078 +1.0078 +1.0057 +1.0009 +0.9948 +0.9884 +1.0061 +1.0044 +1.0064	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0194 +1.0243 +1.0057 +1.1929 +1.3767 +1.5583 +1.7394 +1.0044 +1.0167 +1.0257	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529 +1.0009 +1.3767 +1.7514 +2.1242 +2.4961 +1.0006 +1.0257 +1.0496	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825 +0.9948 +1.5583 +2.1242 +2.6913 +3.2581 +0.9960 +1.0328 +1.0708	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0825 +1.1126 表 I/4 +0.9984 +1.7394 +2.4961 +3.2581 +4.0236 +0.9912 +1.0392 +1.0392 +1.0396
$\frac{y}{\theta = 0.15}$ 0 b/4 b/2 3/b/4 b 0 b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4 b/2 3b/4 b/2 3b/4 b $\sigma = 0.20$ 0 b/4 b/2 3b/4 b c $\sigma = 0.20$ σ b/4 b/2 3b/4 b b c ab/4 b/2 3b/4 b b c ab/4 b/2 3b/4 b b c ab/4 b b c ab/4 b b c ab/4 b/2 3b/4 b b c ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 ab/4 b/2 b/4 b/2 b/4 b/2 b/4 b/4 b/2 b/4 b/2 b/4 b/	$-b$ K_{0} +0.9963 +0.2475 -0.5003 -1.2474 -1.9944 K_{1} +0.9969 +0.9708 +0.9459 +0.9219 +0.8985 K_{0} +0.9884 +0.2421 -0.5008 -1.2418 -1.9823 K_{1} +0.9912 +0.9468 +0.9058 +0.8674	-3b/4 +0.9984 +0.4363 -0.1252 -0.6864 -1.2474 +0.9986 +0.9784 +0.9590 +0.9403 +0.9129 +0.9948 +0.4336 -0.1257 -0.6839 -1.2418 +0.9960 +0.9610 +0.9281 +0.8972 +0.872	-b/2 +1.0003 +0.6250 +0.2499 -0.1252 -0.5003 +1.0002 +0.9862 +0.9724 +0.9590 +0.9459 +1.0009 +0.6251 +0.2495 -0.1257 -0.5008 +1.0006 +0.9755 +0.9513 +0.9281 +0.9250	-b/4 +1.0018 +0.8136 +0.6250 +0.4363 +0.2475 +1.0016 +0.9940 +0.9862 +0.9784 +0.9784 +0.9708 +1.0057 +0.8160 +0.6251 +0.4336 +0.2421 +1.0044 +0.9902 +0.9755 +0.9610	0 +1.0025 +1.0018 +1.0003 +0.9983 +0.9963 +1.0021 +1.0016 +1.0002 +0.9986 +0.9969 +1.0078 +1.0057 +1.0009 +0.9948 +0.9884 +1.0061 +1.0044 +1.0061 +0.9960 +0.9212	<i>b/4</i> +1.0018 +1.1892 +1.3755 +1.5612 +1.7466 +1.0016 +1.0085 +1.0143 +1.0194 +1.0243 +1.0194 +1.057 +1.1929 +1.3767 +1.5583 +1.7394 +1.0044 +1.0167 +1.0257 +1.0328 +1.0328	<i>b/2</i> +1.0003 +1.3755 +1.7505 +2.1247 +2.4988 +1.0002 +1.0143 +1.0279 +1.0406 +1.0529 +1.0009 +1.3767 +1.7514 +2.1242 +2.4961 +1.0006 +1.0257 +1.0496 +1.0708	3b/4 +0.9984 +1.5612 +2.1247 +2.6887 +3.2526 +0.9986 +1.0194 +1.0406 +1.0617 +10.825 +0.9948 +1.5583 +2.1242 +2.6913 +3.2581 +0.9960 +1.0328 +1.0708 +1.1086 +1.1086	b 表 I/3 +0.9963 +1.7466 +2.4988 +3.2526 +4.0075 +0.9969 +1.0243 +1.0529 +1.0825 +1.1126 表 I/4 +0.9984 +1.7394 +2.4961 +3.2581 +4.0236 +0.9912 +1.0392 +1.0392 +1.0496 +1.1449 +1.1449

表-5.1.1 横方向分配係数K₀及びK₁の表¹⁾(1)

e	- <i>b</i>	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
$\frac{y}{\theta = 0.25}$	Ka	~ /	'	,		,	,	,	表 I/5
0	+0.9719	+0 9874	+1 0021	+1 0139	+1 በ1 <u>8</u> 9	+1 N139	+1 0021	+0 9874	+0.0712
h/4	+0.2309	+0.4281	+0.6251	+0.8210	+1.0138	+1.2007	+1.3791	+1.5524	+1.7244
b/2	-0.5019	-0.1267	+0.2489	+0.6251	+1.0021	+1.3791	+1.7535	+2.1230	+2,4905
3b/4	-1.2302	-0.6789	-0.1267	+0.4281	+0.9874	+1.5524	+2.1230	+2.6966	+3.2696
- 2, - b	-1.9571	-1.2302	-0.5019	+0.2309	+0.9718	+1.7244	+2.4905	+3.2696	+4.0574
~	K ₁								
0	+0.9812	+0.9912	+1.0011	+1.0095	+1.0133	+1.0095	+1.0011	+0.9912	+0.9812
b/4	+0.9156	+0.9382	+0.9619	+0.9862	+1.0095	+1.0287	+1.0407	+1.0484	+1.0546
b/2	+0.8569	+0.8899	+0.9246	+0.9619	+1.0011	+1.0407	+1.0773	+1.1079	+1.1354
3b/4	+0.8038	+0.8456	+0.8899	+0.9382	+0.9912	+1.0484	+1.1079	+1.1669	+1.2225
b	+0.7539	+0.8038	+0.8569	+0.9156	+0.9812	+1.0546	+1.1354	+1.2225	+1.3133
$\theta = 0.30$	K _O								表 I/6
0	+0.9423	+0.9742	+1.0044	+1.0283	+1.0385	+1.0283	+1.0044	+0.9742	+0.9423
b/4	+0.2109	+0.4183	+0.6252	+0.8298	+1.0283	+1.2146	+1.3833	+1.5419	+1.6975
b/2	-0.5038	-0.1284	+0.2477	+0.6252	+1.0044	+1.3833	+1.7572	+2.1209	+2.4805
3b/4	-1.2095	-0.6698	-0.1284	+0.4183	+0.9742	+1.5419	+2.1209	+2.7062	+3.2901
b	-1.9123	-1.2095	-0.5038	+0.2109	+0.9423	+1.6975	+2.4805	+3.2901	+4.1177
	<i>K</i> ₁								I
0	+0.9664	+0.9840	+1.0018	+1.0173	+1.0244	+1.0173	+1.0018	+0.9840	+0.9664
b/4	+0.8776	+0.9104	+0.9453	+0.9820	+1.0173	+1.0451	+1.0591	+1.0652	+1.0689
b/2	+0.8012	+0.8453	+0.8929	+0.9453	+1.0018	+1.0591	+1.1108	+1.1508	+1.1849
3b/4	+0.7345	+0.7876	+0.8453	+0.9104	+0.9840	+1.0652	+1.1508	+1.2351	+1.3126
b	+0.6733	+0.7345	+0.8012	+0.8776	+0.9664	+1.0689	+1.1849	+1.3126	+1.4474
e e	— <i>b</i>	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
$\frac{y}{\theta} = 0.35$	K _O								表 I/7
0	+0.8954	+0.9532	+1.0079	+1.0514	+1.0700	+1.0514	+1.0079	+0.9532	+0.8954
b/4	+0.1793	+0.4027	+0.6252	+0.8437	+1.0514	+1.2369	+1.3903	+1.5250	+1.6545
b/2	-0.5067	-0.1311	+0.2457	+0.6252	+1.0079	+1.3903	+1.7633	+2.1176	+2.4642
3b/4	-1.1765	-0.6554	-0.1311	+0.4027	+0.9532	+1.5250	+2.1176	+2.7215	+3.3228
b	-1.8411	-1.1765	-0.5067	+0.1793	+0.8954	+1.6545	+2.4542	+3.3228	+4.2142
	K_1								l
0	+0.9466	0.0741							
b/4		+0.9/41	+1.0025	+1.0279	+1.0399	+1.0279	+1.0025	+0.9741	+0.9466
h/2	+0.8340	+0.9741 +0.8781	+1.0025 +0.9261	+1.0279 +0.9777	+1.0399 +1.0279	+1.0279 +1.0659	+1.0025 +1.0807	+0.9741 +1.0824	+0.9466 +1.0808
0/2	+0.8340 +0.7408	+0.9741 +0.8781 +0.7958	+1.0025 +0.9261 +0.8568	+1.0279 +0.9777 +0.9261	+1.0399 +1.0279 +1.0021	+1.0279 +1.0659 +1.0807	+1.0025 +1.0807 +1.1496	+0.9741 +1.0824 +1.1983	+0.9466 +1.0808 +1.2369
3b/4	+0.8340 +0.7408 +0.6624	+0.9741 +0.8781 +0.7958 +0.7255	+1.0025 +0.9261 +0.8568 +0.7958	+1.0279 +0.9777 +0.9261 +0.8781	+1.0399 +1.0279 +1.0021 +0.9741	+1.0279 +1.0659 +1.0807 +1.0824	+1.0025 +1.0807 +1.1496 +1.1983	+0.9741 +1.0824 +1.1983 +1.3115	+0.9466 +1.0808 +1.2369 +1.4123
3b/4 b	+0.8340 +0.7408 +0.6624 +0.5926	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408	+1.0279 +0.9777 +0.9261 +0.8781 +0.8340	+1.0399 +1.0279 +1.0021 +0.9741 +0.9466	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001
$\frac{b}{2}$ $\frac{3b}{4}$ b $\theta = 0.40$	+0.8340 +0.7408 +0.6624 +0.5926 <i>K</i> ₀	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408	+1.0279 +0.9777 +0.9261 +0.8781 +0.8340	+1.0399 +1.0279 +1.0021 +0.9741 +0.9466	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001 表 I/8
$b/2$ $3b/4$ b $\theta = 0.40$ 0	+0.8340 +0.7408 +0.6624 +0.5926 <i>K</i> ₀ +0.8273	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624 +0.9225	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408 +1.0129	+1.0279 +0.9777 +0.9261 +0.8781 +0.8340 +1.0851	+1.0399 +1.0279 +1.0021 +0.9741 +0.9466 +1.1160	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808 +1.0851	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369 +1.0129	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123 +0.9225	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001 表 I/8 +0.8273
$b/2$ $3b/4$ b $\theta = 0.40$ 0 $b/4$	+0.8340 +0.7408 +0.6624 +0.5926 <i>K</i> ₀ +0.8273 +0.1337	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624 +0.9225 +0.3800	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408 +1.0129 +0.6250	+1.0279 +0.9777 +0.9261 +0.8781 +0.8340 +1.0851 +0.8637	+1.0399 +1.0279 +1.0021 +0.9741 +0.9466 +1.1160 +1.0851	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808 +1.0851 +1.2696	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369 +1.0129 +1.4005	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123 +0.9225 +1.5005	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001 表 I/8 +0.8273 +1.5916
$b/2$ $3b/4$ b $\theta = 0.40$ 0 $b/4$ $b/2$	+0.8340 +0.7408 +0.6624 +0.5926 <i>K</i> o +0.8273 +0.1337 -0.5106	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624 +0.9225 +0.3800 -0.1350	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408 +1.0129 +0.6250 +0.2426	+1.0279 +0.9777 +0.9261 +0.8781 +0.8340 +1.0851 +0.8637 +0.6250	+1.0399 +1.0279 +1.0021 +0.9741 +0.9466 +1.1160 +1.0851 +1.0129	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808 +1.0851 +1.2696 +1.4005	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369 +1.0129 +1.4005 +1.7725	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123 +0.9225 +1.5005 +2.1128	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001 表 I/8 +0.8273 +1.5916 +2.4400
b/2 3b/4 b $\theta = 0.40$ 0 b/4 b/2 3b/4	+0.8340 +0.7408 +0.6624 +0.5926 <i>K₀</i> +0.8273 +0.1337 -0.5106 -1.1286	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624 +0.9225 +0.3800 -0.1350 -0.6344	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408 +1.0129 +0.6250 +0.2426 -0.1350	+1.0279 +0.9777 +0.9261 +0.8781 +0.8340 +1.0851 +0.8637 +0.6250 +0.3800	+1.0399 +1.0279 +1.0021 +0.9741 +0.9466 +1.1160 +1.0851 +1.0129 +0.9225	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808 +1.0851 +1.2696 +1.4005 +1.5005	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369 +1.0129 +1.4005 +1.7725 +2.1128	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123 +0.9225 +1.5005 +2.1128 +2.7438	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001 表 I/8 +0.8273 +1.5916 +2.4400 +3.3702
b/2 3b/4 b $\theta = 0.40$ 0 b/4 b/2 3b/4 b	+0.8340 +0.7408 +0.6624 +0.5926 K_0 +0.8273 +0.1337 -0.5106 -1.1286 -1.7381	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624 +0.9225 +0.3800 -0.1350 -0.6344 -1.1286	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408 +1.0129 +0.6250 +0.2426 -0.1350 -0.5106	+1.0279 +0.9777 +0.9261 +0.8781 +0.8340 +1.0851 +0.8637 +0.6250 +0.3800 +0.1337	+1.0399 +1.0279 +0.9741 +0.9466 +1.1160 +1.0851 +1.0129 +0.9225 +0.8273	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808 +1.0851 +1.2696 +1.4005 +1.5005 +1.5916	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369 +1.0129 +1.4005 +1.7725 +2.1128 +2.4400	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123 +0.9225 +1.5005 +2.1128 +2.7438 +3.3702	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001 表 I/8 +0.8273 +1.5916 +2.4400 +3.3702 +4.3560
b/2 3b/4 b $\theta = 0.40$ 0 b/4 b/2 3b/4 b	+0.8340 +0.7408 +0.6624 +0.5926 K_0 +0.8273 +0.1337 -0.5106 -1.1286 -1.7381 K_1	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624 +0.9225 +0.3800 -0.1350 -0.6344 -1.1286	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408 +1.0129 +0.6250 +0.2426 -0.1350 -0.5106	+1.0279 +0.9777 +0.9261 +0.8781 +0.8340 +1.0851 +0.8637 +0.6250 +0.3800 +0.1337	+1.0399 +1.0279 +1.0021 +0.9741 +0.9466 +1.1160 +1.0851 +1.0129 +0.9225 +0.8273	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808 +1.0851 +1.2696 +1.4005 +1.5015 +1.5916	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369 +1.0129 +1.4005 +1.7725 +2.1128 +2.4400	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123 +0.9225 +1.5005 +2.1128 +2.7438 +3.3702	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001 表 I/8 +0.8273 +1.5916 +2.4400 +3.3702 +4.3560
b/2 3b/4 b $\theta = 0.40$ 0 b/4 b/2 3b/4 b 0	+0.8340 +0.7408 +0.6624 +0.5926 K_{0} +0.8273 +0.1337 -0.5106 -1.1286 -1.7381 K_{1} +0.9220	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624 +0.9225 +0.3800 -0.1350 -0.6344 -1.1286 +0.9613	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408 +1.0129 +0.6250 +0.2426 -0.1350 -0.5106 +1.0030	+1.0279 +0.9777 +0.9261 +0.8381 +0.8340 +1.0851 +0.8637 +0.6250 +0.3800 +0.1337 +1.0414	+1.0399 +1.0279 +1.0021 +0.9741 +0.9466 +1.1160 +1.0851 +1.0129 +0.9225 +0.8273 +1.0601	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808 +1.0851 +1.2696 +1.4005 +1.5016 +1.5916 +1.0414	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369 +1.0129 +1.4005 +1.7725 +2.1128 +2.4400 +1.0030	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123 +0.9225 +1.5005 +2.1128 +2.7438 +3.3702 +0.9613	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001 表 I/8 +0.8273 +1.5916 +2.4400 +3.3702 +4.3560 +0.9220
b/2 3b/4 b $\theta = 0.40$ 0 b/4 b/2 3b/4 b 0 b/4 b/2 3b/4 b	+0.8340 +0.7408 +0.6624 +0.5926 K_{0} +0.8273 +0.1337 -0.5106 -1.1286 -1.7381 K_{1} +0.9220 +0.7862	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624 +0.9225 +0.3800 -0.1350 -0.6344 -1.1286 +0.9613 +0.8420	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408 +1.0129 +0.6250 +0.2426 -0.1350 -0.5106 +1.0030 +0.9043	+1.0279 +0.9777 +0.9261 +0.8781 +0.8340 +1.0851 +0.8637 +0.6250 +0.3800 +0.1337 +1.0414 +0.9733	+1.0399 +1.0279 +1.0021 +0.9741 +0.9466 +1.1160 +1.0851 +1.0129 +0.9225 +0.8273 +1.0601 +1.0414	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808 +1.0851 +1.2696 +1.4005 +1.5916 +1.5916 +1.0414 +1.0914	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369 +1.0129 +1.4005 +1.7725 +2.1128 +2.4400 +1.0030 +1.1051	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123 +0.9225 +1.5005 +2.1128 +2.7438 +3.3702 +0.9613 +1.0994	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001 表 I/8 +0.8273 +1.5916 +2.4400 +3.3702 +4.3560 +0.9220 +1.0893
b/2 3b/4 b $\theta = 0.40$ 0 b/4 b/2 3b/4 b 0 b/4 b/2 3b/4 b	+0.8340 +0.7408 +0.6624 +0.5926 K_{0} +0.8273 +0.1337 -0.5106 -1.1286 -1.7381 K_{1} +0.9220 +0.7862 +0.6778	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624 +0.9225 +0.3800 -0.1350 -0.6344 -1.1286 +0.9613 +0.8420 +0.7429	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408 +1.0129 +0.6250 +0.2426 -0.1350 -0.5106 +1.0030 +0.9043 +0.8171	+1.0279 +0.9777 +0.9261 +0.8781 +0.8340 +1.0851 +0.6250 +0.3800 +0.1337 +1.0414 +0.9733 +0.9043	+1.0399 +1.0279 +1.0021 +0.9741 +0.9466 +1.1160 +1.0851 +1.0129 +0.9225 +0.8273 +1.0601 +1.0414 +1.0030	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808 +1.0851 +1.2696 +1.4005 +1.5016 +1.5916 +1.0414 +1.0914 +1.1051	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369 +1.0129 +1.4005 +1.7725 +2.1128 +2.4400 +1.0030 +1.1051 +1.1931	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123 +0.9225 +1.5005 +2.1128 +2.7438 +3.3702 +0.9613 +1.0994 +1.2489	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001 表 I/8 +0.8273 +1.5916 +2.4400 +3.3702 +4.3560 +0.9220 +1.0893 +1.2893
b/2 3b/4 b $\theta = 0.40$ 0 b/4 b/2 3b/4 b 0 b/4 b/2 3b/4 b 2 3b/4 b	+0.8340 +0.7408 +0.6624 +0.5926 K_0 +0.8273 +0.1337 -0.5106 -1.1286 -1.7381 K_I +0.9220 +0.7862 +0.6778 +0.5903	+0.9741 +0.8781 +0.7958 +0.7255 +0.6624 +0.9225 +0.3800 -0.1350 -0.6344 -1.1286 +0.9613 +0.8420 +0.7429 +0.6613	+1.0025 +0.9261 +0.8568 +0.7958 +0.7408 +1.0129 +0.6250 +0.2426 -0.1350 -0.5106 +1.0030 +0.9043 +0.8171 +0.7429	+1.0279 +0.9777 +0.9261 +0.8781 +0.8340 +1.0851 +0.6250 +0.3800 +0.1337 +1.0414 +0.9733 +0.9043 +0.8420	+1.0399 +1.0279 +0.9741 +0.9466 +1.1160 +1.0851 +1.0129 +0.9225 +0.8273 +1.0601 +1.0414 +1.0030 +0.9613	+1.0279 +1.0659 +1.0807 +1.0824 +1.0808 +1.0851 +1.2696 +1.4005 +1.5005 +1.5916 +1.0414 +1.0914 +1.0914	+1.0025 +1.0807 +1.1496 +1.1983 +1.2369 +1.0129 +1.4005 +1.7725 +2.1128 +2.4400 +1.0030 +1.1051 +1.1931 +1.2489	+0.9741 +1.0824 +1.1983 +1.3115 +1.4123 +0.9225 +1.5005 +2.1128 +2.7438 +3.3702 +0.9613 +1.0994 +1.2489 +1.3940	+0.9466 +1.0808 +1.2369 +1.4123 +1.6001 表 I/8 +0.8273 +1.5916 +2.4400 +3.3702 +4.3560 +0.9220 +1.0893 +1.2893 +1.5188

表-5.1.1 横方向分配係数K₀及びK₁の表¹⁾(2)

e e	— <i>b</i>	-3b/4	-b/2	— b/4	0	b/4	b/2	3b/4	b
y θ=0.45	K _O								表 I/9
0	+0.7355	+0.8811	+1.0194	+1.1305	+1.1783	+1.1305	+1.0194	+0.8811	+0.7355
b/4	+0.0730	+0.3495	+0.6243	+0.8902	+1.1305	+1.3144	+1.4148	+1.4672	+1.5060
b/2	-0.5152	-0.1402	+0.2380	+0.6243	+1.1094	+1.4148	+1.7857	+2.1063	+2.4061
3b/4	-1.0640	-0.6060	-0.1402	+0.3495	+0.8811	+1.4672	+2.1063	+2.7741	+3.4340
b	-1.6003	-1.0640	-0.5152	+0.0730	+0.7355	+1.5059	+2.4061	+3.4340	+4.5496
	K_1	-						_	-
0	+0.8933	+0.9458	+1.0032	+1.0577	+1.0850	+1.0577	+1.0032	+0.9458	+0.8933
b/4	+0.7355	+0.8029	+0.8804	+0.9688	+1.0577	+1.1214	+1.1318	+1.1152	+1.0938
b/2	+0.6142	+0.6881	+0.7748	+0.8804	+1.0032	+1.1318	+1.2405	+1.3013	+1.3400
3b/4	+0.5202	+0.5969	+0.6881	+0.8029	+0.9458	+1.1152	+1.3013	+1.4809	+1.6291
b	+0.4418	+0.5202	+0.6142	+0.7355	+0.8933	+1.0938	+1.3400	+1.6291	+1.9476
$\theta = 0.50$	К _О								表 I/10
0	+0.6203	+0.8288	+1.0273	+1.1877	+1.2575	+1.1877	+1.0273	+0.8288	+0.6203
b/4	-0.0021	+0.3111	+0.6223	+0.9226	+1.1877	+1.3721	+1.4336	+1.4250	+1.3968
b/2	-0.5198	-0.1466	+0.2317	+0.6223	+1.0273	+1.4336	+1.8038	+2.0981	+2.3613
3b/4	-0.9828	-0.5703	-0.1466	+0.3111	+0.8288	+1.4250	+2.0981	+2.8125	+3.5140
b	-1.4286	-0.9828	-0.5198	-0.0021	+0.6203	+1.3968	+2.3613	+3.5140	+4.7981
	K 1			i	1	1	1	1	1
0	+0.8609	+0.9276	+1.0028	+1.0767	+1.1146	+1.0767	+1.0028	+0.9276	+0.8609
b/4	+0.6834	+0.7617	+0.8547	+0.9642	+1.0767	+1.1557	+1.1603	+1.1293	+1.0937
b/2	+0.5516	+0.6326	+0.7308	+0.8547	+1.0028	+1.1603	+1.2911	+1.3544	+1.3876
3b/4	+0.4538	+0.5340	+0.6326	+0.7617	+0.9276	+1.1293	+1.3544	+1.5704	+1.7409
b	+0.3751	+0.4538	+0.5516	+0.6834	+0.8609	+1.0937	+1.3876	+1.7409	+2.1362
e e	— <i>b</i>	-3b/4	— b/2	— b/4	0	b/4	b/2	3b/4	b
$\theta = 0.55$	K _O								表 I/11
0	+0.4848	+0.7666	+1.0360	+1.2556	+1.3521	+1.2556	+1.0360	+0.7666	+0.4848
b/4	-0.0883	+0.2657	+0.6185	+0.9592	+1.2556	+1.4423	+1.4571	+1.3746	+1.2654
b/2	-0.5233	-0.1539	+0.2230	+0.6185	+1.0360	+1.4571	+1.8274	+2.0885	+2.3046
3b/4	-0.8871	-0.5279	-0.1539	+0.2657	+0.7666	+1.3746	+2.0885	+2.8585	+3.6081
b	-1.2289	-0.8871	-0.5233	-0.0883	+0.4848	+1.2654	+2.3046	+3.6081	+5.0997
-									•
0	+0.8255	+0.9069	+1.0016	+1.0980	+1.1489	+1.0980	+1.0016	+0.9069	+0.8255
b/4	+0.6309	+0.7192	+0.8275	+0.9595	+1.0980	+1.1940	+1.1901	+1.1411	+1.0889
b/2	+0.4916	+0.5777	+0.6859	+0.8257	+1.0016	+1.1901	+1.3443	+1.4070	+1.4308
3b/4	+0.3922	+0.4737	+0.5777	+0.7192	+0.9069	+1.1411	+1.4070	+1.6611	+1.8519
b	+0.3153	+0.3922	+0.4916	+0.6309	+0.8255	+1.0889	+1.4308	+1.8519	+2.3314
$\theta = 0.60$	K _O								表 I/12
0	+0.3347	+0.6968	+1.0447	+1.3316	+1.4594	+1.3316	+1.0447	+0.6968	+0.3347
b/4	-0.1808	+0.2154	+0.6119	+0.9977	+1.3316	+1.5237	+1.4853	+1.3177	+1.1155
b/2	-0.5241	-0.1615	+0.2117	+0.6119	+1.0447	+1.4853	+1.8575	+2.0778	+2.2358
3b/4	-0.7808	-0.4806	-0.1615	+0.2154	+0.6968	+1.3177	+2.0778	+2.9106	+3.7122
b	-1.0112	-0.7808	-0.5241	-0.1808	+0.3347	+1.1155	+2.2358	+3.7122	+5.4480
	<i>K</i> ₁			L					
0		-							.0.7070
	+0.7878	+0.8839	+0.9996	+1.1215	+1.1878	+1.1215	+0.9996	+0.8839	+0./8/8
b/4	+0.7878 +0.5792	+0.8839 +0.6761	+0.9996 +0.7992	+1.1215 +0.9545	+1.1878 +1.1215	+1.1215 +1.2361	+0.9996 +1.2207	+0.8839 +1.1510	+0.7878
b/4 b/2	+0.7878 +0.5792 +0.4349	+0.8839 +0.6761 +0.5243	+0.9996 +0.7992 +0.6410	+1.1215 +0.9545 +0.7992	+1.1878 +1.1215 +0.9996	+1.1215 +1.2361 +1.2207	+0.9996 +1.2207 +1.3994	+0.8839 +1.1510 +1.4582	+0.7878 +1.0792 +1.4686
b/4 b/2 3b/4	+0.7878 +0.5792 +0.4349 +0.3362	+0.8839 +0.6761 +0.5243 +0.4171	+0.9996 +0.7992 +0.6410 +0.5243	+1.1215 +0.9545 +0.7992 +0.6761	+1.1878 +1.1215 +0.9996 +0.8839	+1.1215 +1.2361 +1.2207 +1.1501	+0.9996 +1.2207 +1.3994 +1.4582	+0.8839 +1.1510 +1.4582 +1.7518	+0.7878 +1.0792 +1.4686 +1.9607

表-5.1.1 横方向分配係数K₀及びK₁の表¹⁾(3)

e e	-b	-3b/4	-b/2	— b/4	0	b/4	b/2	3b/4	b
y θ=0.65	K _O								表 I/13
0	+0.1776	+0.6223	+1.0524	+1.4121	+1.5752	+1.4121	+1.0524	+0.6223	+0.1776
b/4	-0.2731	+0.1624	+0.6014	+1.0346	+1.4121	+1.6143	+1.5180	+1.2565	+0.9520
b/2	-0.5207	-0.1690	+0.1974	+0.6014	+1.0524	+1.5180	+1.8946	+2.0666	+2.1547
<i>~,</i> _ 3b/4	-0.6691	-0.4303	-0.1690	+0.1624	+0.6223	+1.2565	+2.0666	+2.9669	+3.8208
b	-0.7883	-0.6691	-0.5207	-0.2731	+0.1776	+0.9520	+2.1547	+3.8280	+5.8338
	<i>K</i> ₁								
0	+0.7485	+0.8588	+0.9965	+1.1468	+1.2310	+1.1468	+0.9965	+0.8588	+0.7485
b/4	+0.5289	+0.6330	+0.7702	+0.9493	+1.1468	+1.2818	+1.2515	+1.1561	+1.0648
b/2	+0.3823	+0.4734	+0.5966	+0.7702	+0.9965	+1.2515	+1.4559	+1.5073	+1.5005
3b/4	+0.2860	+0.3648	+0.4734	+0.6330	+0.8588	+1.1561	+1.5073	+1.8418	+2.0659
b	+0.2171	+0.2860	+0.3823	+0.5289	+0.7485	+1.0648	+1.5005	+2.0659	+2.7342
$\theta = 0.70$	K _O						_	_	表 I/14
0	+0.0216	+0.5464	+1.0580	+1.4938	+1.6955	+1.4938	+1.0580	+0.5464	+0.0216
b/4	-0.3589	+0.1095	+0.5862	+1.0670	+1.4938	+1.7118	+1.5548	+1.1934	+0.7809
b/2	-0.5114	-0.1756	+0.1798	+0.5862	+1.0580	+1.5548	+1.9392	+2.0554	+2.0618
3b/4	-0.5575	-0.3794	-0.1756	+0.1095	+0.5464	+1.1934	+2.0554	+3.0254	+3.9282
b	-0.5733	-0.5575	-0.5114	-0.3589	+0.0216	+0.7809	+2.0618	+3.9282	+6.2464
	<i>K</i> ₁			L					
0	+0.7080	+0.8319	+0.9923	+1.1737	+1.2783	+1.1737	+0.9923	+0.8319	+0.7080
b/4	+0.4808	+0.5905	+0.7407	+0.9437	+1.1737	+1.3307	+1.2824	+1.1589	+1.0461
b/2	+0.3342	+0.4253	+0.5535	+0.7407	+0.9923	+1.2824	+1.5134	+1.5539	+1.5262
3b/4	+0.2417	+0.3171	+0.4253	+0.5905	+0.8319	+1.1589	+1.5539	+1.9305	+2.1668
b	+0.1782	+0.2417	+0.3342	+0.4808	+0.7080	+1.0461	+1.5262	+2.1668	+2.9395
e e	— <i>b</i>	-3b/4	— b/2	— b/4	0	b/4	b/2	3b/4	b
$\theta = 0.75$	K _O								表 I/15
0	-0.1260	+0.4719	+1.0606	+1.5732	+1.8163	+1.5732	+1.0606	+0.4719	-0.1260
b/4	-0.4324	+0.0588	+0.5657	+1.0920	+1.5732	+1.8140	+1.5951	+1.1305	+0.6074
b/2	-0.4953	-0.1809	+0.1589	+0.5657	+1.0606	+1.5951	+1.9919	+2.0449	+1.9577
3b/4	-0.4508	-0.3299	-0.1809	+0.0588	+0.4719	+1.1305	+2.0449	+3.0842	+4.0292
b	-0.3776	-0.4508	-0.4953	-0.4324	-0.1260	+0.6074	+1.9577	+4.0292	+6.6762
-	<i>K</i> ₁							•	•
0	+0.6670	+0.8035	+0.9869	+1.2018	+1.3294	+1.2018	+0.9869	+0.8035	+0.6670
b/4	+0.4351	+0.5490	+0.7110	+0.9377	+1.2018	+1.3825	+1.3128	+1.1584	+1.0233
b/2	+0.2906	+0.3804	+0.5118	+0.7110	+0.9869	+1.3128	+1.5717	+1.5976	+1.5456
3b/4	+0.2030	+0.2741	+0.3804	+0.5490	+0.8035	+1.1584	+1.5976	+2.0174	+2.2628
b	+0.1452	+0.2030	+0.2906	+0.4351	+0.6670	+1.0233	+1.5456	+2.2628	+3.1462
$\theta = 0.80$	K _O								表 I/16
0	-0.2595	+0.4010	+1.0595	+1.6478	+1.9348	+1.6478	+1.0595	+0.4010	-0.2595
b/4	-0.4898	+0.0123	+0.5394	+1.1076	+1.6478	+1.9191	+1.6383	+1.0694	+0.4362
b/2	-0.4719	-0.1844	+0.1348	+0.5394	+1.0595	+1.6383	+2.0526	+2.0353	+1.8428
3b/4	-0.3530	-0.2834	-0.1844	+0.0123	+0.4010	+1.0694	+2.0353	+3.1419	+4.1195
b	-0.2094	-0.3530	-0.4719	-0.4898	-0.2595	+0.4362	+1.8428	+4.1195	+7.1154
-	<i>K</i> ₁						-	_	
0				1					· · · · · · · · · · · · · · · · · · ·
	+0.6259	+0.7738	+0.9802	+1.2308	+1.3841	+1.2308	+0.9802	+0.7738	+0.6259
b/4	+0.6259 +0.3923	+0.7738 +0.5089	+0.9802 +0.6812	+1.2308 +0.9313	+1.3841 +1.2308	+1.2308 +1.4371	+0.9802 +1.3426	+0.7738 +1.1547	+0.6259 +0.9971
b/4 b/2	+0.6259 +0.3923 +0.2516	+0.7738 +0.5089 +0.3389	+0.9802 +0.6812 +0.4720	+1.2308 +0.9313 +0.6812	+1.3841 +1.2308 +0.9802	+1.2308 +1.4371 +1.3426	+0.9802 +1.3426 +1.6305	+0.7738 +1.1547 +1.6381	+0.6259 +0.9971 +1.5588
b/4 b/2 3b/4	+0.6259 +0.3923 +0.2516 +0.1695	+0.7738 +0.5089 +0.3389 +0.2358	+0.9802 +0.6812 +0.4720 +0.3389	+1.2308 +0.9313 +0.6812 +0.5089	+1.3841 +1.2308 +0.9802 +0.7738	+1.2308 +1.4371 +1.3426 +1.1547	+0.9802 +1.3426 +1.6305 +1.6381	+0.7738 +1.1547 +1.6381 +2.1023	+0.6259 +0.9971 +1.5588 +2.3534

表-5.1.1 横方向分配係数K₀及びK₁の表¹⁾(4)

e e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
) θ=0.85	K _O								表 I/17
0	-0.3753	+0.3351	+1.0539	+1.7160	+2.0493	+1.7160	+1.0539	+0.3351	-0.3753
b/4	-0.5289	-0.0290	+0.5074	+1.1126	+1.7160	+2.0259	+1.6839	+1.0113	+0.2705
b/2	-0.4412	-0.1858	+0.1081	+0.5074	+1.0539	+1.6839	+2.1214	+2.0271	+1.7181
, 3b/4	-0.2663	-0.2409	-0.1858	-0.0290	+0.3351	+1.0113	+2.0271	+3.1979	+4.1963
b	-0.0733	-0.2663	-0.4412	-0.5289	-0.3753	+0.2705	+1.7181	+4.1963	+7.5588
-	K 1							-	
0	+0.5852	+0.7432	+0.9723	+1.2604	+1.4420	+1.2604	+0.9723	+0.7432	+0.5852
b/4	+0.3524	+0.4703	+0.6517	+0.9242	+1.2604	+1.4941	+1.3716	+1.1478	+0.9678
b/2	+0.2170	+0.3009	+0.4343	+0.6517	+0.9723	+1.3716	+1.6897	+1.6753	+1.5660
3b/4	+0.1409	+0.2019	+0.3009	+0.4703	+0.7432	+1.1478	+1.6753	+2.1851	+2.4385
b	+0.0949	+0.1409	+0.2170	+0.3524	+0.5852	+0.9678	+1.5660	+2.4385	+3.5623
$\theta = 0.90$	K _O								表 I/18
0	-0.4715	+0.2749	+1.0436	+1.7771	+2.1592	+1.7771	+1.0436	+0.2749	-0.4715
b/4	-0.5493	-0.0646	+0.4700	+1.1070	+1.7771	+2.1334	+1.7309	+0.9565	+0.1129
b/2	-0.4042	-0.1851	+0.0792	+0.4700	+1.0436	+1.7309	+2.1980	+2.0203	+1.5843
3b/4	-0.1919	-0.2028	-0.1851	-0.0646	+0.2749	+0.9565	+2.0203	+3.2519	+4.2579
b	+0.0299	-0.1919	-0.4042	-0.5493	-0.4715	+0.1129	+1.5843	+4.2579	+8.0034
	K 1			1		1	1	1	i
0	+0.5452	+0.7119	+0.9631	+1.2903	+1.5028	+1.2903	+0.9631	+0.7119	+0.5452
b/4	+0.3155	+0.4335	+0.6224	+0.9164	+1.2903	+1.5534	+1.3996	+1.1380	+0.9359
b/2	+0.1864	+0.2663	+0.3987	+0.6224	+0.9631	+1.3996	+1.7493	+1.7094	+1.5677
3b/4	+0.1166	+0.1722	+0.2663	+0.4335	+0.7119	+1.1380	+1.7094	+2.2568	+2.5180
b	+0.0762	+0.1166	+0.1864	+0.3155	+0.5452	+0.9359	+1.5677	+2.5180	+3.7710
e	- <i>b</i>	-3b/4	-b/2	— b/4	0	b/4	b/2	3b/4	b
$\frac{y}{\theta = 0.95}$	Ka								表 I/19
0	-0 5476	+0 2205	+1 0283	+1 8308	+2 2647	+1 8308	+1 0283	+0 2205	-0 5476
h/4	-0.5520	-0.0942	+0.4281	+1.0911	+1.8308	+2.2413	+1.7788	+0.9051	-0.0352
_/ - h/2	-0.3619	-0.1823	+0.0490	+0.4281	+1.0283	+1.7788	+2.2821	+2.0152	+1.4425
-/- 3b/4	-0.1299	-0.1694	-0.1823	-0.0942	+0.2205	+0.9051	+2.0152	+3.3040	+4.3036
b	+0.1017	-0.1299	-0.3619	-0.5520	-0.5476	-0.0352	+1.4425	+4.3036	+8.4478
	K 1								-
0	+0.5064	+0.6801	+0.9526	+1.3202	+1.5662	+1.3202	+0.9526	+0.6801	+0.5064
b/4	+0.2816	+0.3985	+0.5936	+0.9079	+1.3202	+1.6148	+1.4265	+1.1255	+0.9021
b/2	+0.1596	+0.2351	+0.3654	+0.5936	+0.9526	+1.4265	+1.8093	+1.7402	+1.5641
3b/4	+0.0961				0 6001	11255	1 7403	+2.3445	+2.5920
b	+0.0701	+0.1463	+0.2351	+0.3985	+0.0001	+1.1255	+1.7402		
	+0.0608	+0.1463 +0.0961	+0.2351 +0.1596	+0.3985 +0.2816	+0.5064	+0.9021	+1.7402	+2.5920	+3.9800
$\theta = 1.00$	+0.0501 +0.0608 <i>K</i> ₀	+0.1463 +0.0961	+0.2351 +0.1596	+0.3985 +0.2816	+0.5064	+0.9021	+1.7402	+2.5920	+3.9800 表 I/20
$\theta = 1.00$ θ	+0.0608 <i>K</i> ₀ -0.6044	+0.1463 +0.0961 +0.1715	+0.2351 +0.1596 +1.0080	+0.3985 +0.2816 +1.8775	+0.5064	+1.1233 +0.9021 +1.8775	+1.7402 +1.5641 +1.0080	+2.5920 +0.1715	+3.9800 表 I/20 -0.6044
$\theta = 1.00$ 0 b/4	+0.0501 +0.0608 <i>K₀</i> -0.6044 -0.5391	+0.1463 +0.0961 +0.1715 -0.1183	+0.2351 +0.1596 +1.0080 +0.3824	+0.3985 +0.2816 +1.8775 +1.0658	+0.3001 +0.5064 +2.3663 +1.8775	+1.1233 +0.9021 +1.8775 +2.3492	+1.7402 +1.5641 +1.0080 +1.8265	+2.5920 +0.1715 +0.8567	+3.9800 表 I/20 -0.6044 -0.1726
θ = 1.00 0 b/4 b/2	+0.0001 +0.0608 <i>K₀</i> -0.6044 -0.5391 -0.3161	+0.1463 +0.0961 +0.1715 -0.1183 -0.1774	+0.2351 +0.1596 +1.0080 +0.3824 +0.0184	+0.3985 +0.2816 +1.8775 +1.0658 +0.3824	+0.5064 +0.5064 +2.3663 +1.8775 +1.0080	+1.1233 +0.9021 +1.8775 +2.3492 +1.8265	+1.7402 +1.5641 +1.0080 +1.8265 +2.3729	+2.5920 +0.1715 +0.8567 +2.0116	+3.9800 表 I/20 -0.6044 -0.1726 +1.2940
$\theta = 1.00$ 0 $b/4$ $b/2$ $3b/4$	+0.0301 +0.0608 <i>K₀</i> -0.6044 -0.5391 -0.3161 -0.0796	+0.1463 +0.0961 +0.1715 -0.1183 -0.1774 -0.1402	+0.2351 +0.1596 +1.0080 +0.3824 +0.0184 -0.1774	+0.3985 +0.2816 +1.8775 +1.0658 +0.3824 -0.1183	+0.0801 +0.5064 +2.3663 +1.8775 +1.0080 +0.1715	+1.1233 +0.9021 +1.8775 +2.3492 +1.8265 +0.8567	+1.7402 +1.5641 +1.0080 +1.8265 +2.3729 +2.0116	+2.5920 +0.1715 +0.8567 +2.0116 +3.3546	+3.9800 表 I/20 -0.6044 -0.1726 +1.2940 +4.3335
$\theta = 1.00$ 0 b/4 b/2 3b/4 b	+0.0901 +0.0608 <i>K₀</i> -0.6044 -0.5391 -0.3161 -0.0796 +0.1460	+0.1463 +0.0961 +0.1715 -0.1183 -0.1774 -0.1402 -0.0796	+0.2351 +0.1596 +1.0080 +0.3824 +0.0184 -0.1774 -0.3161	+0.3985 +0.2816 +1.8775 +1.0658 +0.3824 -0.1183 -0.5391	+0.0801 +0.5064 +2.3663 +1.8775 +1.0080 +0.1715 -0.6044	+1.1233 +0.9021 +1.8775 +2.3492 +1.8265 +0.8567 -0.1726	+1.7402 +1.5641 +1.0080 +1.8265 +2.3729 +2.0116 +1.2940	+2.5920 +0.1715 +0.8567 +2.0116 +3.3546 +4.3335	+3.9800 表 I/20 -0.6044 -0.1726 +1.2940 +4.3335 +8.8915
$\theta = 1.00$ 0 $b/4$ $b/2$ $3b/4$ b	+0.0501 +0.0608 K_{0} -0.6044 -0.5391 -0.3161 -0.0796 +0.1460 K_{1}	+0.1463 +0.0961 +0.1715 -0.1183 -0.1774 -0.1402 -0.0796	+0.2351 +0.1596 +1.0080 +0.3824 +0.0184 -0.1774 -0.3161	+0.3985 +0.2816 +1.8775 +1.0658 +0.3824 -0.1183 -0.5391	+0.0801 +0.5064 +2.3663 +1.8775 +1.0080 +0.1715 -0.6044	+1.1233 +0.9021 +1.8775 +2.3492 +1.8265 +0.8567 -0.1726	+1.7402 +1.5641 +1.0080 +1.8265 +2.3729 +2.0116 +1.2940	+2.5920 +0.1715 +0.8567 +2.0116 +3.3546 +4.3335	+3.9800 表 I/20 -0.6044 -0.1726 +1.2940 +4.3335 +8.8915
$\theta = 1.00$ 0 b/4 b/2 3b/4 b 0	+0.0501 +0.0608 K_0 -0.6044 -0.5391 -0.3161 -0.0796 +0.1460 K_1 +0.4688	+0.1463 +0.0961 +0.1715 -0.1183 -0.1774 -0.1402 -0.0796 +0.6482	+0.2351 +0.1596 +1.0080 +0.3824 +0.0184 -0.1774 -0.3161 +0.9410	+0.3985 +0.2816 +1.8775 +1.0658 +0.3824 -0.1183 -0.5391 +1.3499	+0.0801 +0.5064 +2.3663 +1.8775 +1.0080 +0.1715 -0.6044 +1.6320	+1.1233 +0.9021 +1.8775 +2.3492 +1.8265 +0.8567 -0.1726 +1.3499	+1.7402 +1.5641 +1.0080 +1.8265 +2.3729 +2.0116 +1.2940 +0.9410	+2.5920 +0.1715 +0.8567 +2.0116 +3.3546 +4.3335 +0.6482	+3.9800 表 I/20 -0.6044 -0.1726 +1.2940 +4.3335 +8.8915 +0.4688
$\theta = 1.00$ 0 b/4 b/2 3b/4 b 0 b/4	+0.0501 +0.0608 K_0 -0.6044 -0.5391 -0.3161 -0.0796 +0.1460 K_1 +0.4688 +0.2506	+0.1463 +0.0961 +0.1715 -0.1183 -0.1774 -0.1402 -0.0796 +0.6482 +0.3656	+0.2351 +0.1596 +1.0080 +0.3824 +0.0184 -0.1774 -0.3161 +0.9410 +0.5652	+0.3985 +0.2816 +1.8775 +1.0658 +0.3824 -0.1183 -0.5391 +1.3499 +0.8985	+0.0801 +0.5064 +2.3663 +1.8775 +1.0080 +0.1715 -0.6044 +1.6320 +1.3499	+1.1233 +0.9021 +1.8775 +2.3492 +1.8265 +0.8567 -0.1726 +1.3499 +1.6781	+1.7402 +1.5641 +1.0080 +1.8265 +2.3729 +2.0116 +1.2940 +0.9410 +1.4523	+2.5920 +0.1715 +0.8567 +2.0116 +3.3546 +4.3335 +0.6482 +1.1105	+3.9800 表 I/20 -0.6044 -0.1726 +1.2940 +4.3335 +8.8915 +0.4688 +0.8667
$\theta = 1.00$ 0 b/4 b/2 3b/4 b 0 b/4 b/2	+0.0501 +0.0608 K_0 -0.6044 -0.5391 -0.3161 -0.0796 +0.1460 K_1 +0.4688 +0.2506 +0.1363	+0.1463 +0.0961 +0.1715 -0.1183 -0.1774 -0.1402 -0.0796 +0.6482 +0.3656 +0.2070	+0.2351 +0.1596 +1.0080 +0.3824 +0.0184 -0.1774 -0.3161 +0.9410 +0.5652 +0.3342	+0.3985 +0.2816 +1.8775 +1.0658 +0.3824 -0.1183 -0.5391 +1.3499 +0.8985 +0.5652	+0.0801 +0.5064 +2.3663 +1.8775 +1.0080 +0.1715 -0.6044 +1.6320 +1.3499 +0.9410	+1.1233 +0.9021 +1.8775 +2.3492 +1.8265 +0.8567 -0.1726 +1.3499 +1.6781 +1.4523	+1.7402 +1.5641 +1.0080 +1.8265 +2.3729 +2.0116 +1.2940 +0.9410 +1.4523 +1.8696	+2.5920 +0.1715 +0.8567 +2.0116 +3.3546 +4.3335 +0.6482 +1.1105 +1.7679	+3.9800 表 I/20 -0.6044 -0.1726 +1.2940 +4.3335 +8.8915 +0.4688 +0.8667 +1.5557
$\theta = 1.00$ 0 b/4 b/2 3b/4 b 0 b/4 b/2 3b/4	+0.0501 +0.0608 K_0 -0.6044 -0.5391 -0.3161 -0.0796 +0.1460 K_1 +0.4688 +0.2506 +0.1363 +0.0789	+0.1463 +0.0961 -0.1715 -0.1183 -0.1774 -0.1402 -0.0796 +0.6482 +0.3656 +0.2070 +0.1240	+0.2351 +0.1596 +1.0080 +0.3824 +0.0184 -0.1774 -0.3161 +0.9410 +0.5652 +0.3342 +0.2070	+0.3985 +0.2816 +1.8775 +1.0658 +0.3824 -0.1183 -0.5391 +1.3499 +0.8985 +0.5652 +0.3656	+0.0801 +0.5064 +2.3663 +1.8775 +1.0080 +0.1715 -0.6044 +1.6320 +1.3499 +0.9410 +0.6482	+1.1233 +0.9021 +1.8775 +2.3492 +1.8265 +0.8567 -0.1726 +1.3499 +1.6781 +1.4523 +1.1105	+1.7402 +1.5641 +1.0080 +1.8265 +2.3729 +2.0116 +1.2940 +0.9410 +1.4523 +1.8696 +1.7679	+2.5920 +0.1715 +0.8567 +2.0116 +3.3546 +4.3335 +0.6482 +1.1105 +1.7679 +2.4213	+3.9800 表 I/20 -0.6044 -0.1726 +1.2940 +4.3335 +8.8915 +0.4688 +0.8667 +1.5557 +2.6605

表-5.1.1 横方向分配係数K₀及びK₁の表¹⁾(5)

e e	- <i>b</i>	-3b/4	-b/2	- b/4	0	b/4	b/2	3b/4	b
<u>y</u> θ=1.10	K _O	1							表 I/21
0	-0.6652	+0.0880	+0.9531	+1.9518	+2.5621	+1.9518	+0.9531	+0.0880	-0.6652
b/4	-0.4770	-0.1515	+0.2842	+0.9925	+1.9518	+2.5643	+1.9180	+0.7675	-0.4129
b/2	-0.2209	-0.1626	-0.0403	+0.2842	+0.9531	+1.9180	+2.5717	+2.0089	+0.9824
, 3b/4	-0.0097	-0.0936	-0.1626	-0.1515	+0.0880	+0.7675	+2.0089	+3.4539	+4.3474
b	+0.1709	-0.0097	-0.2209	-0.4770	-0.6652	-0.4129	+0.9824	+4.3474	+9.7780
	K ₁							-	
0	+0.3985	+0.5848	+0.9142	+1.4075	+1.7691	+1.4075	+0.9142	+0.5848	+0.3985
b/4	+0.1969	+0.3055	+0.5103	+0.8771	+1.4075	+1.8095	+1.5003	+1.0740	+0.7931
b/2	+0.0985	+0.1593	+0.2783	+0.5103	+0.9142	+1.5003	+1.9915	+1.8145	+1.5263
3b/4	+0.0527	+0.0882	+0.1593	+0.3055	+0.5848	+1.0740	+1.8145	+2.5695	+2.7813
b	+0.0303	+0.0527	+0.0985	+0.1969	+0.3985	+0.7931	+1.5263	+2.7813	+4.6078
$\theta = 1.20$	K _O							_	表 I/22
0	-0.6677	+0.0199	+0.8805	+2.0050	+2.7541	+2.0050	+0.8805	+0.0199	-0.6677
b/4	-0.3856	-0.1685	+0.1841	+0.8977	+2.0050	+2.7777	+1.9987	+0.6851	-0.6038
b/2	-0.1317	-0.1424	-0.0900	+0.1841	+0.8805	+1.9987	+2.7876	+2.0114	+0.6620
3b/4	+0.0279	-0.0594	-0.1424	-0.1685	+0.0199	+0.6851	+2.0114	+3.5547	+4.3049
b	+0.1439	+0.0279	-0.1317	-0.3856	-0.6677	-0.6038	+0.6620	+4.3049	+10.6646
	K 1								
0	+0.3352	+0.5233	+0.8834	+1.4614	+1.9124	+1.4614	+0.8834	+0.5233	+0.3352
b/4	+0.1533	+0.2534	+0.4582	+0.8520	+1.4614	+1.9466	+1.5432	+1.0306	+0.7182
b/2	+0.0706	+0.1217	+0.2304	+0.4582	+0.8834	+1.5432	+2.1156	+1.8501	+1.4827
3b/4	+0.0348	+0.0621	+0.1217	+0.2534	+0.5233	+1.0306	+1.8501	+2.7114	+2.8817
b	+0.0188	+0.0348	+0.0706	+0.1533	+0.3352	+0.7182	+1.4827	+2.8817	+5.0266
e	h	21-14	h (2	L (4	0	L (4	h /2	21-14	Ŀ
<u>y</u>	- <i>b</i>	-3D/4	-b/2	- <i>b</i> /4	0	D/4	D/2	3D/4	D
$\theta = 1.30$	К _О			1	1		I	1	表 I/23
0	-0.6266	-0.0365	+0.7931	+2.0413	+2.9484	+2.0413	+0.7931	-0.0365	-0.6266
b/4	-0.2848	-0.1733	+0.0898	+0.7914	+2.0413	+2.9889	+2.0633	+0.6061	-0.7438
b/2	-0.0585	-0.1191	-0.1259	+0.0898	+0.7931	+2.0633	+3.0138	+2.0173	+0.3448
3b/4	+0.0432	-0.0348	-0.1191	-0.1733	-0.0365	+0.6061	+2.0173	+3.6614	+4.2119
b	+0.0975	+0.0432	-0.0585	-0.2848	-0.6266	-0.7438	+0.3448	+4.2119	+11.5520
	Κ ₁	1						1	l
0	+0.2793	+0.4648	+0.8491	+1.5105	+2.0600	+1.5105	+0.8491	+0.4648	+0.2793
b/4	+0.1182	+0.2086	+0.4092	+0.8233	+1.5105	+2.0882	+1.5808	+0.9822	+0.6446
b/2	+0.0501	+0.0923	+0.1898	+0.4092	+0.8491	+1.5808	+2.2421	+1.8760	+1.4282
3b/4	+0.0227	+0.0434	+0.0923	+0.2086	+0.4648	+0.9822	+1.8761	+2.8483	+2.9630
b = 1.40	+0.0115	+0.0227	+0.0501	+0.1182	+0.2793	+0.6446	+1.4282	+2.9630	+5.4454 圭 1/24
0 - 1.40	κ.								1X 1/24
0									0 5 5 5 0
b/4	-0.5558	-0.0833	+0.6947	+2.0637	+3.1479	+2.0637	+0.6947	-0.0833	-0.5556
	-0.5558 -0.1892	-0.0833 -0.1691	+0.6947 +0.0067	+2.0637 +0.6806	+3.1479 +2.0637	+2.0637 +3.1979	+0.6947 +2.1085	-0.0833 +0.5281	-0.8337
b/2	-0.5558 -0.1892 -0.0058	-0.0833 -0.1691 -0.0948	+0.6947 +0.0067 -0.1461	+2.0637 +0.6806 +0.0067	+3.1479 +2.0637 +0.6947	+2.0637 +3.1979 +2.1085	+0.6947 +2.1085 +3.2447	-0.0833 +0.5281 +2.0248	-0.3338 -0.8337 +0.0415
b/2 3b/4	-0.5558 -0.1892 -0.0058 +0.0445	-0.0833 -0.1691 -0.0948 -0.0173	+0.6947 +0.0067 -0.1461 -0.0948	+2.0637 +0.6806 +0.0067 -0.1691	+3.1479 +2.0637 +0.6947 -0.0833	+2.0637 +3.1979 +2.1085 +0.5281	+0.6947 +2.1085 +3.2447 +2.0248	-0.0833 +0.5281 +2.0248 +3.7775	-0.3338 -0.8337 +0.0415 +4.0743
b/2 3b/4 b	-0.5558 -0.1892 -0.0058 +0.0445 +0.0525	-0.0833 -0.1691 -0.0948 -0.0173 +0.0445	+0.6947 +0.0067 -0.1461 -0.0948 -0.0058	+2.0637 +0.6806 +0.0067 -0.1691 +0.1892	+3.1479 +2.0637 +0.6947 -0.0833 -0.5558	+2.0637 +3.1979 +2.1085 +0.5281 -0.8337	+0.6947 +2.1085 +3.2447 +2.0248 +0.0415	-0.0833 +0.5281 +2.0248 +3.7775 +4.0743	-0.3338 -0.8337 +0.0415 +4.0743 +12.4402
b/2 3b/4 b	-0.5558 -0.1892 -0.0058 +0.0445 +0.0525 K ₁	-0.0833 -0.1691 -0.0948 -0.0173 +0.0445	+0.6947 +0.0067 -0.1461 -0.0948 -0.0058	+2.0637 +0.6806 +0.0067 -0.1691 +0.1892	+3.1479 +2.0637 +0.6947 -0.0833 -0.5558	+2.0637 +3.1979 +2.1085 +0.5281 -0.8337	+0.6947 +2.1085 +3.2447 +2.0248 +0.0415	-0.0833 +0.5281 +2.0248 +3.7775 +4.0743	-0.3338 -0.8337 +0.0415 +4.0743 +12.4402
b/2 3b/4 b 0	-0.5558 -0.1892 -0.0058 +0.0445 +0.0525 K_1 +0.2309	-0.0833 -0.1691 -0.0948 -0.0173 +0.0445 +0.4101	+0.6947 +0.0067 -0.1461 -0.0948 -0.0058 +0.8121	+2.0637 +0.6806 +0.0067 -0.1691 +0.1892 +1.5538	+3.1479 +2.0637 +0.6947 -0.0833 -0.5558 +2.2108	+2.0637 +3.1979 +2.1085 +0.5281 -0.8337 +1.5538	+0.6947 +2.1085 +3.2447 +2.0248 +0.0415 +0.8126	-0.0833 +0.5281 +2.0248 +3.7775 +4.0743 +0.4101	-0.3338 -0.8337 +0.0415 +4.0743 +12.4402 +0.2309
b/2 3b/4 b 0 b/4	-0.5558 -0.1892 -0.0058 +0.0445 +0.0525 K_1 +0.2309 +0.0905	-0.0833 -0.1691 -0.0948 -0.0173 +0.0445 +0.4101 +0.1706	+0.6947 +0.0067 -0.1461 -0.0948 -0.0058 +0.8121 +0.3636	+2.0637 +0.6806 +0.0067 -0.1691 +0.1892 +1.5538 +0.7913	+3.1479 +2.0637 +0.6947 -0.0833 -0.5558 +2.2108 +1.5538	+2.0637 +3.1979 +2.1085 +0.5281 -0.8337 +1.5538 +2.2334	+0.6947 +2.1085 +3.2447 +2.0248 +0.0415 +0.8126 +1.6136	-0.0833 +0.5281 +2.0248 +3.7775 +4.0743 +0.4101 +0.9305	-0.3336 -0.8337 +0.0415 +4.0743 +12.4402 +0.2309 +0.5739
b/2 3b/4 b 0 b/4 b/2 2b/4	$\begin{array}{c} -0.5558 \\ -0.1892 \\ -0.0058 \\ +0.0445 \\ +0.0525 \\ K_1 \\ +0.2309 \\ +0.0905 \\ +0.0354 \\ +0.01420 \end{array}$	-0.0833 -0.1691 -0.0948 -0.0173 +0.0445 +0.4101 +0.1706 +0.0696	+0.6947 +0.0067 -0.1461 -0.0948 -0.0058 +0.8121 +0.3636 +0.1556	+2.0637 +0.6806 +0.0067 -0.1691 +0.1892 +1.5538 +0.7913 +0.3636	+3.1479 +2.0637 +0.6947 -0.0833 -0.5558 +2.2108 +1.5538 +0.8121	+2.0637 +3.1979 +2.1085 +0.5281 -0.8337 +1.5538 +2.2334 +1.6136	+0.6947 +2.1085 +3.2447 +2.0248 +0.0415 +0.8126 +1.6136 +2.3712	-0.0833 +0.5281 +2.0248 +3.7775 +4.0743 +0.4101 +0.9305 +1.8933	-0.3336 -0.8337 +0.0415 +4.0743 +12.4402 +0.2309 +0.5739 +1.3655
b/2 3b/4 b 0 b/4 b/2 3b/4	$\begin{array}{c} -0.5558 \\ -0.1892 \\ -0.0058 \\ +0.0445 \\ +0.0525 \\ K_1 \\ +0.2309 \\ +0.0905 \\ +0.0354 \\ +0.0148 \\ +0.072 \end{array}$	-0.0833 -0.1691 -0.0948 -0.0173 +0.0445 +0.4101 +0.1706 +0.0696 +0.0301	+0.6947 +0.0067 -0.1461 -0.0948 -0.0058 +0.8121 +0.3636 +0.1556 +0.0696	+2.0637 +0.6806 +0.0067 -0.1691 +0.1892 +1.5538 +0.7913 +0.3636 +0.1706	+3.1479 +2.0637 +0.6947 -0.0833 -0.5558 +2.2108 +1.5538 +0.8121 +0.4101	+2.0637 +3.1979 +2.1085 +0.5281 -0.8337 +1.5538 +2.2334 +1.6136 +0.9305	+0.6947 +2.1085 +3.2447 +2.0248 +0.0415 +0.8126 +1.6136 +2.3712 +1.8933 +1.266	-0.0833 +0.5281 +2.0248 +3.7775 +4.0743 +0.4101 +0.9305 +1.8933 +2.9810	-0.3536 -0.8337 +0.0415 +4.0743 +12.4402 +0.2309 +0.5739 +1.3655 +3.0266

表-5.1.1 横方向分配係数K₀及びK₁の表¹⁾(6)

e e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
<u>y</u> θ=1.50	K _O								表 I/25
0	-0.4676	-0.1217	+0.5893	+2.0738	+3.3539	+2.0738	+0.5893	-0.1217	-0 4676
b/4	-0.1076	-0.1583	-0.0620	+0.5700	+2.0738	+3.4056	+2.1332	+0.4499	-0.8768
b/2	+0.0265	-0.0711	-0.1516	-0.0620	+0.5893	+2.1332	+3.4762	+2.0315	-0.2397
3b/4	+0.0381	-0.0053	-0.0711	-0.1583	-0.1217	+0.4499	+2.0315	+3.9049	+3.8974
b	+0.0189	+0.0381	+0.0265	-0.1076	-0.4676	-0.8768	-0.2397	+3.8974	+13.3287
	<i>K</i> ₁								
0	+0.1895	+0.3597	+0.7729	+1.5909	+2.3637	+1.5909	+0.7729	+0.3597	+0.1895
b/4	+0.0688	+0.1388	+0.3215	+0.7566	+1.5909	+2.3815	+1.6400	+0.8769	+0.5074
b/2	+0.0248	+0.0523	+0.1270	+0.3215	+0.7729	+1.6400	+2.5031	+1.9028	+1.2971
3b/4	+0.0095	+0.0208	+0.0523	+0.1388	+0.3597	+0.8769	+1.9028	+3.1104	+3.0738
b	+0.0042	+0.0095	+0.0248	+0.0688	+0.1895	+0.5074	+1.2971	+3.0738	+6.2832
$\theta = 1.60$	K _O								表 I/26
0	-0.3723	-0.1521	+0.4812	+2.0727	+3.5656	+2.0727	+0.4812	-0.1521	-0.3723
b/4	-0.0437	-0.1429	-0.1152	+0.4624	+2.0727	+3.6130	+2.1382	+0.3712	-0.8790
b/2	+0.0416	-0.0495	-0.1451	-0.1152	+0.4812	+2.1382	+3.7055	+2.0350	-0.4927
3b/4	+0.0286	+0.0025	-0.0495	-0.1429	-0.1521	+0.3712	+2.0350	+4.0450	+3.6864
b	-0.0013	+0.0286	+0.0416	-0.0437	-0.3723	-0.8790	-0.4927	+3.6864	+14.2172
	<i>K</i> ₁			1			ì	i	ì
0	+0.1545	+0.3139	+0.7323	+1.6215	+2.5180	+1.6215	+0.7323	+0.3139	+0.1545
b/4	+0.0519	+0.1123	+0.2829	+0.7197	+1.6215	+2.5318	+1.6616	+0.8225	+0.4458
b/2	+0.0173	+0.0390	+0.1032	+0.2829	+0.7323	+1.6616	+2.6379	+1.9056	+1.2251
3b/4	+0.0061	+0.0142	+0.0390	+0.1123	+0.3139	+0.8225	+1.9056	+3.2374	+3.1060
b	+0.0025	+0.0061	+0.0173	+0.0519	+0.1545	+0.4458	+1.2251	+3.1060	+6.7021
e	— <i>b</i>	-3b/4	-b/2	— b/4	0	b/4	b/2	3b/4	b
$\frac{y}{\theta = 1.70}$	Ka								表 I/27
0	-0 2784	-0 1745	+0 3742	+2 0605	+3 7818	+2 0605	+0 3742	-0 1745	-0 2784
h/4	+0.0020	-0 1245	-0.1533	+0 3595	+2 0605	+3 8212	+2 1251	+0 2923	-0.8472
b/1 h/2	+0.0444	-0.0310	-0 1301	-0.1533	+0 3742	+2 1251	+3 9313	+2 0329	-0.7136
3b/4	+0.0188	+0.0069	-0.0310	-0.1245	-0.1745	+0.2923	+2.0329	+4.1982	+3.4463
, - b	-0.0104	+0.0188	+0.0444	+0.0020	-0.2784	-0.8472	-0.7136	+3.4463	+15.1058
	K ₁								
0	+0.1253	+0.2726	+0.6909	+1.6456	+2.6733	+1.6456	+0.6909	+0.2726	+0.1253
b/4	+0.0390	0.0004							0.0005
b/2		+0.0904	+0.2478	+0.6813	+1.6456	+2.6838	+1.6779	+0.7683	+0.3895
, 3b/4	+0.0120	+0.0904	+0.2478 +0.0836	+0.6813 +0.2478	+1.6456 +0.6909	+2.6838 +1.6779	+1.6779 +2.7753	+0.7683 +1.9023	+0.3895 +1.1512
,	+0.0120 +0.0039	+0.0904 +0.0290 +0.0097	+0.2478 +0.0836 +0.0290	+0.6813 +0.2478 +0.0904	+1.6456 +0.6909 +0.2726	+2.6838 +1.6779 +0.7683	+1.6779 +2.7753 +1.9023	+0.7683 +1.9023 +3.3627	+0.3895 +1.1512 +3.1244
b	+0.0120 +0.0039 +0.0015	+0.0904 +0.0290 +0.0097 +0.0039	+0.2478 +0.0836 +0.0290 +0.0120	+0.6813 +0.2478 +0.0904 +0.0390	+1.6456 +0.6909 +0.2726 +0.1253	+2.6838 +1.6779 +0.7683 +0.3895	+1.6779 +2.7753 +1.9023 +1.1512	+0.7683 +1.9023 +3.3627 +3.1244	+0.3895 +1.1512 +3.1244 +7.1209
b $\theta = 1.80$	+0.0120 +0.0039 +0.0015 <i>K</i> ₀	+0.0904 +0.0290 +0.0097 +0.0039	+0.2478 +0.0836 +0.0290 +0.0120	+0.6813 +0.2478 +0.0904 +0.0390	+1.6456 +0.6909 +0.2726 +0.1253	+2.6838 +1.6779 +0.7683 +0.3895	+1.6779 +2.7753 +1.9023 +1.1512	+0.7683 +1.9023 +3.3627 +3.1244	+0.3895 +1.1512 +3.1244 +7.1209 表 I/28
$\theta = 1.80$ θ	+0.0120 +0.0039 +0.0015 <i>K</i> ₀ -0.1920	+0.0904 +0.0290 +0.0097 +0.0039 -0.1889	+0.2478 +0.0836 +0.0290 +0.0120 +0.2714	+0.6813 +0.2478 +0.0904 +0.0390 +2.0377	+1.6456 +0.6909 +0.2726 +0.1253 +4.0009	+2.6838 +1.6779 +0.7683 +0.3895 +2.0377	+1.6779 +2.7753 +1.9023 +1.1512 +0.2714	+0.7683 +1.9023 +3.3627 +3.1244 -0.1889	+0.3895 +1.1512 +3.1244 +7.1209 表 I/28 -0.1920
b θ = 1.80 0 b/4	+0.0120 +0.0039 +0.0015 <i>K₀</i> -0.1920 +0.0310	+0.0904 +0.0290 +0.0097 +0.0039 -0.1889 -0.1044	+0.2478 +0.0836 +0.0290 +0.0120 +0.2714 -0.1775	+0.6813 +0.2478 +0.0904 +0.0390 +2.0377 +0.2623	+1.6456 +0.6909 +0.2726 +0.1253 +4.0009 +2.0377	+2.6838 +1.6779 +0.7683 +0.3895 +2.0377 +4.0311	+1.6779 +2.7753 +1.9023 +1.1512 +0.2714 +2.0963	+0.7683 +1.9023 +3.3627 +3.1244 -0.1889 +0.2140	+0.3895 +1.1512 +3.1244 +7.1209 表 I/28 -0.1920 -0.7891
b $\theta = 1.80$ 0 b/4 b/2	+0.0120 +0.0039 +0.0015 <i>K_Q</i> -0.1920 +0.0310 +0.0394	+0.0904 +0.0290 +0.0097 +0.0039 -0.1889 -0.1044 -0.0161	+0.2478 +0.0836 +0.0290 +0.0120 +0.2714 -0.1775 -0.1101	+0.6813 +0.2478 +0.0904 +0.0390 +2.0377 +0.2623 -0.1775	+1.6456 +0.6909 +0.2726 +0.1253 +4.0009 +2.0377 +0.2714	+2.6838 +1.6779 +0.7683 +0.3895 +2.0377 +4.0311 +2.0963	+1.6779 +2.7753 +1.9023 +1.1512 +0.2714 +2.0963 +4.1528	+0.7683 +1.9023 +3.3627 +3.1244 -0.1889 +0.2140 +2.0233	+0.3895 +1.1512 +3.1244 +7.1209 表 I/28 -0.1920 -0.7891 -0.9001
b θ = 1.80 0 b/4 b/2 3b/4	+0.0120 +0.0039 +0.0015 <i>K₀</i> -0.1920 +0.0310 +0.0394 +0.0104	+0.0904 +0.0290 +0.0097 +0.0039 -0.1889 -0.1044 -0.0161 +0.0088	+0.2478 +0.0836 +0.0290 +0.0120 +0.2714 -0.1775 -0.1101 -0.0161	+0.6813 +0.2478 +0.0904 +0.0390 +2.0377 +0.2623 -0.1775 -0.1044	+1.6456 +0.6909 +0.2726 +0.1253 +4.0009 +2.0377 +0.2714 -0.1889	+2.6838 +1.6779 +0.7683 +0.3895 +2.0377 +4.0311 +2.0963 +0.2140	+1.6779 +2.7753 +1.9023 +1.1512 +0.2714 +2.0963 +4.1528 +2.0233	+0.7683 +1.9023 +3.3627 +3.1244 -0.1889 +0.2140 +2.0233 +4.3641	+0.3895 +1.1512 +3.1244 +7.1209 表 I/28 -0.1920 -0.7891 -0.9001 +3.1820
b $\theta = 1.80$ 0 b/4 b/2 3b/4 b	+0.0120 +0.0039 +0.0015 <i>K_o</i> -0.1920 +0.0310 +0.0394 +0.0104 -0.0122	+0.0904 +0.0290 +0.0097 +0.0039 -0.1889 -0.1044 -0.0161 +0.0088 +0.0104	+0.2478 +0.0836 +0.0290 +0.0120 +0.2714 -0.1775 -0.1101 -0.0161 +0.0394	+0.6813 +0.2478 +0.0904 +0.0390 +2.0377 +0.2623 -0.1775 -0.1044 +0.0310	+1.6456 +0.6909 +0.2726 +0.1253 +4.0009 +2.0377 +0.2714 -0.1889 -0.1920	+2.6838 +1.6779 +0.7683 +0.3895 +2.0377 +4.0311 +2.0963 +0.2140 -0.7891	+1.6779 +2.7753 +1.9023 +1.1512 +0.2714 +2.0963 +4.1528 +2.0233 -0.9001	+0.7683 +1.9023 +3.3627 +3.1244 -0.1889 +0.2140 +2.0233 +4.3641 +3.1820	+0.3895 +1.1512 +3.1244 +7.1209 表 I/28 -0.1920 -0.7891 -0.9001 +3.1820 +15.9944
b θ = 1.80 0 b/4 b/2 3b/4 b	+0.0120 +0.0039 +0.0015 K_{0} -0.1920 +0.0310 +0.0394 +0.0104 -0.0122 K_{1}	+0.0904 +0.0290 +0.0097 +0.0039 -0.1889 -0.1044 -0.0161 +0.0088 +0.0104	+0.2478 +0.0836 +0.0290 +0.2714 -0.1775 -0.1101 -0.0161 +0.0394	+0.6813 +0.2478 +0.0904 +0.0390 +2.0377 +0.2623 -0.1775 -0.1044 +0.0310	+1.6456 +0.6909 +0.2726 +0.1253 +4.0009 +2.0377 +0.2714 -0.1889 -0.1920	+2.6838 +1.6779 +0.7683 +0.3895 +2.0377 +4.0311 +2.0963 +0.2140 -0.7891	+1.6779 +2.7753 +1.9023 +1.1512 +0.2714 +2.0963 +4.1528 +2.0233 -0.9001	+0.7683 +1.9023 +3.3627 +3.1244 -0.1889 +0.2140 +2.0233 +4.3641 +3.1820	+0.3895 +1.1512 +3.1244 +7.1209 表 I/28 -0.1920 -0.7891 -0.9001 +3.1820 +15.9944
b θ = 1.80 0 b/4 b/2 3b/4 b 0	+0.0120 +0.0039 +0.0015 K_{0} -0.1920 +0.0310 +0.0394 +0.0104 -0.0122 K_{1} +0.1010	+0.0904 +0.0290 +0.0097 +0.0039 -0.1889 -0.1044 -0.0161 +0.0088 +0.0104 +0.2358	+0.2478 +0.0836 +0.0290 +0.0120 +0.2714 -0.1775 -0.1101 -0.0161 +0.0394 +0.6492	+0.6813 +0.2478 +0.0904 +0.0390 +2.0377 +0.2623 -0.1775 -0.1044 +0.0310 +1.6633	+1.6456 +0.6909 +0.2726 +0.1253 +4.0009 +2.0377 +0.2714 -0.1889 -0.1920 +2.8293	+2.6838 +1.6779 +0.7683 +0.3895 +2.0377 +4.0311 +2.0963 +0.2140 -0.7891 +1.6633	+1.6779 +2.7753 +1.9023 +1.1512 +0.2714 +2.0963 +4.1528 +2.0233 -0.9001 +0.6492	+0.7683 +1.9023 +3.3627 +3.1244 -0.1889 +0.2140 +2.0233 +4.3641 +3.1820 +0.2358	+0.3895 +1.1512 +3.1244 +7.1209 表 I/28 -0.1920 -0.7891 -0.9001 +3.1820 +15.9944 +0.1010
b θ = 1.80 0 b/4 b/2 3b/4 b 0 b/4	+0.0120 +0.0039 +0.0015 K_0 -0.1920 +0.0310 +0.0394 +0.0104 -0.0122 K_1 +0.1010 +0.0291	+0.090 +0.0290 +0.0097 +0.0039 -0.1889 -0.1044 -0.0161 +0.0088 +0.0104 +0.2358 +0.0725	+0.2478 +0.0836 +0.0290 +0.0120 +0.2714 -0.1775 -0.1101 -0.0161 +0.0394 +0.6492 +0.2161	+0.6813 +0.2478 +0.0904 +0.0390 +2.0377 +0.2623 -0.1775 -0.1044 +0.0310 +1.6633 +0.6420	+1.6456 +0.6909 +0.2726 +0.1253 +4.0009 +2.0377 +0.2714 -0.1889 -0.1920 +2.8293 +1.6633	+2.6838 +1.6779 +0.7683 +0.3895 +2.0377 +4.0311 +2.0963 +0.2140 -0.7891 +1.6633 +2.8372	+1.6779 +2.7753 +1.9023 +1.1512 +0.2714 +2.0963 +4.1528 +2.0233 -0.9001 +0.6492 +1.6890	+0.7683 +1.9023 +3.3627 +3.1244 -0.1889 +0.2140 +2.0233 +4.3641 +3.1820 +0.2358 +0.7150	+0.3895 +1.1512 +3.1244 +7.1209 表 I/28 -0.1920 -0.7891 -0.9001 +3.1820 +15.9944 +0.1010 +0.3386
b θ = 1.80 0 b/4 b/2 3b/4 b 0 b/4 b/2	+0.0120 +0.0039 +0.0015 K_{0} -0.1920 +0.0310 +0.0394 +0.0104 -0.0122 K_{1} +0.1010 +0.0291 +0.0083	+0.090 +0.0290 +0.0097 +0.0039 -0.1889 -0.1044 -0.0161 +0.0088 +0.0104 +0.2358 +0.0725 +0.0215	+0.2478 +0.0836 +0.0290 +0.2714 -0.1775 -0.1101 -0.0161 +0.0394 +0.6492 +0.2161 +0.0674	+0.6813 +0.2478 +0.0904 +0.0390 +2.0377 +0.2623 -0.1775 -0.1044 +0.0310 +1.6633 +0.6420 +0.2161	+1.6456 +0.6909 +0.2726 +0.1253 +4.0009 +2.0377 +0.2714 -0.1889 -0.1920 +2.8293 +1.6633 +0.6492	+2.6838 +1.6779 +0.7683 +0.3895 +2.0377 +4.0311 +2.0963 +0.2140 -0.7891 +1.6633 +2.8372 +1.6890	+1.6779 +2.7753 +1.9023 +1.1512 +0.2714 +2.0963 +4.1528 +2.0233 -0.9001 +0.6492 +1.6890 +2.9153	+0.7683 +1.9023 +3.3627 +3.1244 -0.1889 +0.2140 +2.0233 +4.3641 +3.1820 +0.2358 +0.7150 +1.8938	+0.3895 +1.1512 +3.1244 +7.1209 表 I/28 -0.1920 -0.7891 -0.9001 +3.1820 +15.9944 +0.1010 +0.3386 +1.0767
b $\theta = 1.80$ 0 b/4 b/2 3b/4 b 0 b/4 b/2 3b/4 b/2 3b/4	+0.0120 +0.0039 +0.0015 K_{0} -0.1920 +0.0310 +0.0394 +0.0104 -0.0122 K_{1} +0.1010 +0.0291 +0.0083 +0.0025	+0.0904 +0.0290 +0.0097 +0.0039 -0.1889 -0.1044 -0.0161 +0.0088 +0.0104 +0.2358 +0.0725 +0.0215 +0.0066	+0.2478 +0.0836 +0.0290 +0.2714 -0.1775 -0.1101 -0.0161 +0.0394 +0.6492 +0.2161 +0.0674 +0.0215	+0.6813 +0.2478 +0.0904 +0.0390 +2.0377 +0.2623 -0.1775 -0.1044 +0.0310 +1.6633 +0.6420 +0.2161 +0.0725	+1.6456 +0.6909 +0.2726 +0.1253 +4.0009 +2.0377 +0.2714 -0.1889 -0.1920 +2.8293 +1.6633 +0.6492 +0.2358	+2.6838 +1.6779 +0.7683 +0.3895 +2.0377 +4.0311 +2.0963 +0.2140 -0.7891 +1.6633 +2.8372 +1.6890 +0.7150	+1.6779 +2.7753 +1.9023 +1.1512 +0.2714 +2.0963 +4.1528 +2.0233 -0.9001 +0.6492 +1.6890 +2.9153 +1.8938	+0.7683 +1.9023 +3.3627 +3.1244 -0.1889 +0.2140 +2.0233 +4.3641 +3.1820 +0.2358 +0.7150 +1.8938 +3.4868	+0.3895 +1.1512 +3.1244 +7.1209 表 I/28 -0.1920 -0.7891 -0.9001 +3.1820 +15.9944 +0.1010 +0.3386 +1.0767 +3.1303

表-5.1.1 横方向分配係数K₀及びK₁の表¹⁾(7)

e e	— b	-3b/4	-b/2	— b/4	0	b/4	b/2	3b/4	b
<u>y</u> θ=1.90	K _O	1						l	表 I/29
0	-0.1170	-0.1957	+0.1754	+2.0043	+4 2218	+2.0043	+0.1754	-0.1957	-0.1170
b/4	+0.0465	-0.0839	-0.1896	+0.1716	+2.0043	+4.2432	+2.0540	+0.1377	-0.7121
b/2	+0.0308	-0.0050	-0.0882	-0.1896	+0.1754	+2.0540	+4.3702	+2.0047	-1.0512
3b/4	+0.0042	+0.0090	-0.0050	-0.0839	-0.1957	+0.1377	+2.0047	+4.5421	+2.8980
b	-0.0101	+0.0042	+0.0308	+0.0465	-0.1170	-0.7121	-1.0512	+2.8980	+16.8830
	• K ₁							•	
0	+0.0811	+0.2032	+0.6077	+1.6747	+2.9857	+1.6747	+0.6077	+0.2032	+0.0811
b/4	+0.0217	+0.0579	+0.1877	+0.6024	+1.6747	+2.9915	+1.6950	+0.6632	+0.2930
b/2	+0.0057	+0.0159	+0.0541	+0.1877	+0.6077	+1.6950	+3.0577	+1.8805	+1.0029
3b/4	+0.0016	+0.0045	+0.0159	+0.0579	+0.2032	+0.6632	+1.8805	+3.6102	+3.1249
b	+0.0005	+0.0016	+0.0057	+0.0217	+0.0811	+0.2930	+1.0029	+3.1249	+7.9587
$\theta = 2.00$	К ₀								表 I/30
0	-0.0557	-0.1954	+0.0878	+1.9607	+4.4437	+1.9607	+0.0878	-0.1954	-0.0557
b/4	+0.0515	-0.0641	-0.1917	+0.0884	+1.9607	+4.4576	+2.0003	+0.0647	-0.6233
b/2	+0.0215	+0.0027	+0.0666	-0.1917	+0.0878	+2.0003	+4.5839	+1.9758	-1.1674
3b/4	+0.0003	+0.0080	+0.0027	+0.0641	-0.1954	+0.0647	+1.9785	+4.7313	+2.5986
b	-0.0067	+0.0003	+0.0215	+0.0515	-0.0557	-0.6233	-1.1674	+2.5986	+17.7715
	Κ1								
0	+0.0648	+0.1745	+0.5668	+1.6803	+3.1423	+1.6803	+0.5668	+0.1745	+0.0648
b/4	+0.0160	+0.0461	+0.1624	+0.5629	+1.6803	+3.1466	+1.6962	+0.6133	+0.2526
b/2	+0.0039	+0.0117	+0.0433	+0.1624	+0.5668	+1.6962	+3.2023	+1.8631	+0.9307
3b/4	+0.0010	+0.0030	+0.0117	+0.0461	+0.1745	+0.6133	+1.8631	+3.7333	+3.1093
b	+0.0003	+0.0010	+0.0039	+0.0160	+0.0648	+0.2526	+0.9307	+3.1093	+8.3776
e	— <i>b</i>	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
$\frac{y}{\theta = 2.20}$	Ka								表 I/31
0	10.0256	0 1771	0.0595	1 9/5/	1 0000	1 9454	0.0595	0 1 7 7 1	10.0256
b/4	+0.0230	-0.1771	-0.0303	1.0434	1 0/5/	+ 1.0434	-0.0303	-0.1771	+0.0230
b/4	+0.0428	+0.0299	-0.1739	-0.0330	-1.0434	+1.0923	+1.0000	-0.0002 ±1.8857	-0.4333
0/2 3h/4	-0.0004	+0.0046	+0.0096	-0.0299	-0 1771	-0.0662	+1 8857	+5 1381	+1 9700
50/4 h	-0.0013	-0.0026	+0.0050	+0.0428	+0.0256	-0.4333	-1 3007	+1 9700	+19 5487
U	K ₁	0.0020	10.0001	. 0.0 120	10.0250	0.1555	1.5007	1.5700	17.5107
0	+0.0409	+0.1275	+0.4883	+1.6754	+3 4560	+1.6754	+0.4883	+0.1275	+0.0409
b/4	+0.0087	+0.0289	+0.1204	+0.4863	+1.6754	+3.4583	+1.6849	+0.5202	+0.1856
b/2	+0.0018	+0.0063	+0.0274	+0.1204	+0.4883	+1.6849	+3.4968	+1.8177	+0.7934
~/= 3b/4	+0.0004	+0.0014	+0.0063	+0.0289	+0.1275	+0.5202	+1.8177	+3.9803	+3.0517
b	+0.0001	+0.0004	+0.0018	+0.0087	+0.0409	+0.1856	+0.7934	+3.0517	+9.2153
$\theta = 2.40$	К ₀								表 I/32
0	+0.0599	-0.1431	-0.1650	+1.6976	+5.3321	+1.6976	-0.1650	-0.1431	+0.0599
b/4									0.2561
b/2	+0.0252	-0.0060	-0.1391	-0.1600	+1.6976	+5.3330	+1.7048	-0.1696	-0.2301
-	+0.0252	-0.0060 +0.0093	-0.1391 -0.0056	-0.1600 -0.1391	+1.6976 -0.1650	+5.3330 +1.7048	+1.7048 +5.4190	-0.1696 +1.7538	-0.2301
3b/4	+0.0252 -0.0011 -0.0020	-0.0060 +0.0093 +0.0016	-0.1391 -0.0056 +0.0093	-0.1600 -0.1391 -0.0060	+1.6976 -0.1650 -0.1431	+5.3330 +1.7048 -0.1696	+1.7048 +5.4190 +1.7538	-0.1696 +1.7538 +5.5736	-1.3184 +1.3256
3b/4 b	+0.0252 -0.0011 -0.0020 +0.0006	-0.0060 +0.0093 +0.0016 -0.0020	-0.1391 -0.0056 +0.0093 -0.0011	-0.1600 -0.1391 -0.0060 +0.0252	+1.6976 -0.1650 -0.1431 +0.0599	+5.3330 +1.7048 -0.1696 -0.2561	+1.7048 +5.4190 +1.7538 -1.3184	-0.1696 +1.7538 +5.5736 +1.3256	-0.2301 -1.3184 +1.3256 +21.3258
3b/4 b	+0.0252 -0.0011 -0.0020 +0.0006 K ₁	-0.0060 +0.0093 +0.0016 -0.0020	-0.1391 -0.0056 +0.0093 -0.0011	-0.1600 -0.1391 -0.0060 +0.0252	+1.6976 -0.1650 -0.1431 +0.0599	+5.3330 +1.7048 -0.1696 -0.2561	+1.7048 +5.4190 +1.7538 -1.3184	-0.1696 +1.7538 +5.5736 +1.3256	-0.2301 -1.3184 +1.3256 +21.3258
3b/4 b 0	+0.0252 -0.0011 -0.0020 +0.0006 K_1 +0.0255	-0.0060 +0.0093 +0.0016 -0.0020 +0.0922	-0.1391 -0.0056 +0.0093 -0.0011 +0.4157	-0.1600 -0.1391 -0.0060 +0.0252 +1.6516	+1.6976 -0.1650 -0.1431 +0.0599 +3.7700	+5.3330 +1.7048 -0.1696 -0.2561 +1.6516	+1.7048 +5.4190 +1.7538 -1.3184 +0.4157	-0.1696 +1.7538 +5.5736 +1.3256 +0.0922	-0.2381 -1.3184 +1.3256 +21.3258 +0.0255
3b/4 b 0 b/4	+0.0252 -0.0011 -0.0020 +0.0006 K_1 +0.0255 +0.0046	-0.0060 +0.0093 +0.0016 -0.0020 +0.0922 +0.0179	-0.1391 -0.0056 +0.0093 -0.0011 +0.4157 +0.0880	-0.1600 -0.1391 -0.0060 +0.0252 +1.6516 +0.4146	+1.6976 -0.1650 -0.1431 +0.0599 +3.7700 +1.6516	+5.3330 +1.7048 -0.1696 -0.2561 +1.6516 +3.7711	+1.7048 +5.4190 +1.7538 -1.3184 +0.4157 +1.6572	-0.1696 +1.7538 +5.5736 +1.3256 +0.0922 +0.4372	-0.2301 -1.3184 +1.3256 +21.3258 +0.0255 +0.1347
3b/4 b 0 b/4 b/2	+0.0252 -0.0011 -0.0020 +0.0006 K_1 +0.0255 +0.0046 +0.0008	-0.0060 +0.0093 +0.0016 -0.0020 +0.0922 +0.0179 +0.0033	-0.1391 -0.0056 +0.0093 -0.0011 +0.4157 +0.0880 +0.0172	-0.1600 -0.1391 -0.0060 +0.0252 +1.6516 +0.4146 +0.0880	+1.6976 -0.1650 -0.1431 +0.0599 +3.7700 +1.6516 +0.4157	+5.3330 +1.7048 -0.1696 -0.2561 +1.6516 +3.7711 +1.6572	+1.7048 +5.4190 +1.7538 -1.3184 +0.4157 +1.6572 +3.7973	-0.1696 +1.7538 +5.5736 +1.3256 +0.0922 +0.4372 +1.7608	-0.2361 -1.3184 +1.3256 +21.3258 +0.0255 +0.1347 +0.6686
3b/4 b 0 b/4 b/2 3b/4	+0.0252 -0.0011 -0.0020 +0.0006 K_1 +0.0255 +0.0046 +0.0008 +0.0001	-0.0060 +0.0093 +0.0016 -0.0020 +0.0922 +0.0179 +0.0033 +0.0006	-0.1391 -0.0056 +0.0093 -0.0011 +0.4157 +0.0880 +0.0172 +0.0033	-0.1600 -0.1391 -0.0060 +0.0252 +1.6516 +0.4146 +0.0880 +0.0179	+1.6976 -0.1650 -0.1431 +0.0599 +3.7700 +1.6516 +0.4157 +0.0922	+5.3330 +1.7048 -0.1696 -0.2561 +1.6516 +3.7711 +1.6572 +0.4372	+1.7048 +5.4190 +1.7538 -1.3184 +0.4157 +1.6572 +3.7973 +1.7608	-0.1696 +1.7538 +5.5736 +1.3256 +0.0922 +0.4372 +1.7608 +4.2298	-0.2361 -1.3184 +1.3256 +21.3258 +0.0255 +0.1347 +0.6686 +2.9650

表-5.1.1 横方向分配係数K₀及びK₁の表¹⁾(8)

e e	-b	-3b/4	-b/2	- b/4	0	b/4	b/2	3b/4	b
y θ=2.60	K _O								表 I/33
0	+0.0626	-0.1027	-0.2340	+1.5246	+5.7761	+1.5246	-0.2340	-0.1027	+0.0626
b/4	+0.0100	+0.0073	-0.0989	-0.2307	+1.5246	+5.7763	+1.5247	-0.2410	-0.1128
b/2	-0.0029	+0.0062	+0.0073	-0.0989	-0.2340	+1.5247	+5.8359	+1.5861	-1.2455
, 3b/4	-0.0008	0	+0.0062	+0.0073	-0.1027	-0.2410	+1.5861	+6.0270	+0.6898
b	+0.0006	-0.0008	-0.0029	+0.0100	+0.0626	-0.1128	-1.2455	+0.6898	+23.1030
-	<i>K</i> ₁	-					_	_	_
0	+0.0157	+0.0660	+0.3502	+1.6123	+4.0841	+1.6123	+0.3502	+0.0660	+0.0157
b/4	+0.0024	+0.0110	+0.0637	+0.3497	+1.6123	+4.0847	+1.6154	+0.3644	+0.0967
b/2	+0.0004	+0.0017	+0.0106	+0.0637	+0.3502	+1.6154	+4.1020	+1.6949	+0.5579
3b/4	+0.0001	+0.0003	+0.0017	+0.0110	+0.0660	+0.3644	+1.6949	+4.4835	+2.8562
b	0	+0.0001	+0.0004	+0.0024	+0.0157	+0.0967	+0.5579	+2.8562	+10.8909
$\theta = 2.80$	K _O								表 I/34
0	+0.0494	-0.0639	-0.2702	+1.3343	+6.2202	+1.3343	-0.2702	-0.0639	+0.0494
b/4	+0.0008	+0.0121	-0.0612	-0.2686	+1.3343	+6.2205	+1.3319	-0.2801	-0.0111
b/2	-0.0022	+0.0029	+0.0117	-0.0612	-0.2702	+1.3319	+6.2579	+1.3918	-1.0910
3b/4	0	-0.0005	+0.0029	+0.0121	-0.0639	-0.2801	+1.3918	+6.4888	+0.0829
b	+0.0002	0	-0.0022	+0.0008	+0.0494	-0.0111	-1.1091	+0.0829	+24.8801
	<i>K</i> ₁			1	i	i I	1	1	1
0	+0.0096	+0.0469	+0.2923	+1.5605	+4.3982	+1.5605	+0.2923	+0.0469	+0.0096
b/4	+0.0013	+0.0067	+0.0456	+0.2920	+1.5605	+4.3985	+1.5622	+0.3015	+0.0688
b/2	+0.0002	+0.0009	+0.0065	+0.0456	+0.2923	+1.5622	+4.4099	+1.6223	+0.4615
3b/4	0	+0.0001	+0.0009	+0.0067	+0.0469	+0.3015	+1.6223	+4.7421	+2.7309
b	0	0	+0.0002	+0.0013	+0.0096	+0.0688	+0.4615	+2.7309	+11.7286
e	- <i>b</i>	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
$\frac{e}{y}$ $\theta = 3.00$	-b K a	-3b/4	— b/2	— b/4	0	b/4	b/2	3b/4	b 売 1/35
$\frac{y}{\theta = 3.00}$	-b K ₀	-3b/4	-b/2	-b/4	0	b/4	b/2	<i>3b/4</i>	b 表 I/35
y $\theta = 3.00$ 0 b/4	-b K ₀ +0.0316	-3b/4	- <i>b/2</i> -0.2795	-b/4 +1.1340	0 +6.6644	<i>b/4</i> +1.1340	<i>b/2</i> -0.2795	3b/4 -0.0317	b 表 I/35 +0.0316
y $\theta = 3.00$ 0 b/4 b/2	-b K ₀ +0.0316 -0.0029	-3b/4 -0.0317 +0.0115	-b/2 -0.2795 -0.0304	-b/4 +1.1340 -0.2788	0 +6.6644 +1.1340	<i>b/4</i> +1.1340 +6.6648	<i>b/2</i> -0.2795 +1.1315	3b/4 -0.0317 -0.2908	b 表 I/35 +0.0316 +0.0507
$ \begin{array}{c} $	-b K ₀ +0.0316 -0.0029 -0.0010	-3b/4 -0.0317 +0.0115 +0.0007	-b/2 -0.2795 -0.0304 +0.0111	-b/4 +1.1340 -0.2788 -0.0304	0 +6.6644 +1.1340 -0.2795	<i>b/4</i> +1.1340 +6.6648 +1.1315	<i>b/2</i> -0.2795 +1.1315 +6.6861	3b/4 -0.0317 -0.2908 +1.1812	b 表 I/35 +0.0316 +0.0507 -0.9349
$ \begin{array}{c} $	-b K ₀ +0.0316 -0.0029 -0.0010 +0.0001	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005	-b/2 -0.2795 -0.0304 +0.0111 +0.0007	- b/4 +1.1340 -0.2788 -0.0304 +0.0115	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0216	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812	3b/4 -0.0317 -0.2908 +1.1812 +6.9517	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793
$ \begin{array}{c} $	-b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 0 K_{1}	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573
$ \begin{array}{c} $	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 0 K_{1} +0.0058 $	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1 4990	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4 7124	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331	b 表 1/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573
$ \begin{array}{c} $	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 0 K_{1} +0.0058 +0.0007 $	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0340	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485
$ \begin{array}{c} $	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 0 K_{1} +0.0058 +0.0007 +0.0001 +0.0001 +0.0001 +0.0007 +0.0001 +0$	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0040	- b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1 5000	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4 7198	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449	b 表 1/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.3789
$ \begin{array}{c} $	$ -b K_0 +0.0316 -0.0029 -0.0010 +0.0001 K_1 +0.0058 +0.0007 +0.0001 0 $	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0040 +0.0005	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.040	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.3789 +2.5942
$ \begin{array}{c} $	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 0 K_{1} +0.0058 +0.0007 +0.0001 0 0 0 $	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0040 +0.0005 +0.0001	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0040 +0.0007	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942	b 表 1/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.3789 +2.5942 +12.5664
$ \begin{array}{c} $	$ -b \\ K_{0} \\ +0.0316 \\ -0.0029 \\ -0.0010 \\ +0.0001 \\ 0 \\ K_{1} \\ +0.0058 \\ +0.0007 \\ +0.0001 \\ 0 \\ K_{0} $	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0 0	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0324 +0.0040 +0.0005 +0.0001	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0040 +0.0007	<i>0</i> +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0485 +0.0485 +0.3789 +2.5942 +12.5664 表 I/36
$ \begin{array}{c} $	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 0 K_{1} +0.0058 +0.0007 +0.0001 0 K_{0} +0.0158 +0.015 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.0158 +0.015 +0.01 +0.01 +0.01 +0.01 +$	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0040 +0.0005 +0.0001 -0.2680	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0324 +0.0040 +0.0007 +0.9304	<i>0</i> +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058 +7.1086	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485 +0.9304	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789 -0.2680	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942 -0.0083	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.3789 +2.5942 +12.5664 表 I/36 +0.0158
$ \begin{array}{c} $	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 0 K_{1} +0.0058 +0.0007 +0.0001 0 K_{0} +0.0158 -0.0034 $	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0 -0.0083 +0.0085	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0040 +0.0005 +0.0001 -0.2680 -0.0080	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0324 +0.0040 +0.0007 +0.9304 -0.2678	<i>0</i> +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058 +7.1086 +0.9304	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485 +0.9304 +7.1090	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789 -0.2680 +0.9286	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942 -0.0083 -0.2788	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.3789 +2.5942 +12.5664 表 I/36 +0.0158 +0.0798
$ \begin{array}{c} $	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 +0.0001 +0.0058 +0.0058 +0.0007 +0.0001 0 K_{0} +0.0158 -0.0034 -0.0002 -0.002 $	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0 -0.0083 +0.0085 -0.0004	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0040 +0.0005 +0.0001 -0.2680 -0.0080 +0.0082	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0040 +0.0007 +0.9304 -0.2678 -0.0080	<i>0</i> +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058 +7.1086 +0.9304 -0.2680	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485 +0.9304 +7.1090 +0.9286	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789 -0.2680 +0.9286 +7.1199	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942 -0.0083 -0.2788 +0.9642	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.3789 +2.5942 +12.5664 表 I/36 +0.0158 +0.0788 -0.7450
$ \begin{array}{c} $	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 +0.0001 K_{1} +0.0058 +0.0007 +0.0001 0 K_{0} +0.0158 -0.0034 -0.0002 -0.0001 -0.0$	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0 0 0 0	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0324 +0.0040 +0.0005 +0.0001 -0.2680 -0.0080 +0.0082 -0.0004	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0040 +0.0007 +0.9304 -0.2678 -0.0080 +0.0085	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058 +7.1086 +0.9304 -0.2680 -0.0083	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485 +0.9304 +7.1090 +0.9286 -0.2788	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789 -0.2680 +0.9286 +7.1199 +0.9642	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942 -0.0083 -0.2788 +0.9642 +7.4105	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.3789 +2.5942 +12.5664 表 I/36 +0.0158 +0.0798 -0.7450 -0.9853
$\begin{array}{c} & e \\ y \\ \theta = 3.00 \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ \theta = 3.20 \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ b \\ d \\ b/2 \\ 3b/4 \\ b \\ d \\ b \\ d \\ b \\ d \\ b \\ d \\ d \\ b \\ d \\ d$	$ -b \\ K_{0} \\ +0.0316 \\ -0.0029 \\ -0.0010 \\ +0.0001 \\ 0 \\ K_{1} \\ +0.0058 \\ +0.0058 \\ +0.0007 \\ +0.0001 \\ 0 \\ K_{0} \\ +0.0158 \\ -0.0034 \\ -0.0002 \\ -0.0001 \\ 0 $	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0 0 0 -0.0083 +0.0085 -0.0004 -0.0002 +0.0001	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0324 +0.0040 +0.0005 +0.0001 -0.2680 -0.0080 +0.0082 -0.0004 -0.0002	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0040 +0.0007 +0.9304 -0.2678 -0.0080 +0.0085 -0.0034	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058 +7.1086 +0.9304 -0.2680 -0.0083 +0.0158	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485 +0.9304 +7.1090 +0.9286 -0.2788 +0.0798	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789 -0.2680 +0.9286 +7.1199 +0.9642 -0.7450	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942 -0.0083 -0.2788 +0.9642 +7.4105 -0.9853	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0485 +0.0485 +0.3789 +2.5942 +12.5664 表 I/36 +0.0158 +0.0798 -0.7450 -0.9853 +28.4345
$\begin{array}{c} & e \\ y \\ \theta = 3.00 \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ \theta = 3.20 \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ \end{array}$	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 0 K_{1} +0.0058 +0.0007 +0.0001 0 K_{0} +0.0158 -0.0034 -0.0002 -0.0001 0 K_{1} K_$	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0 0 -0.0083 +0.0085 -0.0004 -0.0002 +0.0001	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0040 +0.0005 +0.0001 -0.2680 -0.0080 +0.0082 -0.0004 -0.0002	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0324 +0.0040 +0.0007 +0.9304 -0.2678 -0.0080 +0.0085 -0.0034	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058 +7.1086 +0.9304 -0.2680 -0.0083 +0.0158	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485 +0.9304 +7.1090 +0.9286 -0.2788 +0.0798	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789 -0.2680 +0.9286 +7.1199 +0.9642 -0.7450	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942 -0.0083 -0.2788 +0.9642 +7.4105 -0.9853	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.3789 +2.5942 +12.5664 表 I/36 +0.0158 +0.0798 -0.7450 -0.9853 +28.4345
$ \begin{array}{c} $	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 0 K_{1} +0.0058 +0.0007 +0.0001 0 K_{0} +0.0158 -0.0034 -0.0002 -0.0001 0 K_{1} +0.0035 +0.035 +0.003 +0.003 +0.003 +0.003 +0.003 +0.003 +0.003 +0.003 +0.003 +0.003 +0.003 +0.003 +0.003 +0.003 +0.003 +0.00 +0.0$	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0 -0.0083 +0.0085 -0.0004 -0.0002 +0.0001 +0.0232	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0040 +0.0005 +0.0001 -0.2680 -0.0080 +0.0082 -0.0004 -0.0002 +0.1988	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0324 +0.0040 +0.0040 +0.0007 +0.9304 -0.2678 -0.0080 +0.0085 -0.0034 +1.4305	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058 +7.1086 +0.9304 -0.2680 -0.0083 +0.0158 +5.0266	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485 +0.9304 +7.1090 +0.9286 -0.2788 +0.0798 +1.4305	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789 -0.2680 +0.9286 +7.1199 +0.9642 -0.7450 +0.1988	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942 -0.0083 -0.2788 +0.9642 +7.4105 -0.9853 +0.0232	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.3789 +2.5942 +12.5664 I/36 +0.0158 +0.07450 -0.9853 +28.4345 +0.0035
$ \begin{array}{c} $	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 +0.0001 +0.0058 +0.0058 +0.0007 +0.0001 0 K_{0} +0.0158 -0.0034 -0.0002 -0.0001 0 K_{1} +0.0035 +0.003 $	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0 -0.0083 +0.0085 -0.0004 -0.0002 +0.0001 +0.0232 +0.0024	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0040 +0.0005 +0.0001 -0.2680 -0.0080 +0.0082 -0.0004 -0.0002 +0.1988 +0.0228	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0324 +0.0040 +0.0007 +0.9304 -0.2678 -0.0080 +0.0085 -0.0034 +1.4305 +0.1988	<i>0</i> +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058 +7.1086 +0.9304 -0.2680 -0.0083 +0.0158 +5.0266 +1.4305	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485 +0.9304 +7.1090 +0.9286 -0.2788 +0.0798 +1.4305 +5.0266	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789 -0.2680 +0.9286 +7.1199 +0.9642 -0.7450 +0.1988 +1.4310	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942 -0.0083 -0.2788 +0.9642 +7.4105 -0.9853 +0.0232 +0.2026	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.3789 +2.5942 +12.5664 末 I/36 +0.0158 +0.0798 -0.7450 -0.9853 +28.4345 +0.0035 +0.0340
$ \begin{array}{c} $	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 +0.0001 +0.0058 +0.0007 +0.0001 0 K_{0} +0.0158 -0.0034 -0.0002 -0.0001 0 K_{1} +0.0035 +0.003 0 $	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0 0 -0.0083 +0.0085 -0.0004 -0.0002 +0.0001 +0.0232 +0.0024 +0.0024 +0.0002	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0040 +0.0005 +0.0001 -0.2680 -0.0080 +0.0082 -0.0004 -0.0002 +0.1988 +0.0228 +0.0228	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0324 +0.0040 +0.0007 +0.9304 -0.2678 -0.0080 +0.0085 -0.0034 +1.4305 +0.1988 +0.0228	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058 +7.1086 +0.9304 -0.2680 -0.0083 +0.0158 +5.0266 +1.4305 +0.1988	<i>b/4</i> +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485 +0.9304 +7.1090 +0.9286 -0.2788 +0.0798 +1.4305 +5.0266 +1.4310	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789 -0.2680 +0.9286 +7.1199 +0.9642 -0.7450 +0.1988 +1.4310 +5.0313	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942 -0.0083 -0.2788 +0.9642 +7.4105 -0.9853 +0.0232 +0.2026 +1.4641	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.3789 +2.5942 +12.5664 表 I/36 +0.0158 +0.0798 -0.7450 -0.9853 +28.4345 +0.0035 +0.0340 +0.3090
$\begin{array}{c} & e \\ y \\ \theta = 3.00 \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ \theta = 3.20 \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \\ 0 \\ b/4 \\ b/2 \\ 3b/4 \\ b \end{array}$	$ -b K_{0} +0.0316 -0.0029 -0.0010 +0.0001 0 K_{1} +0.0058 +0.0007 +0.0001 0 K_{0} +0.0158 -0.0034 -0.0002 -0.0001 0 K_{1} +0.0035 +0.0033 0 0 $	-3b/4 -0.0317 +0.0115 +0.0007 -0.0005 +0.0001 +0.0331 +0.0040 +0.0005 0 0 -0.0083 +0.0085 -0.0004 -0.0002 +0.0001 +0.0232 +0.0024 +0.0022 0	-b/2 -0.2795 -0.0304 +0.0111 +0.0007 -0.0010 +0.2419 +0.0324 +0.0324 +0.0040 +0.0005 +0.0001 -0.2680 -0.0080 +0.0082 -0.0004 -0.0002 +0.1988 +0.0228 +0.0024 +0.0024	-b/4 +1.1340 -0.2788 -0.0304 +0.0115 -0.0029 +1.4990 +0.2418 +0.0324 +0.0040 +0.007 +0.9304 -0.2678 -0.0080 +0.0085 -0.0034 +1.4305 +0.1988 +0.0228 +0.0024	0 +6.6644 +1.1340 -0.2795 -0.0317 +0.0316 +4.7124 +1.4990 +0.2419 +0.0331 +0.0058 +7.1086 +0.9304 -0.2680 -0.0083 +0.0158 +5.0266 +1.4305 +0.1988 +0.0232	b/4 +1.1340 +6.6648 +1.1315 -0.2908 +0.0507 +1.4990 +4.7125 +1.5000 +0.2479 +0.0485 +0.9304 +7.1090 +0.9286 -0.2788 +0.0798 +1.4305 +5.0266 +1.4310 +0.2026	<i>b/2</i> -0.2795 +1.1315 +6.6861 +1.1812 -0.9349 +0.2419 +1.5000 +4.7198 +1.5449 +0.3789 -0.2680 +0.9286 +7.1199 +0.9642 -0.7450 +0.1988 +1.4310 +5.0313 +1.4641	3b/4 -0.0317 -0.2908 +1.1812 +6.9517 -0.4793 +0.0331 +0.2479 +1.5449 +5.0061 +2.5942 -0.0083 -0.2788 +0.9642 +7.4105 -0.9853 +0.0232 +0.2026 +1.4641 +5.2757	b 表 I/35 +0.0316 +0.0507 -0.9349 -0.4793 +26.6573 +0.0058 +0.0485 +0.0485 +0.3789 +2.5942 +12.5664 表 I/36 +0.0158 +0.0798 -0.7450 -0.9853 +28.4345 +0.0035 +0.0340 +0.3090 +2.4502

表-5.1.1 横方向分配係数K₀及びK₁の表¹⁾(9)

e e	-b	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
y θ=3.40	K _O								表 I/37
0	+0.0047	+0.0065	-0.2419	+0.7292	+7.5529	+0.7292	-0.2419	+0.0065	+0.0047
b/4	-0.0024	+0.0051	+0.0062	-0.2419	+0.7292	+7.5532	+0.7282	-0.2509	+0.0853
b/2	+0.0001	-0.0006	+0.0050	+0.0062	-0.2419	+0.7282	+7.5582	+0.7493	-0.5571
, 3b/4	0	0	-0.0006	+0.0051	+0.0065	-0.2509	+0.4793	+7.8622	-1.4271
b	0	0	+0.0001	-0.0024	+0.0047	+0.0853	-0.5571	-1.4271	+30.2116
-	<i>K</i> ₁							-	-
0	+0.0021	+0.0162	+0.1623	+1.3570	+5.3407	+1.3570	+0.1623	+0.0162	+0.0021
b/4	+0.0002	+0.0014	+0.0160	+0.1623	+1.3570	+5.3407	+1.3573	+0.1647	+0.0236
b/2	0	+0.0001	+0.0014	+0.0160	+0.1623	+1.3573	+5.3437	+1.3815	+0.2505
3b/4	0	0	+0.0001	+0.0014	+0.0162	+0.1647	+1.3815	+5.5506	+2.3023
b	0	0	0	+0.0002	+0.0021	+0.0236	+0.2505	+2.3023	+14.2419
$\theta = 3.60$	K ₀								表 I/38
0	-0.0015	+0.0141	-0.2069	+0.5351	+7.9972	+0.5351	-0.2069	+0.0141	-0.0015
b/4	-0.0012	+0.0023	+0.0135	-0.2069	+0.5351	+7.9974	+0.5347	-0.2135	+0.0762
b/2	+0.0002	-0.0005	+0.0023	+0.0135	-0.2069	+0.5347	+7.9996	+0.5433	-0.3841
3b/4	0	0	-0.0005	+0.0023	+0.0141	-0.2135	+0.5433	+8.3054	-1.8001
b	0	0	+0.0002	-0.0012	-0.0015	+0.0762	-0.3841	-1.8001	+31.9888
1	K 1						I		1
0	+0.0012	+0.0112	+0.1317	+1.2805	+5.6549	+1.2805	+0.1317	+0.0112	+0.0012
b/4	+0.0001	+0.0009	+0.0111	+0.1317	+1.2805	+5.6549	+1.2807	+0.1332	+0.0164
b/2	0	+0.0001	+0.0008	+0.0111	+0.1317	+1.2807	+5.6567	+1.2983	+0.2020
3b/4	0	0	+0.0001	+0.0009	+0.0112	+0.1332	+1.2983	+5.3307	+2.1535
b	0	0	0	+0.0001	+0.0012	+0.0164	+0.2020	+2.1535	+15.0796
e	- <i>b</i>	-3b/4	-b/2	-b/4	0	b/4	b/2	3b/4	b
$\frac{y}{\theta = 3.80}$	Ka								表 I/39
0	-0.0040	+0.0163	-0 1678	+0 3521	+8 4416	+0 3521	-0 1678	+0.0163	-0.0040
h/4	-0.00040	+0.0005	+0.0157	-0.1678	+0.3521	+8 4417	+0.3520	-0.1721	+0.0600
b/4 h/2	+0.0001	-0.0003	+0.0005	+0.0157	-0.1678	+0.3520	+8 4427	+0.3509	-0.2341
3h/4	0.0001	0.0005	-0.0003	+0.0005	+0.0163	-0.1721	+0.3509	+8 7404	-2.1025
b 55,1	0	0	+0.0001	-0.0004	-0.0040	+0.0600	-0.2341	2 1025	+33.7659
~ 1	K 1						-0.4.141	-2.1025	
0							-0.2341	-2.1025	
b/4	+0.0007	+0.0077	+0.1064	+1.2026	+5.9690	+1.2026	+0.1064	+0.0077	+0.0007
1. /2	+0.0007	+0.0077 +0.0005	+0.1064 +0.0077	+1.2026 +0.1063	+5.9690 +1.2026	+1.2026 +5.9690	+0.1064	+0.0077 +0.1073	+0.0007 +0.0113
D/Z	+0.0007 0 0	+0.0077 +0.0005 0	+0.1064 +0.0077 +0.0005	+1.2026 +0.1063 +0.0077	+5.9690 +1.2026 +0.1064	+1.2026 +5.9690 +1.2027	+0.1064 +1.2027 +5.9702	+0.0077 +0.1073 +1.2153	+0.0007 +0.0113 +0.1622
<i>b/2</i> 3b/4	+0.0007 0 0 0	+0.0077 +0.0005 0 0	+0.1064 +0.0077 +0.0005 0	+1.2026 +0.1063 +0.0077 +0.0005	+5.9690 +1.2026 +0.1064 +0.0077	+1.2026 +5.9690 +1.2027 +0.1073	+0.1064 +1.2027 +5.9702 +1.2153	+0.0077 +0.1073 +1.2153 +6.1154	+0.0007 +0.0113 +0.1622 +2.0059
b/2 3b/4 b	+0.0007 0 0 0 0	+0.0077 +0.0005 0 0 0	+0.1064 +0.0077 +0.0005 0 0	+1.2026 +0.1063 +0.0077 +0.0005 0	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174
$\frac{b/2}{3b/4}$ b $\theta = 4.00$	+0.0007 0 0 0 0 <i>K</i> _0	+0.0077 +0.0005 0 0	+0.1064 +0.0077 +0.0005 0 0	+1.2026 +0.1063 +0.0077 +0.0005 0	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174 表 I/40
$b/2$ $3b/4$ b $\theta = 4.00$ 0	+0.0007 0 0 0 0 <i>K₀</i> -0.0042	+0.0077 +0.0005 0 0 0	+0.1064 +0.0077 +0.0005 0 0	+1.2026 +0.1063 +0.0077 +0.0005 0 +0.1831	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007 +8.8859	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113 +0.1831	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622 -0.1286	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059 +0.0151	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174 表 I/40 -0.0042
$b/2$ $3b/4$ b $\theta = 4.00$ 0 $b/4$	+0.0007 0 0 0 0 <i>K_o</i> -0.0042 0	+0.0077 +0.0005 0 0 0 +0.0151 -0.0004	+0.1064 +0.0077 +0.0005 0 0 -0.1286 +0.0147	+1.2026 +0.1063 +0.0077 +0.0005 0 +0.1831 -0.1286	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007 +8.8859 +0.1831	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113 +0.1831 +8.8859	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622 -0.1286 +0.1831	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059 +0.0151 -0.1309	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174 表 I/40 -0.0042 +0.0421
$b/2$ $3b/4$ b $\theta = 4.00$ 0 $b/4$ $b/2$	+0.0007 0 0 0 <i>K₀</i> -0.0042 0 0	+0.0077 +0.0005 0 0 +0.0151 -0.0004 -0.0001	+0.1064 +0.0077 +0.0005 0 0 -0.1286 +0.0147 -0.0004	+1.2026 +0.1063 +0.0077 +0.0005 0 +0.1831 -0.1286 +0.0147	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007 +8.8859 +0.1831 -0.1286	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113 +0.1831 +8.8859 +0.1831	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622 -0.1286 +0.1831 +8.8867	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059 +0.0151 -0.1309 +0.1757	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174 表 I/40 -0.0042 +0.0421 -0.1113
$b/2$ $3b/4$ b $\theta = 4.00$ 0 $b/4$ $b/2$ $3b/4$	+0.0007 0 0 0 0 <i>K₀</i> -0.0042 0 0 0	+0.0077 +0.0005 0 0 +0.0151 -0.0004 -0.0001 0	+0.1064 +0.0077 +0.0005 0 0 -0.1286 +0.0147 -0.0004 -0.0001	+1.2026 +0.1063 +0.0077 +0.0005 0 +0.1831 -0.1286 +0.0147 -0.0004	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007 +8.8859 +0.1831 -0.1286 +0.0151	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113 +0.1831 +8.8859 +0.1831 -0.1309	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622 -0.1286 +0.1831 +8.8867 +0.1757	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059 +0.0151 -0.1309 +0.1757 +9.1678	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174 表 I/40 -0.0042 +0.0421 -0.1113 -2.3348
b/2 3b/4 b $\theta = 4.00$ 0 b/4 b/2 3b/4 b	+0.0007 0 0 0 0 <i>K₀</i> -0.0042 0 0 0 0 0	+0.0077 +0.0005 0 0 +0.0151 -0.0004 -0.0001 0 0	+0.1064 +0.0077 +0.0005 0 0 -0.1286 +0.0147 -0.0004 -0.0001 0	+1.2026 +0.1063 +0.0077 +0.0005 0 +0.1831 -0.1286 +0.0147 -0.0004 0	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007 +8.8859 +0.1831 -0.1286 +0.0151 -0.0042	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113 +0.1831 +8.8859 +0.1831 -0.1309 +0.0421	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622 -0.1286 +0.1831 +8.8867 +0.1757 -0.1113	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059 +0.0151 -0.1309 +0.1757 +9.1678 -2.3348	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174 表 I/40 -0.0042 +0.0421 -0.1113 -2.3348 +35.5431
b/2 3b/4 b $\theta = 4.00$ 0 b/4 b/2 3b/4 b	+0.0007 0 0 0 <i>K₀</i> -0.0042 0 0 0 0 <i>K₁</i>	+0.0077 +0.0005 0 0 +0.0151 -0.0004 -0.0001 0 0	+0.1064 +0.0077 +0.0005 0 0 0 -0.1286 +0.0147 -0.0004 -0.0001 0	+1.2026 +0.1063 +0.0077 +0.0005 0 +0.1831 -0.1286 +0.0147 -0.0004 0	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007 +8.8859 +0.1831 -0.1286 +0.0151 -0.0042	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113 +0.1831 +8.8859 +0.1831 -0.1309 +0.0421	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622 -0.1286 +0.1831 +8.8867 +0.1757 -0.1113	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059 +0.0151 -0.1309 +0.1757 +9.1678 -2.3348	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174 表 I/40 -0.0042 +0.0421 -0.1113 -2.3348 +35.5431
b/2 3b/4 b $\theta = 4.00$ 0 b/4 b/2 3b/4 b 0	+0.0007 0 0 0 <i>K₀</i> -0.0042 0 0 0 <i>K₁</i> +0.0004	+0.0077 +0.0005 0 0 +0.0151 -0.0004 -0.0001 0 0 +0.0053	+0.1064 +0.0077 +0.0005 0 0 -0.1286 +0.0147 -0.0004 -0.0001 0 +0.0855	+1.2026 +0.1063 +0.0077 +0.0005 0 +0.1831 -0.1286 +0.0147 -0.0004 0 +1.1245	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007 +8.8859 +0.1831 -0.1286 +0.0151 -0.0042 +6.2832	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113 +0.1831 +8.8859 +0.1831 -0.1309 +0.0421 +1.1245	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622 -0.1286 +0.1831 +8.8867 +0.1757 -0.1113 +0.0855	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059 +0.0151 -0.1309 +0.1757 +9.1678 -2.3348 +0.0053	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174 志 I/40 -0.0042 +0.0421 -0.1113 -2.3348 +35.5431 +0.0004
b/2 3b/4 b $\theta = 4.00$ 0 b/4 b/2 3b/4 b 0 b/4 b/4	+0.0007 0 0 0 K_{0} -0.0042 0 0 0 K_{1} +0.0004 0	+0.0077 +0.0005 0 0 0 +0.0151 -0.0004 -0.0001 0 0 +0.0053 +0.0053	+0.1064 +0.0077 +0.0005 0 0 -0.1286 +0.0147 -0.0004 -0.0001 0 +0.0855 +0.0053	+1.2026 +0.1063 +0.0077 +0.0005 0 +0.1831 -0.1286 +0.0147 -0.0004 0 +1.1245 +0.0855	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007 +8.8859 +0.1831 -0.1286 +0.0151 -0.0042 +6.2832 +1.1245	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113 +0.1831 +8.8859 +0.1831 -0.1309 +0.0421 +1.1245 +6.2832	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622 -0.1286 +0.1831 +8.8867 +0.1757 -0.1113 +0.0855 +1.1246	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059 +0.0151 -0.1309 +0.1757 +9.1678 -2.3348 +0.0053 +0.0860	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174 末 I/40 -0.0042 +0.0421 -0.1113 -2.3348 +35.5431 +0.0004 +0.0077
b/2 3b/4 b $\theta = 4.00$ 0 b/4 b/2 3b/4 b 0 b/4 b/2 3b/4 b	+0.0007 0 0 0 K_{0} -0.0042 0 0 0 K_{1} +0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0	+0.0077 +0.0005 0 0 0 +0.0151 -0.0004 -0.0001 0 0 +0.0053 +0.0053 0	+0.1064 +0.0077 +0.0005 0 0 -0.1286 +0.0147 -0.0004 -0.0001 0 +0.0855 +0.0053 +0.0003	+1.2026 +0.1063 +0.0077 +0.0005 0 +0.1831 -0.1286 +0.0147 -0.0004 0 +1.1245 +0.0855 +0.0053	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007 +8.8859 +0.1831 -0.1286 +0.0151 -0.0042 +6.2832 +1.1245 +0.0855	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113 +0.1831 +8.8859 +0.1831 -0.1309 +0.0421 +1.1245 +6.2832 +1.1246	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622 -0.1286 +0.1831 +8.8867 +0.1757 -0.1113 +0.0855 +1.1246 +6.2839	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059 +0.0151 -0.1309 +0.1757 +9.1678 -2.3348 +0.0053 +0.0860 +1.1336	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174 表 1/40 -0.0042 +0.0421 -0.1113 -2.3348 +35.5431 +0.0004 +0.0077 +0.1296
b/2 3b/4 b $\theta = 4.00$ 0 b/4 b/2 3b/4 b 0 b/4 b/2 3b/4 b/2 3b/4	+0.0007 0 0 0 <i>K₀</i> -0.0042 0 0 0 <i>K₁</i> +0.0004 0 0 0 0 0 0	+0.0077 +0.0005 0 0 0 +0.0151 -0.0004 -0.0001 0 0 +0.0053 +0.0053 0 0	+0.1064 +0.0077 +0.0005 0 0 -0.1286 +0.0147 -0.0004 -0.0001 0 +0.0855 +0.0053 +0.0053 +0.0003 0	+1.2026 +0.1063 +0.0077 +0.0005 0 +0.1831 -0.1286 +0.0147 -0.0004 0 +1.1245 +0.0855 +0.0053 +0.0003	+5.9690 +1.2026 +0.1064 +0.0077 +0.0007 +8.8859 +0.1831 -0.1286 +0.0151 -0.0042 +6.2832 +1.1245 +0.0855 +0.0053	+1.2026 +5.9690 +1.2027 +0.1073 +0.0113 +0.1831 +8.8859 +0.1831 -0.1309 +0.0421 +1.1245 +6.2832 +1.1246 +0.0860	+0.1064 +1.2027 +5.9702 +1.2153 +0.1622 -0.1286 +0.1831 +8.8867 +0.1757 -0.1113 +0.0855 +1.1246 +6.2839 +1.1336	+0.0077 +0.1073 +1.2153 +6.1154 +2.0059 +0.0151 -0.1309 +0.1757 +9.1678 -2.3348 +0.0053 +0.0860 +1.1336 +6.4045	+0.0007 +0.0113 +0.1622 +2.0059 +15.9174 表 I/40 -0.0042 +0.0421 -0.1113 -2.3348 +35.5431 +0.0004 +0.0077 +0.1296 +1.8614

表-5.1.1 横方向分配係数K₀及びK₁の表¹⁾(10)

e e	-b	-3b/4	-b/2	— b/4	0	b/4	b/2	3b/4	b
<u>y</u> θ=4.20	K o					L	l		表 I/41
0	-0.0033	+0.0123	-0.0920	+0.0303	+9.3322	+0.0303	-0.0920	+0.0123	-0.0033
b/4	+0.0002	-0.0008	+0.0120	-0.0920	+0.0303	+9.3322	+0.0303	-0.0929	+0.0258
b/2	0	0	-0.0007	+0.0120	-0.0920	+0.0303	+9.3329	+0.0194	-0.0166
3b/4	0	0	0	-0.0008	+0.0123	-0.0929	+0.0194	+9.5918	-2.5004
b	0	0	0	+0.0002	-0.0033	+0.0258	-0.0166	-2.5004	+37.3202
-	K 1								
0	+0.0002	+0.0036	+0.0684	+1.0474	+6.5973	+1.0474	+0.0684	+0.0036	+0.0002
b/4	0	+0.0002	+0.0036	+0.0684	+1.0474	+6.5973	+1.0474	+0.0687	+0.0053
b/2	0	0	+0.0002	+0.0036	+0.0684	+1.0474	+6.5978	+1.0539	+0.1031
3b/4	0	0	0	+0.0002	+0.0036	+0.0687	+1.0539	+6.6974	+1.7214
b	0	0	0	0	+0.0002	+0.0053	+0.1031	+1.7214	+17.5929
$\theta = 4.40$	K _O								表 I/42
0	-0.0021	+0.0089	-0.0598	-0.1048	+9.7774	-0.1048	-0.0598	+0.0089	-0.0021
b/4	+0.0002	-0.0007	+0.0087	-0.0598	-0.1048	+9.7774	-0.1048	-0.0599	+0.0128
b/2	0	0	-0.0007	+0.0087	-0.0598	-0.1048	+9.7782	-0.1170	+0.0513
3b/4	0	0	0	-0.0007	+0.0089	-0.0599	-0.1170	+10.0108	-2.6024
b	0	0	0	+0.0002	-0.0021	+0.0128	+0.0513	-2.6024	+39.0974
	<i>K</i> ₁			1	1				1
0	+0.0001	+0.0025	+0.0545	+0.9720	+6.9115	+0.9720	+0.0545	+0.0025	+0.0001
b/4	0	+0.0001	+0.0025	+0.0545	+0.9720	+6.9115	+0.9720	+0.0547	+0.0036
b/2	0	0	+0.0001	+0.0025	+0.0545	+0.9720	+6.9118	+0.9766	+0.0818
3b/4	0	0	0	+0.0001	+0.0025	+0.0547	+0.9766	+6.9937	+1.5869
b	0	0	0	0	+0.0001	+0.0036	+0.0818	+1.5869	+18.4307
e	— <i>b</i>	-3b/4	-b/2	— b/4	0	b/4	b/2	3b/4	b
$\frac{y}{\theta} = 4.60$	K _O								表 I/43
0	-0.0010	+0.0057	-0.0331	-0.2215	+10 2217	-0.2215	-0.0331	+0.0057	-0.0010
b/4	+0.0001	-0.0005	+0.0056	-0.0331	-0.2215	+10.2217	-0.2215	-0.0328	+0.0036
b/2	0	0	-0.0005	+0.0056	-0.0331	-0.2215	+10.2224	-0.2333	+0.0955
, 3b/4	0	0	0	-0.0005	+0.0057	-0.0328	-0.2333	+10.4257	-2.6458
b	0	0	0	+0.0001	-0.0010	+0.0036	+0.0955	-2.6458	+40.8745
	K 1			-	-	-	-	•	•
0	+0.0001	+0.0017	+0.0432	+0.8991	+7.2257	+0.8991	+0.0432	+0.0017	+0.0001
b/4	0	+0.0001	+0.0017	+0.0432	+0.8991	+7.2257	+0.8991	+0.0434	+0.0024
b/2	0	0	+0.0001	+0.0017	+0.0432	+0.8991	+7.2258	+0.9023	+0.0647
3b/4	0	0	0	+0.0001	+0.0017	+0.0434	+0.9023	+7.2928	+1.4587
b	0	0	0	0	+0.0001	+0.0024	+0.0647	+1.4587	+19.2684
$\theta = 4.80$	K _O			_	_	_	_	_	表 I/44
0	-0.0003	+0.0030	-0.0120	-0.3185	+10.6297	-0.3185	-0.0120	+0.0030	-0.0003
b/4	0	-0.0003	+0.0030	-0.0120	-0.3185	+10.6297	-0.3185	-0.0116	-0.0020
b/2	0	0	-0.0003	+0.0030	-0.0120	-0.3185	+10.6303	-0.3289	+0.1193
3b/4	0	0	0	-0.0003	+0.0030	-0.0116	-0.3289	+10.8018	-2.6280
b	0	0	0	0	-0.0003	-0.0020	+0.1193	-2.6280	+42.6517
	K 1								
0	0	+0.0011	+0.0342	+0.8291	+7.5398	+0.8291	+0.0342	+0.0011	0
b/4	0	0	+0.0011	+0.0342	+0.8291	+7.5398	+0.8291	+0.0343	+0.0016
b/2	0	0	0	+0.0011	+0.0342	+0.8291	+7.5399	+0.8314	+0.0510
3b/4	0	0	0	0	+0.0011	+0.0343	+0.8314	+7.5945	+1.3373
-									1

表-5.1.1 横方向分配係数K₀及びK₁の表¹⁾(11)

付録5 参考文献

 リチャード・バレシュ、シャルル・マソネ著、成岡昌夫、国広哲男監訳:格子桁と直交異方 性板の計算 ギョン・マソネ・バレシュ法による、共立出版、1969.

付録6 確率計算に関する留意事項

6.1 確率計算の基本

いま、確率変数を X_i 、平均値を μ_{X_i} 、偏差を σ_{X_i} 、変動係数を COV_{X_i} とする。ここで、確率変数とは、変数 の値に対して、確率が関連付けられているものをいう。変数の値に対応して、関数値として確率が与えられ ていると考えてもよい。以下に、抵抗係数の計算にあたって、変動係数の平方和とした根拠を示す。

1) $Z = X_1 X_2 ... X_N O$ ように、確率変数が他の確率変数の積で表されているもの

この場合、確率分布形によらず平均値は、

 $\mu_z = E[Z] = \Sigma_i \mu_{X_i} + \Sigma_{ij} COR(X_i, X_j)$ (付 6. 1. 1) <u>X_i, X_i が互いに独立のとき</u>厳密に

$$\mu_{z} = \mu_{X_{1}}\mu_{X_{2}}\cdots\mu_{X_{N}} \quad (\text{ff 6. 1. 2})$$

となる。このときZの分散 σ_Z^2 は

となる。平方根の中は、多項式を展開すると

$$COV_{z} = \sqrt{COV_{x_{1}}^{2} + COV_{x_{2}}^{2} + \dots + COV_{x_{N}}^{2}}$$
 ((† 6. 1. 6))

である。すなわち,確率変数の積として表される確率変数があった場合,それぞれの確率変数が独立であり,さらにそれぞれの変動係数が十分小さい(10%程度を想定)場合には,式(付 6.1.6)のように表現できることになる。

2) $Z = X_1 + X_2 + \dots + X_N$ のように和で表されているもの

この場合, 確率分布形によらず, 平均値は

 $\mu_{z} = \mu_{1} + \mu_{2} + \dots \quad (\text{ff 6. 1. 7})$

さらに、Zの分散は

 $\sigma_z^2 = Var[Z] = Var[X_i] + Var[X_j] + \dots + 2COR(X_i, X_i) + \dots$

となるため、 X_i, X_i が互いに独立のとき、 $COR(X_i, X_i) = 0$ であることから

$$\sigma_{z} = \sqrt{\sigma_{x_{1}}^{2} + \sigma_{x_{2}}^{2} + \cdots}$$
(\frac{\phi}{6} \overline{1}.8)

が成り立つ。COVzは

となり、<u>単純に個々の COV では表せない</u>。この場合, FOSM 等によって、 $\sigma_z \ge \mu_z を$ それぞれ求め、変動係数 を計算する必要がある。なお、FOSM 法は、任意の関数系となっている Z について、線形化の近似を行う(⇒ Z ≈ $a_1X_1 + a_2X_2 + \cdots + a_NX_N \ge \tau$ る)ことで、 $\sigma_z を$ 近似的に求める技法である。これは、Talyor 展開に よって任意の関数を線形近似することと同じ。また、FOSM 法は、二次関数まで考慮して近似する方法であ る。

3) FOSM 法の場合

FOSM は、確率分布に関係なく関数を線形近似する技法。すなわち、Z = g(X)の一般形に対し、平均値 $g(X = X_0)$ において線形近似

を行う。このように近似することで、任意の関数が見かけ上は

と線形関数となる。この関数系のとき, Zの平均値と分散は

として求めることができる。

となり、分散も
$$Var[Z] = \Sigma_i \left(\frac{\partial g}{\partial x_i}\right)^2_{X_i = \overline{X}_i} Var[X_i] となることから$$

$$g(X_0) = A\overline{X}_1\overline{X}_2 \dots \overline{X}_n, \ \left(\frac{\partial g(X)}{\partial X_i}\right)_{X_i = \overline{X}_i} = A\overline{X}_1\overline{X}_2 \dots \overline{X}_{i-1}\overline{X}_{i+1} \dots \overline{X}_n \dots \dots \dots \dots \dots (\text{fr} \ 6. \ 1. \ 15)$$

から

6.2 評価式のばらつきの考慮

モンテカルロシミュレーションによる確率分布の表現や、変動係数の推定などは、評価式に含まれている パラメータがばらついた場合の算出値のばらつきを評価するものである。例えば、せん断耐力推定式を例に とると、推定式に含まれるパラメータ、すなわち、鉄筋の降伏強度、コンクリートの圧縮強度、寸法などが 実際と異なる場合の影響を評価している。一方、せん断耐力推定式そのものに大きなばらつきがある。この ばらつきは実験値と計算値の比較によって求められる。ただし、このときのばらつきの中に、パラメータの 不確実性によるばらつきは含まれていない。耐力推定において、実験値と計算値を比較する場合には、計算 値にはパラメータ(強度、寸法など)の実測値が用いられるためである。以下では、耐力推定式のばらつき が明らかである場合に、パラメータのばらつきを考慮する方法を示す。

1) 耐力推定式の誤差

推定値(M_{es})を実験値(M_{ex})で割ったデータを整理し、正規分布を仮定した場合

となる。ここで、Nは正規分布、バイアス(平均値)b、偏差σ_xとしている。このとき、式(付 6.2.1)を正 規化すれば

 $\frac{M_{ex}}{bM_{es}}$ ~N(1, σ_x^2/b^2)······(付6.2.2) である。いま,式(付6.2.2)で表される変数をXとおく.すなわち

である。ただし、 $COV_X = \sigma_X/b$ とした。X は平均1、分散 COV_X^2 の正規分布に従う。

これより、推定値と実際の耐力との乖離は

で表現される。

一方,推定式も確率変数である場合(推定式に確率変数が含まれ,確率変数の関数として表されるとき), 推定式をバイアスa, 偏差oyの正規分布と仮定すれば

である。式(付6.2.5)を正規化すれば

である。この変数をYとおく。Yは、平均1、分散COV_Yの正規分布に従う。ただし、COV_Y = σ_Y/a とした。 すなわち

 $\frac{M_{es}}{a} = Y \sim N(1, COV_Y^2) \cdots (ff 6. 2. 7)$

これより,

 $M_{es} = Ya \cdots (\text{$$$$$$$$} 6.2.8)$

である。これを式(付6.2.4)に代入すれば

 $M_{ex} = baXY \cdots (f 6.2.9)$

ここで、確率変数の一次近似(FOSM)を行うと、 M_{ex} の平均は \overline{M}_{ex} = ba. 分散は

ここで,

$$\left(\frac{\partial M_{ex}}{\partial X}\right)_{Y=1} = \left(\frac{\partial M_{ex}}{\partial Y}\right)_{X=1} = ba, \quad Var[X] = COV_X^2, Var[Y] = COV_Y^2 \cdots \cdots \cdots \cdots (\text{(ff 6. 2. 11)})$$

より,

 $Var(M_{ex}) = (ba)^2 (COV_X^2 + COV_Y^2)$ ·······(付 6. 2. 12) すなわち、 M_{ex} の変動係数 $COV_{M_{ex}} \equiv \sqrt{Var(M_{ex})}/baは近似的に$

 $COV_{M_{ex}} = \sqrt{COV_X^2 + COV_Y^2}$(付 6.2.13) となる. すなわち, 実験式 (評価式) の変動係数が COV_X であり, パラメータによる評価式の変動係数が COV_Y であった場合, 両者を考慮した場合の評価式の変動係数は式(付 6.2.13)のようにあらわすことができる。

例えば、曲げ実験式誤差の変動係数が10%、材料強度などの要因による推定式の変動係数が5%とすれば、 COV=11%程度となる。この計算結果をふまえ、不可算分を足して12.5%とすると、 μ -1.64 σ = μ (1-1.64COV)=0.795 μ \cong 0.80 μ となる。

土木研究所資料 TECHNICAL NOTE of PWRI No.4401 May 2020

編集·発行 ©国立研究開発法人土木研究所

本資料の転載・複写の問い合わせは

国立研究開発法人土木研究所 企画部 業務課 〒305-8516 茨城県つくば市南原1-6 電話029-879-6754